EP0275582B1 - Current mirror circuit - Google Patents

Current mirror circuit Download PDF

Info

Publication number
EP0275582B1
EP0275582B1 EP87202445A EP87202445A EP0275582B1 EP 0275582 B1 EP0275582 B1 EP 0275582B1 EP 87202445 A EP87202445 A EP 87202445A EP 87202445 A EP87202445 A EP 87202445A EP 0275582 B1 EP0275582 B1 EP 0275582B1
Authority
EP
European Patent Office
Prior art keywords
current
transistor
emitter
branch
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87202445A
Other languages
German (de)
French (fr)
Other versions
EP0275582A1 (en
Inventor
Cord Heinrich Kohsiek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0275582A1 publication Critical patent/EP0275582A1/en
Application granted granted Critical
Publication of EP0275582B1 publication Critical patent/EP0275582B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only

Definitions

  • the invention relates to a current mirror circuit according to the preamble of claim 1 and a use thereof.
  • Current mirror circuits have long been known. They contain a diode in the first branch, which is usually formed by a transistor whose collector is connected to its base, and the base-emitter path of a transistor in the second branch.
  • Current mirrors of this type provide an output current which corresponds to the input current (if the effective emitter area of the transistors in the two branches are equal to one another) or which is greater or less than the input current by a defined factor (if the effective emitter area of the transistor in the second branch is larger or smaller by this factor than the emitter area of the transistor connected as a diode in the first branch).
  • the emitter area ratio is limited to values between about 1:10 and 10: 1.
  • the object of the present invention is to provide a current mirror with which other relationships between output current and input current can be realized.
  • the second branch contains the base-emitter path of a first transistor, which is connected in series with a parallel circuit consisting of a current source and the base-emitter path of a second transistor.
  • the output current should change with the square of the input current; thus it is a non-linear current amplifier.
  • the ratio between the current in the second branch and the current in the first branch is proportional to the root of the current gain of the one transistor in the second branch. Since the current amplification factor of a transistor is practically constant, the output and input current are in a constant relationship to one another in the invention.
  • a particular advantage of the circuit according to the invention is that the ratio between the current in the second branch is proportional to the current gain from the one transistor in the second branch.
  • the current amplification factor of the transistors of an integrated circuit is essentially the same, the current amplification factors of the transistors of two integrated circuits of the same type can differ significantly, in particular if the circuits do not originate from the same crystal wafer. With different types of circuit, however, a - usually undesirable - quiescent current results which also fluctuates with the root of the current amplification factor or the reciprocal of this root.
  • a development of the current mirror circuit according to the invention is therefore characterized by its use for compensating the quiescent current proportional to the root of the current amplification factor of the transistors of a circuit or the reciprocal of this value in an integrated circuit.
  • the current mirror circuit shown in FIG. 1 contains, in a first branch, two diodes connected in series with the same forward direction, which are each formed by an npn transistor 1 or 2, the collector-base connections of which are short-circuited.
  • the second branch contains two npn transistors 3 and 4, whose series-connected base-emitter paths are connected in parallel with the series-connected diodes 1, 2. Accordingly, the base of transistor 3 is connected to the collector-base terminal of transistor 1; this connection point forms a connection point 5 of the current mirror circuit. Furthermore, the emitter of transistor 3 is connected to the base of transistor 4, the emitter of which is connected to the emitter of transistor 2. The connection of the emitters of transistors 2 and 4 forms a further connection point 6 of the circuit.
  • the third connection point of the current mirror is formed by the collector of transistor 4, to which the collector of transistor 3 is connected. Since the collector current of transistor 3 is significantly smaller than the collector current of transistor 4, the latter connection may also be omitted, if necessary.
  • U3 U1 - U d (2), wherein U1 is the base-emitter voltage of the transistor 1 connected as a diode and U d is the voltage between the emitter of the transistor 3 and the emitter of the transistor 1.
  • the input current can be fed to terminal 5, the proportional current being processed further at terminal 7 (in this case terminal 6 can be connected to ground, for example), but the current can also be further processed via terminal 6 because at least this approximately corresponds to the current I4.
  • an input current can be supplied to connection 6 and the output current can be taken from connection 5. In this case the output current is by a factor of 1 / ⁇ B less than the input current.
  • FIG. 2 shows a preferred application example of the circuit according to the invention in an amplitude demodulator.
  • Two branches each containing the series connection of the collector-emitter paths of two npn transistors 11 and 12 or 13 and 14, are connected to a direct current source 15.
  • transistor 11 is connected directly to the direct current source formed by the collector-emitter path of a transistor 15
  • the emitter of transistor 14 is connected in the other branch via a resistor 16 to the direct current source.
  • the base connections of the transistors 11 and 14, whose emitters are connected directly or via the resistor 16 to the direct current source 15 are connected to the emitters of the transistors in the other branch; the base of transistor 14 is thus connected to the emitter of transistor 12 and the base of transistor 11 is connected to the emitter of transistor 13.
  • the collector current of the transistor 13 is fed via a current mirror formed from pnp transistors, the output current of which is twice as large as the collector current of the transistor 13, to an output resistor 17, whose connection facing away from the current mirror is connected to ground.
  • the inputs 18 and 19 of the circuit are connected to the base connections of the transistors 12 and 13 and connected to a signal source (not shown in more detail) which generates amplitude-modulated signals. If the base currents of the transistors were negligibly small, the transistor 13 would only carry a collector current if the potential at the input terminal 18 was positive compared to the potential at the input terminal 19. A rectification would then take place, from which a direct voltage could be generated by means of a filter, not shown, coupled to the output resistor 17, which, among other things, would be usable for rule purposes.
  • R 60 ohms and a direct current I o of approx. 2 mA
  • I r is therefore inversely proportional to the root of the current amplification factor and is therefore exposed to sample variations.
  • This quiescent current is kept almost completely away from the resistor 17 in that a DC current is drawn off by means of the circuit shown in FIG. 1, which is part of an integrated circuit together with the amplitude modulator, which has almost the same size and the same dependence on the current amplification factor like the quiescent current.
  • the circuit shown in FIG. 1 is connected with its connection 6 to a current source 21 and with its connection 5 to the connection point of the output of the current mirror 20 with the resistor 17.
  • the current source 21 is formed by the collector-emitter path of a transistor which has the same properties as the transistor 15 and its base-emitter path connected in parallel with the base-emitter path of the transistor 15 and thus connected to the same bias generator 22 is like the transistor 15.
  • the current I ⁇ is supplied to the terminal 6, so that the current is approximately via the terminal 5 I.
  • O / ⁇ B ⁇ is dissipated, which corresponds to the quiescent current portion.
  • the useful component which is dependent on the alternating voltage at the inputs 18, 19, flows through the resistor 17 and can be used for control purposes independently of specimen variations.
  • the doubling of the quiescent current (and the useful signal) caused by the current mirror 20 can be omitted if either the collector current of the transistor 21 is halved or the emitter current of the transistors 3 and 4 is doubled by changing the transistor geometry.
  • the current mirror circuit implemented with npn transistors 1 ... 4 can also be constructed in an analog manner from pnp transistors.

Description

Die Erfindung betrifft eine Stromspiegelschaltung nach dem Oberbegriff des Anspruchs 1 und eine Verwendung derselben.The invention relates to a current mirror circuit according to the preamble of claim 1 and a use thereof.

Stromspiegelschaltungen sind seit langem bekannt. Sie enthalten im ersten Zweig eine Diode, die meist durch einen Transistor gebildet wird, dessen Kollektor mit seiner Basis verbunden ist, und im zweiten Zweig die Basis-Emitter-Strecke eines Transistors. Stromspiegel dieser Art liefern einen Ausgangsstrom, der dem Eingangsstrom entspricht (wenn die wirksamen Emitterflächen der Transistoren in den beiden Zweigen einander gleich sind) bzw. der um einen definierten Faktor größer oder kleiner ist als der Eingangsstrom (wenn die wirksame Emitterfläche des Transistors im zweiten Zweig um diesen Faktor größer oder kleiner ist als die Emitterfläche des als Diode geschalteten Transistors im ersten Zweig). In der Praxis ist das Emitterflächenverhältnis aber auf Werte zwischen etwa 1:10 und 10:1 beschränkt.Current mirror circuits have long been known. They contain a diode in the first branch, which is usually formed by a transistor whose collector is connected to its base, and the base-emitter path of a transistor in the second branch. Current mirrors of this type provide an output current which corresponds to the input current (if the effective emitter area of the transistors in the two branches are equal to one another) or which is greater or less than the input current by a defined factor (if the effective emitter area of the transistor in the second branch is larger or smaller by this factor than the emitter area of the transistor connected as a diode in the first branch). In practice, however, the emitter area ratio is limited to values between about 1:10 and 10: 1.

Aufgabe der vorliegenden Erfindung ist es, einen Stromspiegel anzugeben, mit dem andere Verhältnisse zwischen Ausgangsstrom und Eingangsstrom realisierbar sind.The object of the present invention is to provide a current mirror with which other relationships between output current and input current can be realized.

Diese Aufgabe wird erfindungsgemäß durch die im Anspruch 1 angegebenen Maßnahmen gelöst.This object is achieved by the measures specified in claim 1.

Es sei an dieser Stelle erwähnt, daß aus Fig. 3 der DE-PS 30 35 272 ein Stromverstärker mit den Merkmalen des Oberbegriffs des Hauptanspruchs bekannt ist. Bei dieser bekannten Schaltung enthält der zweite Zweig die Basis-Emitter-Strecke eines ersten Transistors, die in Serie zu einer aus einer Stromquelle und der Basisemitterstrecke eines zweiten Transistors bestehenden Parallelschaltung geschaltet ist. Bei dieser bekannten Schaltung soll sich der Ausgangsstrom mit dem Quadrat des Eingangsstroms ändern; somit handelt es sich dabei um einen nichtlinearen Stromverstärker. Demgegenüber ist das Verhältnis zwischen dem Strom im zweiten Zweig und dem Strom im ersten Zweig der Wurzel aus der Stromverstärkung des einen Transistors im zweiten Zweig proportional. Da der Stromverstärkungsfaktor eines Transistors praktisch konstant ist, stehen bei der Erfindung Ausgangs- und Eingangsstrom in einem konstanten Verhältnis zueinander.It should be mentioned at this point that a current amplifier with the features of the preamble of the main claim is known from FIG. 3 of DE-PS 30 35 272. In this known circuit, the second branch contains the base-emitter path of a first transistor, which is connected in series with a parallel circuit consisting of a current source and the base-emitter path of a second transistor. In this known circuit, the output current should change with the square of the input current; thus it is a non-linear current amplifier. In contrast, the ratio between the current in the second branch and the current in the first branch is proportional to the root of the current gain of the one transistor in the second branch. Since the current amplification factor of a transistor is practically constant, the output and input current are in a constant relationship to one another in the invention.

Ein besonderer Vorteil der erfindungsgemäßen Schaltung besteht darin, daß das Verhältnis zwischen dem Strom im zweiten Zweig der Wurzel aus der Stromverstärkung des einen Transistors im zweiten Zweig proportional ist. Der Stromverstärkungsfaktor der Transistoren einer integrierten Schaltung ist zwar im wesentlichen der gleiche, jedoch können die Stromverstärkungsfaktoren der Transistoren von zwei integrierten Schaltungen des gleichen Typs wesentlich voneinander abweichen, insbesondere, wenn die Schaltungen nicht von der gleichen Kristall-Scheibe stammen. Bei verschiedenen Schaltungstypen ergibt sich aber ein - in der Regel unerwünschter - Ruhestrom, der ebenfalls mit der Wurzel aus dem Stromverstärkungsfaktor bzw. dem Kehrwert dieser Wurzel schwankt.A particular advantage of the circuit according to the invention is that the ratio between the current in the second branch is proportional to the current gain from the one transistor in the second branch. Although the current amplification factor of the transistors of an integrated circuit is essentially the same, the current amplification factors of the transistors of two integrated circuits of the same type can differ significantly, in particular if the circuits do not originate from the same crystal wafer. With different types of circuit, however, a - usually undesirable - quiescent current results which also fluctuates with the root of the current amplification factor or the reciprocal of this root.

Eine Weiterbildung der erfindungsgemäßen Stromspiegelschaltung ist daher gekennzeichnet durch ihre Verwendung zur Kompensation des der Wurzel des Stromverstärkungsfaktors der Transistoren einer Schaltung oder dem Kehrwert dieses Wertes proportionalen Ruhestroms in einer integrierten Schaltung.A development of the current mirror circuit according to the invention is therefore characterized by its use for compensating the quiescent current proportional to the root of the current amplification factor of the transistors of a circuit or the reciprocal of this value in an integrated circuit.

Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1
ein Schaltbild der erfindungsgemäßen Schaltung,
Fig. 2
ihre Verwendung zur Kompensation des Ruhestroms bei einem AM-Demodulator.
The invention is explained below with reference to the drawing. Show it:
Fig. 1
2 shows a circuit diagram of the circuit according to the invention,
Fig. 2
their use for compensation of the quiescent current in an AM demodulator.

Die in Fig. 1 dargestellte Stromspiegelschaltung enthält in einem ersten Zweig zwei mit gleicher Durchlaßrichtung in Serie geschaltete Dioden, die durch je einen npn-Transistor 1 bzw. 2 gebildet werden, deren Kollektor-Basis-Anschlüsse kurzgeschlossen sind.The current mirror circuit shown in FIG. 1 contains, in a first branch, two diodes connected in series with the same forward direction, which are each formed by an npn transistor 1 or 2, the collector-base connections of which are short-circuited.

Der zweite Zweig enthält zwei npn-Transistoren 3 und 4, deren in Serie geschaltete Basis-Emitter-Strecken den in Serie geschalteten Dioden 1, 2 parallelgeschaltet sind. Demgemäß ist die Basis des Transistors 3 mit dem Kollektor-Basis-Anschluß des Transistors 1 verbunden; dieser Verbindungspunkt bildet einen Anschlußpunkt 5 der Stromspiegelschaltung. Weiterhin ist der Emitter des Transistors 3 mit der Basis des Transistors 4 verbunden, dessen Emitter mit dem Emitter des Transistors 2 verbunden ist. Die Verbindung der Emitter der Transistoren 2 und 4 bildet einen weiteren Anschlußpunkt 6 der Schaltung.The second branch contains two npn transistors 3 and 4, whose series-connected base-emitter paths are connected in parallel with the series-connected diodes 1, 2. Accordingly, the base of transistor 3 is connected to the collector-base terminal of transistor 1; this connection point forms a connection point 5 of the current mirror circuit. Furthermore, the emitter of transistor 3 is connected to the base of transistor 4, the emitter of which is connected to the emitter of transistor 2. The connection of the emitters of transistors 2 and 4 forms a further connection point 6 of the circuit.

Den dritten Anschlußpunkt des Stromspiegels bildet der Kollektor des Transistors 4, mit dem der Kollektor des Transistors 3 verbunden ist. Da der Kollektorstrom des Transistors 3 wesentlich kleiner ist als der Kollektorstrom des Transistors 4 kann die letztgenannte Verbindung gegebenenfalls aber auch entfallen.The third connection point of the current mirror is formed by the collector of transistor 4, to which the collector of transistor 3 is connected. Since the collector current of transistor 3 is significantly smaller than the collector current of transistor 4, the latter connection may also be omitted, if necessary.

Bei der nachfolgenden Berechnung sei zunächst angenommen, daß die vier Transistoren 1 bis 4 die gleichen Eigenschaften aufweisen. Der Emitterstrom I₄ des Transistors 4 ist um den Stromverstärkungsfaktor B dieses Transistors größer als der Emitterstrom des Transistors 3. Wegen des exponentiellen Zusammenhanges zwischen der Basis-Emitter-Spannung eines Transistors und seinem Emitterstrom gilt daher die Gleichung:

U₄ - U₃ = U T lnB   (1)

Figure imgb0001


Dabei sind U₃ bzw. U₄ die Basis-Emitter-Spannungen der Transistoren 3 bzw. 4, und UT ist die sogenannte Temperaturspannung, die bei Zimmertemperatur etwa 25,5 mV beträgt. Weiterhin gilt:

U₃ = U₁ - U d    (2),
Figure imgb0002


wobei U₁ die Basis-Emitter-Spannung des als Diode geschalteten Transistors 1 ist und Ud die Spannung zwischen dem Emitter des Transistors 3 und dem Emitter des Transistors 1 ist. Ebenso gilt:

U₄ = U₂ + U d    (3),
Figure imgb0003


wobei U₂ die Basis-Emitter-Spannung des Transistors 2 ist. Da die als Diode geschalteten Transistoren 1 und 2 den gleichen Strom führen, gilt:

U₁ = U₂   (4).
In the following calculation, it is initially assumed that the four transistors 1 to 4 have the same properties. The emitter current I₄ of the transistor 4th is greater than the emitter current of transistor 3 by the current amplification factor B of this transistor. Because of the exponential relationship between the base-emitter voltage of a transistor and its emitter current, the equation applies:

U₄ - U₃ = U T lnB (1)
Figure imgb0001


U₃ and U₄ are the base-emitter voltages of the transistors 3 and 4, and U T is the so-called temperature voltage, which is about 25.5 mV at room temperature. The following also applies:

U₃ = U₁ - U d (2),
Figure imgb0002


wherein U₁ is the base-emitter voltage of the transistor 1 connected as a diode and U d is the voltage between the emitter of the transistor 3 and the emitter of the transistor 1. The following also applies:

U₄ = U₂ + U d (3),
Figure imgb0003


where U₂ is the base-emitter voltage of transistor 2. Since the transistors 1 and 2 connected as diodes carry the same current, the following applies:

U₁ = U₂ (4).

Da gemäß Gleichung (3) die Basis-Emitter-Spannung des Transistors 4 um Ud größer ist als die Basis-Emitter-Spannung des Transistors 2, gilt wegen des exponentiellen Zusammenhanges zwischen Emitterstrom und Basis-Emitter-Spannung schließlich die Gleichung:

I₄/I₁ = exp(U d /U T )   (5),

Figure imgb0004


wobei I₄ der Emitterstrom des Transistors 4 und I₁ der Emitterstrom der Transistoren 1 bzw. 2 ist. Aus den Gleichungen (2), (3) und (4) ergibt sich:

U₄ - U₃ = 2U d    (6).
Figure imgb0005

Since, according to equation (3), the base-emitter voltage of transistor 4 is larger than the base-emitter voltage of transistor 2 by U d, the equation finally applies because of the exponential relationship between emitter current and base-emitter voltage:

I₄ / I₁ = exp (U d / U T ) (5),
Figure imgb0004


where I₄ is the emitter current of transistor 4 and I₁ is the emitter current of transistors 1 and 2, respectively. From equations (2), (3) and (4) we get:

U₄ - U₃ = 2U d (6).
Figure imgb0005

Durch Gleichsetzen der Gleichungen (1) und (6) folgt:

U d = 0,5U T lnB   (7).

Figure imgb0006

By equating equations (1) and (6):

U d = 0.5U T lnB (7).
Figure imgb0006

Durch Einsetzen von Gleichung (7) in Gleichung (5) ergibt sich:

I₄/I₁ =√ B ¯    (8).

Figure imgb0007

Substituting equation (7) into equation (5) gives:

I₄ / I₁ = √ B ¯ (8th).
Figure imgb0007

Da der Strom I₁ praktisch gleich dem über den Anschluß 5 fließenden Strom ist (die Abweichungen bewegen sich im Promillebereich) und da der Emitterstrom des Transistors I₄ nahezu mit dem Strom über den dritten Anschluß 7 identisch ist, gilt also, daß der Strom über die Klemme 7 um den Faktor√B größer ist als der Strom über die Klemme 5.Since the current I₁ is practically the same as the current flowing through the terminal 5 (the deviations are in the range per mil) and since the emitter current of the transistor I₄ is almost identical to the current through the third terminal 7, the current across the terminal applies 7 by a factor of √ B is greater than the current via terminal 5.

Die vorstehenden Beziehungen wurden unter der Voraussetzung abgeleitet, daß alle Transistoren identisch sind. Es ist aber auch möglich, daß nur die Transistoren 1 und 3 einander gleich sind und andere Emitterflächen aufweisen als die einander gleichen Transistoren 2 und 4, oder daß die Transistoren 3 und 4 einander gleich sind und andere Stromverstärkungsfaktoren aufweisen als die Transistoren 1 und 2. Schließlich können alle vier Transistoren voneinander abweichende Emitterflächen haben. In allen diesen Fällen gilt, daß der Faktor√B in Gleichung (8) mit einem Faktor zu multiplizieren ist, der von den wirksamen Emitterflächen abhängt.The above relationships have been derived on the assumption that all transistors are identical. However, it is also possible that only transistors 1 and 3 are identical to one another and have different emitter areas than transistors 2 and 4 that are identical to one another, or that transistors 3 and 4 are identical to one another and have different current amplification factors than transistors 1 and 2. Finally, all four transistors can have different emitter areas. In all of these cases the factor√ B in equation (8) is to be multiplied by a factor which depends on the effective emitter areas.

Der Eingangsstrom kann an der Klemme 5 zugeführt werden, wobei der proportionale Strom an der Klemme 7 weiterverarbeitet wird (in diesem Fall kann die Klemme 6 beispielsweise mit Masse verbunden sein), jedoch kann auch der Strom über den Anschluß 6 weiterverarbeitet werden, weil dieser wenigstens näherungsweise dem Strom I₄ entspricht. Ebenso kann dem Anschluß 6 ein Eingangsstrom zugeführt und der Ausgangsstrom dem Anschluß 5 entnommen werden. In diesem Fall ist der Ausgangsstrom um den Faktor 1/√B kleiner als der Eingangsstrom.The input current can be fed to terminal 5, the proportional current being processed further at terminal 7 (in this case terminal 6 can be connected to ground, for example), but the current can also be further processed via terminal 6 because at least this approximately corresponds to the current I₄. Likewise, an input current can be supplied to connection 6 and the output current can be taken from connection 5. In this case the output current is by a factor of 1 / √ B less than the input current.

Fig. 2 zeigt ein bevorzugtes Anwendungsbeispiel der erfindungsgemäßen Schaltung bei einem Amplitudendemodulator. Dabei sind zwei Zweige, die je die Serienschaltung der Kollektor-Emitter-Strecken zweier npn-Transistoren 11 und 12 bzw. 13 und 14 enthalten, an eine Gleichstromquelle 15 angeschlossen. Während jedoch der Transistor 11 direkt mit der durch die Kollektor-Emitter-Strecke eines Transistors 15 gebildeten Gleichstromquelle verbunden ist, ist der Emitter des Transistors 14 im anderen Zweig über einen Widerstand 16 mit der Gleichstromquelle verbunden. Außerdem sind die Basisanschlüsse der Transistoren 11 bzw. 14, deren Emitter direkt bzw. über den Widerstand 16 mit der Gleichstromquelle 15 verbunden sind, an die Emitter der Transistoren im jeweils anderen Zweig angeschlossen; die Basis des Transistors 14 ist also mit dem Emitter des Transistors 12 und die Basis des Transistors 11 mit dem Emitter des Transistors 13 verbunden.2 shows a preferred application example of the circuit according to the invention in an amplitude demodulator. Two branches, each containing the series connection of the collector-emitter paths of two npn transistors 11 and 12 or 13 and 14, are connected to a direct current source 15. However, while transistor 11 is connected directly to the direct current source formed by the collector-emitter path of a transistor 15, the emitter of transistor 14 is connected in the other branch via a resistor 16 to the direct current source. In addition, the base connections of the transistors 11 and 14, whose emitters are connected directly or via the resistor 16 to the direct current source 15, are connected to the emitters of the transistors in the other branch; the base of transistor 14 is thus connected to the emitter of transistor 12 and the base of transistor 11 is connected to the emitter of transistor 13.

Der Kollektorstrom des Transistors 13 wird über einen aus pnp-Transistoren gebildeten Stromspiegel, dessen Ausgangsstrom doppelt so groß ist wie der Kollektorstrom des Transistors 13, einem Ausgangswiderstand 17 zugeführt, dessen vom Stromspiegel abgewandter Anschluß mit Masse verbunden ist.The collector current of the transistor 13 is fed via a current mirror formed from pnp transistors, the output current of which is twice as large as the collector current of the transistor 13, to an output resistor 17, whose connection facing away from the current mirror is connected to ground.

Die Eingänge 18 und 19 der Schaltung sind mit den Basisanschlüssen der Transistoren 12 und 13 verbunden und an eine nicht näher dargestellte Signalquelle angeschlossen, die amplitudenmodulierte Signale erzeugt. Wenn die Basisströme der Transistoren vernachlässigbar klein wären, würde der Transistor 13 nur dann einen Kollektorstrom führen, wenn das Potential an der Eingangsklemme 18 gegenüber dem Potential an der Eingangsklemme 19 positiv wäre. Es fände dann also eine Gleichrichtung statt, woraus mittels eines nicht näher dargestellten, mit dem Ausgangswiderstand 17 gekoppelten Filters eine Gleichspannung erzeugt werden könnte, die u.a. zu Regelzwecken benutzbar wäre.The inputs 18 and 19 of the circuit are connected to the base connections of the transistors 12 and 13 and connected to a signal source (not shown in more detail) which generates amplitude-modulated signals. If the base currents of the transistors were negligibly small, the transistor 13 would only carry a collector current if the potential at the input terminal 18 was positive compared to the potential at the input terminal 19. A rectification would then take place, from which a direct voltage could be generated by means of a filter, not shown, coupled to the output resistor 17, which, among other things, would be usable for rule purposes.

Da die Basisströme der Transistoren 11...14 aber nicht vernachlässigbar sind bzw. da die Stromverstärkungsfaktoren dieser Transistoren endlich sind, ist diesem Nutzsignalanteil in der Praxis ein Ruhestrom Ir überlagert, der von den Exemplarstreuungen der Schaltung abhängig ist und der das Regelverhalten in unerwünschter Weise beeinflussen würde.However, since the base currents of the transistors 11 ... 14 are not negligible or because the current amplification factors of these transistors are finite, a quiescent current I r is superimposed on this useful signal component, which is dependent on the sample variations of the circuit and which undesirably affects the control behavior Way would affect.

Dieser Ruhestrom hängt von dem von der Gleichstromquelle 15 gelieferten Gleichstrom Io und dem Stromverstärkungsfaktor B der Transistoren 11...14 nach der Beziehung:

I r /I o = A/√ B ¯    (9)

Figure imgb0008


ab. A ist dabei ein Faktor, der vom Gleichstrom I₀ und vom Widerstand R nach der Beziehung:

A = √ U T /RI o ¯    (10)
Figure imgb0009


abhängt. Mit einem Wert R von 60 Ohm und einem Gleichstrom Io von ca. 2 mA ergibt sich der Faktor A näherungsweise zu 0,5, so daß nach der Verdopplung des Ruhestroms im Stromspiegel 20 dem Ausgangswiderstand ein Ruhestrom Ir der Größe:

I r = I o /√ B ¯    (11)
Figure imgb0010


zugeführt würde. Ir ist demnach der Wurzel aus dem Stromverstärkungsfaktor umgekehrt proportional und ist daher Exemplarstreuungen ausgesetzt.This quiescent current depends on the direct current I o supplied by the direct current source 15 and the current amplification factor B of the transistors 11 ... 14 according to the relationship:

I. r / I O = A / √ B ¯ (9)
Figure imgb0008


from. A is a factor of the direct current Istrom and the resistance R according to the relationship:

A = √ U T / RI O ¯ (10)
Figure imgb0009


depends. With a value R of 60 ohms and a direct current I o of approx. 2 mA, the factor A is approximately 0.5, so that after doubling the quiescent current in the current mirror 20, the quiescent current I r of the magnitude:

I. r = I O / √ B ¯ (11)
Figure imgb0010


would be fed. I r is therefore inversely proportional to the root of the current amplification factor and is therefore exposed to sample variations.

Dieser Ruhestrom wird von dem Widerstand 17 nahezu vollständig dadurch ferngehalten, daß mittels der in Fig. 1 dargestellten Schaltung, die zusammen mit dem Amplitudenmodulator Teil einer Integrierten Schaltung ist, ein Gleichstrom abgezogen wird, der nahezu die gleiche Größe und die gleiche Abhängigkeit vom Stromverstärkungsfaktor aufweist wie der Ruhestrom. Zu diesem Zweck ist die in Fig. 1 dargestellte Schaltung mit ihrem Anschluß 6 an eine Stromquelle 21 und mit ihrem Anschluß 5 an den Verbindungspunkt des Ausgangs des Stromspiegels 20 mit dem Widerstand 17 angeschlossen. Die Stromquelle 21 wird durch die Kollektor-Emitter-Strecke eines Transistors gebildet, der die gleichen Eigenschaften aufweist, wie der Transistor 15 und dessen Basis-Emitter-Strecke der Basis-Emitter-Strecke des Transistors 15 parallelgeschaltet und somit an den gleichen Vorspannungserzeuger 22 angeschlossen ist wie der Transistor 15. Infolgedessen wird dem Anschluß 6 der Strom Iγ zugeführt, so daß über den Anschluß 5 näherungsweise der Strom I o /√ B ¯

Figure imgb0011
abgeführt wird, der gerade dem Ruhestromanteil entspricht. Infolgedessen fließt über den Widerstand 17 nur der von der Wechselspannung an den Eingängen 18, 19 abhängige Nutzanteil, der unabhängig von Exemplarstreuungen zu Regelzwecken benutzt werden kann.This quiescent current is kept almost completely away from the resistor 17 in that a DC current is drawn off by means of the circuit shown in FIG. 1, which is part of an integrated circuit together with the amplitude modulator, which has almost the same size and the same dependence on the current amplification factor like the quiescent current. For this purpose, the circuit shown in FIG. 1 is connected with its connection 6 to a current source 21 and with its connection 5 to the connection point of the output of the current mirror 20 with the resistor 17. The current source 21 is formed by the collector-emitter path of a transistor which has the same properties as the transistor 15 and its base-emitter path connected in parallel with the base-emitter path of the transistor 15 and thus connected to the same bias generator 22 is like the transistor 15. As a result, the current Iγ is supplied to the terminal 6, so that the current is approximately via the terminal 5 I. O / √ B ¯
Figure imgb0011
is dissipated, which corresponds to the quiescent current portion. As a result, only the useful component, which is dependent on the alternating voltage at the inputs 18, 19, flows through the resistor 17 and can be used for control purposes independently of specimen variations.

Die durch den Stromspiegel 20 hervorgerufene Verdopplung des Ruhestroms (und des Nutzsignals) kann entfallen, wenn durch Änderung der Transistorgeometrie entweder der Kollektorstrom des Transistors 21 halbiert oder der Emitterstrom der Transistoren 3 und 4 verdoppelt wird. - Die mit npn-Transistoren 1...4 realisierte Stromspiegelschaltung kann in analoger Weise auch aus pnp-Transistoren aufgebaut werden.The doubling of the quiescent current (and the useful signal) caused by the current mirror 20 can be omitted if either the collector current of the transistor 21 is halved or the emitter current of the transistors 3 and 4 is doubled by changing the transistor geometry. - The current mirror circuit implemented with npn transistors 1 ... 4 can also be constructed in an analog manner from pnp transistors.

Claims (5)

  1. A current-mirror arrangement comprising a first and a second branch arranged in parallel with one another, the first branch comprising two series-connected diodes (1, 2), and an input current and an output current being present during operation, characterised in that in the second branch the base-emitter paths of two transistors (3, 4) are arranged in series in such a manner that the emitter current of the one transistor (3) constitutes the base current of the other transistor (4).
  2. A current-mirror arrangement as claimed in Claim 1, characterized in that the input current is applied to the junction point (6) between the two branches, to which junction point the emitter of a transistor (4) in the second branch is connected, and in that the output current is taken from the other junction point (5) between the two branches.
  3. A current-mirror arrangement as claimed in Claim 1, characterized in that the input current is applied to the junction point (5) which is connected to the base of a transistor (3) in the second branch, and in that the output current is taken from the other junction point (6) or from the collector (7) of that transistor (4) in the second branch whose emitter is connected to the other junction point (6).
  4. A current-mirror arrangement as claimed in Claim 3, characterized in that the collectors of the two transistors (3, 4) of the second branch are interconnected.
  5. Use of a current-mirror arrangement as claimed in Claim 1 to compensate for the quiescent current in an integrated circuit, which quiescent current is proportional to the root of the current-gain factor of the transistors of a circuit (11....19) or to the reciprocal of this root.
EP87202445A 1986-12-10 1987-12-08 Current mirror circuit Expired - Lifetime EP0275582B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3642167 1986-12-10
DE19863642167 DE3642167A1 (en) 1986-12-10 1986-12-10 CURRENT MIRROR SWITCHING

Publications (2)

Publication Number Publication Date
EP0275582A1 EP0275582A1 (en) 1988-07-27
EP0275582B1 true EP0275582B1 (en) 1991-11-21

Family

ID=6315879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87202445A Expired - Lifetime EP0275582B1 (en) 1986-12-10 1987-12-08 Current mirror circuit

Country Status (4)

Country Link
US (1) US4812734A (en)
EP (1) EP0275582B1 (en)
JP (1) JP2628663B2 (en)
DE (2) DE3642167A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014010A (en) * 1989-04-10 1991-05-07 Texaco Inc. Dual frequency microwave water cut monitoring means and method
DE4122029C1 (en) * 1991-07-03 1992-11-26 Texas Instruments Deutschland Gmbh, 8050 Freising, De
US5122686A (en) * 1991-07-18 1992-06-16 Advanced Micro Devices, Inc. Power reduction design for ECL outputs that is independent of random termination voltage
NL2004658C2 (en) 2010-05-04 2011-11-07 Ppe Holland METHOD, COMPOSITION AND DEVICE FOR APPLYING A STRUCTURED LAYER TO A SUBSTRATE.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514019Y1 (en) * 1970-11-21 1976-02-04
US3868581A (en) * 1973-07-20 1975-02-25 Rca Corp Current amplifier
DE2553431C3 (en) * 1975-11-28 1980-10-02 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Reference current source for generating a temperature-independent direct current
JPS52113339U (en) * 1976-02-26 1977-08-29
JPS5412351U (en) * 1977-06-27 1979-01-26
US4103249A (en) * 1977-10-31 1978-07-25 Gte Sylvania Incorporated Pnp current mirror
US4267519A (en) * 1979-09-18 1981-05-12 Rca Corporation Operational transconductance amplifiers with non-linear component current amplifiers
DD156339A3 (en) * 1981-01-12 1982-08-18 Horst Elschner CIRCUIT ARRANGEMENT FOR A CONTROLLABLE POWER SOURCE
JPS57160206A (en) * 1981-03-27 1982-10-02 Toshiba Corp Fine current source circuit
JPS5880715A (en) * 1981-11-06 1983-05-14 Toshiba Corp Current source circuit
JPS6369305A (en) * 1986-09-11 1988-03-29 Seikosha Co Ltd Current amplifier circuit

Also Published As

Publication number Publication date
DE3642167A1 (en) 1988-06-30
US4812734A (en) 1989-03-14
JPS63157215A (en) 1988-06-30
JP2628663B2 (en) 1997-07-09
DE3774686D1 (en) 1992-01-02
EP0275582A1 (en) 1988-07-27

Similar Documents

Publication Publication Date Title
DE1901804C3 (en) Stabilized differential amplifier
DE3420068C2 (en)
DE3012965C2 (en)
DE1487396A1 (en) Circuit arrangement for generating a control or compensation voltage
DE3309897C2 (en)
DE2420158A1 (en) DIFFERENCE AMPLIFIER
DE2265734C1 (en) Multiplier circuit
DE2648577C2 (en)
DE2501407A1 (en) COMPOSITE TRANSISTOR CIRCUIT
DE2363624A1 (en) CIRCUIT ARRANGEMENT FOR SUBTRACTING A MULTIPLE FIRST INPUT CURRENT FROM A SECOND INPUT CURRENT
DE3447002C2 (en)
DE3545392C2 (en)
EP0334447B1 (en) Schmitt-trigger circuit
EP0275582B1 (en) Current mirror circuit
DE4336668A1 (en) Broadband constant resistance amplifier
EP0237086B1 (en) Current mirror circuit
DE3824105C2 (en) Circuit arrangement for generating a stabilized output voltage
DE2409340A1 (en) LOGARITHMIC AMPLIFIER CIRCUIT ARRANGEMENT
DE2648080A1 (en) BROADBAND AMPLIFIER
DE2416533A1 (en) ELECTRONIC CIRCUIT WITH STABLE PRELOAD
DE2360648B2 (en) AMPLIFIER CIRCUIT WITH HIGH INPUT IMPEDANCE
DE3611548A1 (en) Current mirror circuit
DE1814887C3 (en) Transistor amplifier
DE2706574C2 (en) Voltage controlled amplifier circuit
DE1815203B2 (en) Voltage amplifier with a transistor combination consisting of several transistors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890117

17Q First examination report despatched

Effective date: 19900731

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3774686

Country of ref document: DE

Date of ref document: 19920102

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V.

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991221

Year of fee payment: 13

Ref country code: FR

Payment date: 19991221

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000223

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051208