EP0275412B1 - Method of producing an elongate structure - Google Patents

Method of producing an elongate structure Download PDF

Info

Publication number
EP0275412B1
EP0275412B1 EP87117436A EP87117436A EP0275412B1 EP 0275412 B1 EP0275412 B1 EP 0275412B1 EP 87117436 A EP87117436 A EP 87117436A EP 87117436 A EP87117436 A EP 87117436A EP 0275412 B1 EP0275412 B1 EP 0275412B1
Authority
EP
European Patent Office
Prior art keywords
supports
sections
parts
joints
articulations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87117436A
Other languages
German (de)
French (fr)
Other versions
EP0275412A2 (en
EP0275412A3 (en
Inventor
Jürgen Dr. Bergfelder
Konrad Dr. Zilch
Original Assignee
STRABAG BAU - AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STRABAG BAU - AG filed Critical STRABAG BAU - AG
Priority to AT87117436T priority Critical patent/ATE84826T1/en
Publication of EP0275412A2 publication Critical patent/EP0275412A2/en
Publication of EP0275412A3 publication Critical patent/EP0275412A3/en
Application granted granted Critical
Publication of EP0275412B1 publication Critical patent/EP0275412B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • E01D21/06Methods or apparatus specially adapted for erecting or assembling bridges by translational movement of the bridge or bridge sections
    • E01D21/065Incremental launching
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • E01D19/048Bearings being adjustable once installed; Bearings used in incremental launching
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/063Tunnels submerged into, or built in, open water
    • E02D29/07Tunnels or shuttering therefor preconstructed as a whole or continuously made, and moved into place on the water-bed, e.g. into a preformed trench

Definitions

  • the invention relates to a method for producing an elongated structure, such as a bridge superstructure, underwater tunnel or the like, which is produced in the cycle sliding method from the location of one end of the structure in adjoining sections and is pushed into its position of use in the longitudinal direction of the structure on supports arranged at a longitudinal distance from one another .
  • the superstructure Since bending moments of varying magnitude occur in the superstructure with changing signs, the superstructure is in any case designed to be rigid over the entire length for the state of its longitudinal displacement. However, a linear or curved feed path is always required for the longitudinal feed, ie the bearing points on the pillars must lie on a straight line or an arc in the floor plan or in the gradient.
  • the longitudinal axis of the bridge is curved in the plan or in the gradient according to a curve deviating from the straight line or the circular arc and, for example, it has transition arches shaped according to a clothoid, it may be necessary to make the pillars wider and to provide them with laterally displaceable bearings or Arrange excessive bearings on the pillars for the displacement process and lower the superstructure to the final bearings in the final state.
  • These measures make the longitudinal displacement of the bridge very complicated and require a number of additional and possibly very expensive measures.
  • the tunnel tube of an underwater tunnel using the cycle shift method (DE-OS 33 38 652).
  • the tunnel tube is produced in sections which adjoin one another and which, in the final state, form an articulated chain.
  • the tunnel tube is continuously formed in one piece as a rigid rod, so that the tunnel tube can be advanced freely cantilevered in the water over several guide yokes arranged at a longitudinal distance from one another.
  • even small settlements of the guide yokes during advancement lead to considerable constraining forces in the rigid tunnel tube, which can generate significantly higher cutting forces than occur in the position of use of the tunnel.
  • the object of the invention is to avoid these disadvantages and to provide a method for producing an elongated structure in the cycle sliding method, with which it is possible, on the one hand, to also move such structures to their final position without temporarily changing their supports by longitudinal feed to bring, which are curved according to a curve deviating from the straight line or an arc, and on the other hand to avoid constraining forces in the building during longitudinal feed.
  • the structure is formed at least for the state of its longitudinal displacement as a support with joints and has a rigid part extending over at least the length of the distance between two supports.
  • This configuration has the advantage that the structure can adapt to changing curvatures of the feed path which is formed by the spaced apart supports when advancing. Nevertheless, the elongated structure is stabilized during the longitudinal feed by the rigid part without the structure being subjected to significant constraints when pushing forward, since the rigid part only rests on two successive supports and together with the articulated parts in the manner of a tanning beam, a statically determined system forms.
  • the rigid part is expediently arranged at the front end of the building in the feed direction and can also be provided with a light stem, as is usually attached to the front end of the building in the cycle sliding method. Although this stem extends the rigid part of the structure, its rigidity is so low in relation to it that, despite temporarily statically undefined storage, no undesirably high constraints occur when advancing in the structure.
  • the structural parts connected to the rigid part, connected by joints can have a length which corresponds to the spacing of the supports, the spacing of all supports being expediently the same.
  • the joints are then above the supports and it is possible to open the joints so that the spanning individual superstructure sections as free-standing girders, as is often required, for example, for railway bridges.
  • the procedure according to the invention is such that the structure sections or structure parts are compressible elements are supported against each other in the joint areas and thereby have a certain mobility and limited bending stiffness at least during the longitudinal displacement in the joint areas.
  • suitably soft elastomer bearing plates e.g. made of neoprene, are arranged in the joint joints of the joints between the building sections or building parts, and the building parts or building sections are, if necessary, clamped together with tendons.
  • the bending stiffness can be changed by changing the tension in the tendons can be changed as required in the joint areas when advancing the building. This makes it possible to adjust the bending stiffness of the structure at many points within wide limits as required and thereby to optimally influence the torque distribution.
  • the arrangement of compressible elements is possible not only in the joint joints of coupling joints, but also in the joints of tanner's wearers.
  • the rigid part at the front end of the tanning beam can have joints at a distance from the supports, which are completely stiffened for the construction state of the longitudinal displacement. It is then possible to put these joints into effect after reaching the position of use, so that the structure, for example a tunnel tube, results in a complete chain of joints, the individual structure sections of which must of course be sealed off from one another in the joint area.
  • the elastic joints behave differently towards positive and negative moments, i.e. develop greater rigidity when exposed to negative moments than with positive moments or vice versa.
  • the torque-angle rotation relationship does not have to be symmetrical to the zero point.
  • Fig. 1 denotes an underwater tunnel, which passes under a river 11 and whose tunnel tube 12 is produced on the left bank 13 in successive sections and is pushed through the water to the right bank 14 in the cycle shift method.
  • a trench arranged transversely to the river 11 is dug in the river bed and in the adjoining bank areas 13 and 14.
  • the space around the tunnel is filled again after the tunnel tube 12 has been pushed in, in order to embed the tunnel tube 12 in the ground when in use and to restore the original water profile.
  • a pre-press pit 16 On the left bank 13 of the river 11 there is a pre-press pit 16, which is closed off from the water ditch by a sealing portal 17.
  • the pre-press pit 16 serves as a manufacturing station for producing the individual structural sections 18 of the tunnel tube 12 and for pushing the finished part of the tunnel tube 12 into the channel filled with water until this tunnel tube 12 reaches the second sealing portal 19 on the right bank 14.
  • This sealing portal 19 is then followed by the tunnel mouth 20, which is built on the spot and, after the tunnel tube has been completely manufactured and inserted, is also built on the left bank 13 and is designated there by 21.
  • supports 23, 24, 25, 26, 27, 28 and 29 are arranged on the channel base 15, which preferably have the same longitudinal distance l from one another and from the sealing portals 17 and with slide or roller bearings 30 and not Lateral guides for the advancement of the tunnel tube 12 through water are shown.
  • the tunnel tube 12 is closed watertight at its right end in the feed direction 22 by an end plate 31 and is in the pre-press pit 16 in individual, adjoining sections 18a, 18b, 18c, 18d, 18e, 18f, 18g, 18h, 18i, 18j , 18k, 18l etc. made of reinforced concrete in succession and pushed out after the completion and hardening of a section in the longitudinal direction 22 through the sealing portal 17 into the trench, the tunnel tube sliding and being guided on the supports 23 to 28 until it reaches the opposite sealing portal 19th reached on the right bank 14.
  • a joint 32 or 33 is provided between two successive building sections 18.
  • the individual building sections 18 all have the same length, and this length is half as long as the longitudinal distance l of the supports 23 to 29.
  • the joints 33 between building sections 18c, 18d and 18e are open.
  • the rigid structural parts 35a, 35b and 35c of the building sections 18a, 18b, 18c and 18e , 18f, 18g or 18i, 18j, 18k and its suspension parts 36a, 36b and 36c are formed by the building sections 18d or 18h or 18l.
  • joints When the term “joints” is used in the following, only fully flexible joints or limitedly movable joints, i.e. understood elastic joints, of which the elastic joints are explained in more detail below.
  • the "stiffened” joints are always referred to as such in the following.
  • FIG. 2 An embodiment of the completely movable joints 33 is shown in FIG. 2, while FIG. 3 shows the embodiment of a joint 32 stiffened for the construction state of the advancement.
  • Both joints are simple concrete joints, which are arranged in the side walls 37 of the tunnel tube.
  • the side walls 37 of the building section 18d have a longitudinally rectangular recess 39 into which a corresponding one Projection 40 engages in the side walls 37 of the adjacent building section 18c.
  • Elastomer bearing plates 45 for example made of neoprene, are arranged between the opposing horizontal surfaces 41 and 42 or 43 and 44 of the recesses 39 and the projections 40, which allow the structural sections 18c and 18d to be rotated angularly in the joint area.
  • hinge joints 46 between the building sections 18c and 18d are shown as open joints, it is clear to any person skilled in the art that these joints must be sealed in such a way that they permit angular movement between the building sections 18c and 18d, but they certainly prevent water from entering. Sealing constructions known per se can be used for this, but they are not the subject of the present invention and therefore have not been shown.
  • the structural sections 18b and 18c engage in one another, just as in the case of the open joint 33 with a projection 40 and a recess 39, and there are also elastomer bearing plates between the horizontal bearing surfaces 41 and 42 or 43 and 44 45 provided;
  • the vertical joint joints 46 are not open, but are, of course with the interposition of a sealant (not shown in more detail), close to one another and are pressed firmly against one another by upper joint tendons 48 and lower joint tendons 49, which are arranged in the region of the tunnel top plate 50 and the tunnel sole plate 51 and there provided reinforcements 52 are anchored.
  • the rigid structural part 35a consisting of the structural sections 18a, 18b and 18c, is first freely cantilevered out of the tunnel portal 17 until the front end 12a of the tunnel tube 12 reaches the first support 24 in the water ditch.
  • the rigid structural part 35a then maintains a statically determined mounting and stabilization during further advancement, in which it successively reaches the further supports 25, 26, 27, 28 and 29, together with the later rigid structural part 35b, which is supported by the joints 33 connected hook-in part 18d, with any uneven settling of the supports 24 to 28 remaining without influence.
  • the tunnel tube 12 is not designed as a tanning beam and divided into rigid structural parts 35a, 35b, 35c and hinged parts 36a, 36b and 36c, but all structural sections 18a to 18l are separated by elastic joints 60 (Fig. 4) connected to one another in such a way that they have a limited bending stiffness at least during the longitudinal displacement and a certain mobility in the joint areas.
  • the basic design is essentially the same as for the fully movable joint 33 and for the stiffened joint 32, that is to say also for the elastic joint, a projection 40 engages in the side walls 37 of a building section, for example building section 18a, in a recess 39 of the following Building section, for example the building section 18b, a, wherein again between the horizontal surfaces 41 and 42 or 43 and 44 elastomeric bearings 45 are arranged, which absorb the vertical forces.
  • bearing plates 61 and 62 made of a soft elastomer are arranged in the area of the tunnel top plate 50 and the tunnel base plate 51.
  • upper articulated tendons 48 and lower articulated tendons 49 are provided, with which the building sections 18a and 18b are clamped together in the region of the ridge plate 50 and the sole plate 51.
  • the building sections 18a and 18b are thus supported in the area of their upper ridge plate 50 and their lower sole plate 51 against one another by compressible elements 61 and 62, the bending stiffness in the joint area being changed by changing the tension in the joint tendons 48 and 49 when the building is pushed forward and the Can be adjusted accordingly.
  • different tensioning forces can be generated with the upper joint tendons 48 than with the lower joint tendons 49, so that the bending stiffness of the tunnel tube 12 in the area of the elastic joint 60 is different under the action of negative moments than with positive moments.
  • the joint has a higher rigidity when acting on negative moments than when acting on positive moments.
  • the bending stiffness in the joint area can thus be adjusted as desired, it being also possible to completely loosen the joint tendons 48 and 49 and to remove the elastomer plates 61 and 62 in order to obtain a fully movable joint of the type shown in FIG. 2.
  • the joint action can also be completely eliminated by strongly tightening the joint tendons.
  • the tendons are inserted without a bond.
  • the bending stiffness can be influenced within wide limits.
  • the upper and lower tendons inserted in the joints according to FIGS. 3 and 4 do not necessarily have to be prestressed.
  • the tunnel tube 12 is not designed as a Gerber beam with individual rigid structural parts, but as an articulated chain with elastic joints, it can be used in the same way as a Gerber beam are initially cantilevered out of the sealing portal 17, the cantilever moment being absorbed on the one hand by a correspondingly higher tensioning of the upper articulated tendons and kept low by skillful choice of the ratio of weight to buoyancy of the tunnel tube.
  • FIG. 5 to 8 show the preferred static systems of a structure to be produced according to the method according to the invention, which can be used both for underwater tunnels and for the superstructure of a bridge running over several supports.
  • the static system according to FIG. 6 corresponds approximately to the system of the tunnel tube shown in FIG. 1, the rigid structural part 35a arranged at the front end 12a also having a light stem 54 that is attached to the front end 12a of the rigid structural part and permits it to extend the cantilevered part without increasing its own weight.
  • a stem 54 is typically used in bridge superstructures that are manufactured using the cycle shift method.
  • the joints 33 shown in Fig. 6 are open joints of the type shown in Fig. 2 and it can be seen from Fig. 6 that this is a Gerber girder which extends over two supports 24 and 25 or 27 and 28 respectively has rigid structural parts 35b and 35a and to these connecting parts 36b and 36a connected by joints 33.
  • the structure for example the superstructure 55 of a multi-span bridge, consists of several superstructure sections 56a to 56f, the length of which corresponds to the distance l of the supports 23 to 28 and which by means of open joints 33 of the type shown in Fig. 2 to a continuous one Link chain are interconnected. Only the first joint between The two front superstructure sections 56a and 56b in the advancing direction 22 is a stiffened joint 32, so that these two superstructure sections, together with their stem 54, act as a rigid component which rests on two successive supports in each feed phase and the joint chain of the superstructure sections 56c to 56f following it stabilized in the state of construction of the longitudinal displacement.
  • each superstructure section 56 spans a bridge field and rests with its two ends on two successive supports.
  • the open joints 33 and the stiffened joint 32 are then each in the middle above one of the supports 23 to 29. They are then all fully opened so that each superstructure section 56 acts as a free-standing support on two supports in use.
  • the structure to be produced can be the tunnel tube of an underwater tunnel or the superstructure 55 of a bridge which spans several fields
  • all superstructure sections 56a, 56b, 56c, 56d and 56e have the same as in the case in FIG. 5 illustrated embodiment, the length l of a superstructure field, which corresponds to the distance l of the supports.
  • All superstructure sections 56a to 56f are connected to one another by joints. 5, but they are all elastic joints 60 of the type shown in FIG. 4.
  • These elastic joints 60 can be moved in the longitudinal direction 22 when the superstructure is pushed forward by changing the Tension in the articulated tendons 48 and 49 can be changed in their elasticity in order to adapt the bending stiffness of the articulated chain in the articulated area to the changing stresses during advancement.
  • the tunnel 55 consists of a plurality of construction sections 56 which, like the exemplary embodiment according to FIG. 8, are connected to one another by elastic joints 60.
  • the length of the construction sections 56 is smaller than the distance l of the supports 23 to 29.
  • the joint formation can be different and the joints do not have to be arranged symmetrically to the zero line.
  • the length ratios of the rigid parts and suspension parts of the tanning beams can be chosen differently depending on the spacing of the supports and the cross-sectional design of the structure, and it is also possible to maintain the elastic joints in the use state of the structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bridges Or Land Bridges (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Prostheses (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Method for producing an elongate structure, which is produced in the timed-shifting process and whose adjoining structure sections are connected by elastic joints which, on the one hand, permits limited angular rotation of the structure sections relative to one another in the joint region and, on the other hand, can transmit bending moments within limits to be set. The structure can hereby be matched to changing curvatures of the feed path as it is advanced, and secondary stresses which will otherwise occur with a very rigid construction of the structure cross-section are avoided. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines langgestreckten Bauwerkes, wie Brückenüberbau, Unterwassertunnel od.dgl., das im Taktschiebeverfahren von der Stelle eines Bauwerkendes aus in aneinander anschließenden Abschnitten hergestellt und in Längsrichtung des Bauwerkes auf im Längsabstand voneinander angeordneten Stützungen in seine Gebrauchslage geschoben wird.The invention relates to a method for producing an elongated structure, such as a bridge superstructure, underwater tunnel or the like, which is produced in the cycle sliding method from the location of one end of the structure in adjoining sections and is pushed into its position of use in the longitudinal direction of the structure on supports arranged at a longitudinal distance from one another .

Es ist bekannt, den Überbau einer mehrfeldrigen Spannbetonbrücke im Taktschiebeverfahren herzustellen. Hierbei wird auf einem Fertigungsplatz, der hinter einem Brückenwiderlager angeordnet ist, ein Überbauabschnitt nach dem anderen hergestellt und mit dem vorangehenden Überbauabschnitt biegesteif verbunden. Der so teilweise fertiggestellte Überbau wird dann über die vorher hergestellten Brückenpfeiler hinweg im Takt der Herstellung der einzelnen Abschnitte in seine endgültige Lage geschoben.It is known to construct the superstructure of a multi-span prestressed concrete bridge using the cycle sliding method. In this case, one superstructure section after the other is produced on a production station which is arranged behind a bridge abutment and is connected to the preceding superstructure section in a rigid manner. The superstructure, which is partially completed in this way, is then pushed into its final position over the previously constructed bridge piers in time with the manufacture of the individual sections.

Da beim Längsvorschieben im Überbau unterschiedlich große Biegemomente mit wechselnden Vorzeichen auftreten, wird der Überbau jedenfalls für den Bauzustand seiner Längsverschiebung auf ganzer Länge biegesteif ausgebildet. Für den Längsvorschub wird jedoch dann stets eine geradlinige oder nach einem Kreisbogen gekrümmte Vorschubbahn benötigt, d.h. die Lagerstellen auf den Pfeilern müssen im Grundriß oder in der Gradiente auf einer geraden Linie oder einem Kreisbogen liegen. Ist die Längsachse der Brücke im Grundriß oder in der Gradiente nach einer von der Geraden oder dem Kreisbogen abweichenden Kurve gekrümmt und weist sie beispielsweise nach einer Klothoide geformte Übergangsbögen auf, kann es notwendig werden, die Pfeiler breiter auszuführen und mit seitlich verschiebbaren Lagern zu versehen oder auf den Pfeilern für den Verschiebevorgang überhöhte Lager anzuordnen und den Überbau im Endzustand auf die endgültigen Lager abzusenken. Durch diese Maßnahmen wird die Längsverschiebung der Brücke sehr kompliziert und erfordert eine Reihe zusätzlicher und unter Umständen sehr kostenintensiver Maßnahmen.Since bending moments of varying magnitude occur in the superstructure with changing signs, the superstructure is in any case designed to be rigid over the entire length for the state of its longitudinal displacement. However, a linear or curved feed path is always required for the longitudinal feed, ie the bearing points on the pillars must lie on a straight line or an arc in the floor plan or in the gradient. If the longitudinal axis of the bridge is curved in the plan or in the gradient according to a curve deviating from the straight line or the circular arc and, for example, it has transition arches shaped according to a clothoid, it may be necessary to make the pillars wider and to provide them with laterally displaceable bearings or Arrange excessive bearings on the pillars for the displacement process and lower the superstructure to the final bearings in the final state. These measures make the longitudinal displacement of the bridge very complicated and require a number of additional and possibly very expensive measures.

Es ist auch bereits bekannt, die Tunnelröhre eines Unterwassertunnels im Taktschiebeverfahren herzustellen (DE-OS 33 38 652). Bei diesem bekannten Verfahren wird die Tunnelröhre in aneinander anschließenden Abschnitten hergestellt, die im Endzustand eine Gelenkkette bilden. Für den Bauzustand jedoch wird die Tunnelröhre durchgehend einstückig als biegesteifer Stab ausgebildet, damit die Tunnelröhre über mehrere, im Längsabstand voneinander angeordnete Führungsjoche hinweg im Wasser frei auskragend vorgeschoben werden kann. Infolge der sehr hohen Biegesteifigkeit der Tunnelröhre führen schon geringe Setzungen der Führungsjoche beim Vorschieben zu erheblichen Zwängungskräften in der biegesteifen Tunnelröhre, die wesentlich höhere Schnittkräfte erzeugen können, als sie in der Gebrauchslage des Tunnels auftreten.It is also already known to manufacture the tunnel tube of an underwater tunnel using the cycle shift method (DE-OS 33 38 652). In this known method, the tunnel tube is produced in sections which adjoin one another and which, in the final state, form an articulated chain. For the construction state, however, the tunnel tube is continuously formed in one piece as a rigid rod, so that the tunnel tube can be advanced freely cantilevered in the water over several guide yokes arranged at a longitudinal distance from one another. As a result of the very high bending stiffness of the tunnel tube, even small settlements of the guide yokes during advancement lead to considerable constraining forces in the rigid tunnel tube, which can generate significantly higher cutting forces than occur in the position of use of the tunnel.

Aufgabe der Erfindung ist es, diese Nachteile zu vermeiden und ein Verfahren zum Herstellen eines langgestreckten Bauwerkes im Taktschiebeverfahren anzugeben, mit dem es möglich ist, einerseits auch solche Bauwerke ohne temporäre Änderung ihrer Stützungen durch Längsvorschub in ihre endgültige Lage zu bringen, die im Gebrauchszustand nach einer von der Geraden oder einem Kreisbogen abweichenden Kurve gekrümmt sind, und andererseits beim Längsvorschub Zwängungskräfte im Bauwerk zu vermeiden.The object of the invention is to avoid these disadvantages and to provide a method for producing an elongated structure in the cycle sliding method, with which it is possible, on the one hand, to also move such structures to their final position without temporarily changing their supports by longitudinal feed to bring, which are curved according to a curve deviating from the straight line or an arc, and on the other hand to avoid constraining forces in the building during longitudinal feed.

Diese Aufgabe wird mit der Erfindung dadurch gelöst, daß das Bauwerk mindestens für den Bauzustand seiner Längsverschiebung als Träger mit Gelenken ausgebildet wird und einen sich über mindestens die Länge des Abstandes zweier Stützungen erstreckenden, biegesteifen Teil aufweist.This object is achieved with the invention in that the structure is formed at least for the state of its longitudinal displacement as a support with joints and has a rigid part extending over at least the length of the distance between two supports.

Diese Ausgestaltung hat den Vorteil, daß sich das Bauwerk beim Vorschieben wechselnden Krümmungen der Vorschubbahn anpassen kann, die durch die im Abstand voneinander angeordneten Stützungen gebildet wird. Gleichwohl wird das langgestreckte Bauwerk beim Längsvorschub durch den biegesteifen Teil stabilisiert, ohne daß das Bauwerk beim Vorschieben wesentlichen Zwängungen unterworfen wird, da der biegesteife Teil stets nur auf zwei aufeinanderfolgenden Stützungen aufliegt und zusammen mit den gelenkig angeschlossenen Teilen nach Art eines Gerberträgers ein statisch bestimmtes System bildet. Der biegesteife Teil wird zweckmäßigerweise am in Vorschubrichtung vorderen Ende des Bauwerkes angeordnet und kann auch mit einem leichten Vorbauschnabel versehen sein, wie er üblicherweise beim Taktschiebeverfahren am vorderen Ende des Bauwerkes befestigt wird. Dieser Vorbauschnabel verlängert zwar den biegesteifen Teil des Bauwerkes, seine Steifigkeit ist aber im Verhältnis zu diesem so gering, daß trotz zeitweise statisch unbestimmter Lagerung beim Vorschieben im Bauwerk keine unerwünscht hohen Zwängungen auftreten.This configuration has the advantage that the structure can adapt to changing curvatures of the feed path which is formed by the spaced apart supports when advancing. Nevertheless, the elongated structure is stabilized during the longitudinal feed by the rigid part without the structure being subjected to significant constraints when pushing forward, since the rigid part only rests on two successive supports and together with the articulated parts in the manner of a tanning beam, a statically determined system forms. The rigid part is expediently arranged at the front end of the building in the feed direction and can also be provided with a light stem, as is usually attached to the front end of the building in the cycle sliding method. Although this stem extends the rigid part of the structure, its rigidity is so low in relation to it that, despite temporarily statically undefined storage, no undesirably high constraints occur when advancing in the structure.

Die an den biegesteifen Teil anschließenden, durch Gelenke verbundenen Bauwerkteile können eine Länge haben, die dem Abstand der Stützungen entspricht, wobei der Abstand aller Stützungen zweckmäßig gleich groß ist. Im Gebrauchszustand befinden sich dann die Gelenkstellen über den Stützungen und es ist möglich, die Gelenke zu öffnen, so daß dann die einzelnen Bauwerkabschnitte als frei aufliegende Träger jeweils ein Überbaufeld überspannen, wie dies beispielsweise für Eisenbahnbrücken häufig gefordert wird.The structural parts connected to the rigid part, connected by joints, can have a length which corresponds to the spacing of the supports, the spacing of all supports being expediently the same. In the state of use, the joints are then above the supports and it is possible to open the joints so that the spanning individual superstructure sections as free-standing girders, as is often required, for example, for railway bridges.

Nach der Erfindung ist es auch möglich, bei dem vorzuschiebenden Bauwerk über mehrere Stützungen sich erstreckende, biegesteife Bauwerkteile und an diese durch Gelenke angeschlossene Einhängeteile abwechseln zu lassen, deren Länge kleiner ist als der Abstand der Stützungen.According to the invention, it is also possible, in the building to be advanced, to have alternating, rigid structural parts extending over a plurality of supports and hook-on parts connected to them, the length of which is smaller than the spacing of the supports.

Bei einem anderen Bauverfahren der eingangs näher erläuterten Art, bei dem für den Gebrauchszustand etwa vorgesehene Gelenke im Bauwerk während der Längsverschiebung durch Zusammenpressen der Bauwerkabschnitte oder Bauwerkteile im Gelenkbereich versteift werden, wird nach der Erfindung so vorgegangen, daß die Bauwerkabschnitte bzw. Bauwerkteile durch zusammendrückbare Elemente in den Gelenkbereichen gegeneinander abgestützt werden und hierdurch mindestens während der Längsverschiebung in den Gelenkbereichen eine gewisse Beweglichkeit und begrenzte Biegesteifigkeit haben.In another construction method of the type explained in more detail above, in which any joints in the structure that are provided for the state of use are stiffened during the longitudinal displacement by compressing the structure sections or structure parts in the joint area, the procedure according to the invention is such that the structure sections or structure parts are compressible elements are supported against each other in the joint areas and thereby have a certain mobility and limited bending stiffness at least during the longitudinal displacement in the joint areas.

Durch die Zwischenschaltung von vorzugsweise weich eingestellten Elastomerplatten in den Gelenkfugen gelingt es, die Biegesteifigkeit des Bauwerkes herabzusetzen und hierdurch die Zwängungskräfte zu vermindern, die beispielsweise bei Stützensenkungen oder dann auftreten, wenn sich die Krümmung der Verschiebebahn ändert, auf der das Bauwerk in seine Gebrauchslage geschoben wird.By interposing preferably soft elastomer plates in the joint joints, it is possible to reduce the bending stiffness of the building and thereby reduce the constraining forces that occur, for example, when the column is lowered or when the curvature of the sliding path on which the building is pushed into its position of use changes becomes.

Um eine elastische Abstützung im Gelenkbereich zu erreichen, werden in den Gelenkfugen der Gelenke zwischen den Bauwerkabschnitten bzw. Bauwerkteilen zweckmäßig weich eingestellte Elastomer-Lagerplatten, z.B. aus Neopren, angeordnet und die Bauwerkteile bzw. Bauwerkabschnitte werden im Gelenkbereich, falls erforderlich, mit Spanngliedern zusammengespannt. Durch Verändern der Spannung in den Spanngliedern kann die Biegesteifigkeit in den Gelenkbereichen beim Vorschieben des Bauwerkes nach Bedarf verändert werden. Hierdurch ist es möglich, die Biegesteifigkeit des Bauwerkes an vielen Stellen innerhalb weiter Grenzen nach Bedarf einzustellen und hierdurch die Momentenverteilung optimal zu beeinflussen.In order to achieve elastic support in the joint area, suitably soft elastomer bearing plates, e.g. made of neoprene, are arranged in the joint joints of the joints between the building sections or building parts, and the building parts or building sections are, if necessary, clamped together with tendons. The bending stiffness can be changed by changing the tension in the tendons can be changed as required in the joint areas when advancing the building. This makes it possible to adjust the bending stiffness of the structure at many points within wide limits as required and thereby to optimally influence the torque distribution.

Bei großen und massigen Bauwerken, wie Unterwassertunneln, die unter Auftrieb stehen und beim Vorschieben über Führungsjoche geleitet werden, die in verhältnismäßig großem Längsabstand voneinander angeordnet sind, kann es zweckmäßig sein, wenn im Bauwerk auf die Länge des Abstandes zwischen zwei Stützungen jeweils mehrere elastische Gelenke, zweckmäßig zwei bis vier Gelenke, vorgesehen werden. Man erreicht dann einerseits eine genügend hohe Biegesteifigkeit, um die Tunnelröhre zielgenau durch das zu durchörternde Gewässer vorschieben zu können, hat aber andererseits auch die Möglichkeit, das Bauwerk auf vom Kreisbogen oder der Geraden abweichenden Gradienten vorzuschieben und Zwängungen aus Bauungenauigkeiten und Setzungen wesentlich zu vermindern.In large and massive structures, such as underwater tunnels, which are under buoyancy and are guided over guide yokes when they are pushed forward, which are arranged at a relatively large longitudinal distance from each other, it may be useful if the structure has a number of elastic joints along the length of the distance between two supports , expediently two to four joints, are provided. On the one hand, a sufficiently high bending stiffness is achieved to be able to push the tunnel tube through the water to be penetrated, but on the other hand it is also possible to push the structure along gradients deviating from the circular arc or straight line and to significantly reduce constraints from inaccuracies in construction and settlement.

Die Anordnung von zusammendrückbaren Elementen ist nicht nur in den Gelenkfugen von Koppelgelenken möglich, sondern auch in den Gelenken von Gerberträgern. Hierbei kann der biegesteife Teil am vorderen Ende des Gerberträgers im Abstand der Stützungen Gelenke aufweisen, die für den Bauzustand der Längsverschiebung vollständig versteift werden. Es ist dann möglich, diese Gelenke nach dem Erreichen der Gebrauchslage in Wirkung zu setzen, so daß das Bauwerk, beispielsweise eine Tunnelröhre, eine vollständige Gelenkkette ergibt, deren einzelne Bauwerkabschnitte natürlich im Gelenkfugenbereich gegeneinander abgedichtet werden müssen. Es ist auch möglich, im Gebrauchszustand alle Gelenke, also auch die versteiften Gelenke in dem beim Vorfahren biegesteifen Teil des Bauwerkes zu öffnen, wenn eine vollständige Reihe frei aufliegender Träger erzeugt werden soll, die sich auf jeweils zwei Stützungen abstützen.The arrangement of compressible elements is possible not only in the joint joints of coupling joints, but also in the joints of tanner's wearers. Here, the rigid part at the front end of the tanning beam can have joints at a distance from the supports, which are completely stiffened for the construction state of the longitudinal displacement. It is then possible to put these joints into effect after reaching the position of use, so that the structure, for example a tunnel tube, results in a complete chain of joints, the individual structure sections of which must of course be sealed off from one another in the joint area. It is also possible, when in use, to open all the joints, including the stiffened joints, in the part of the structure that is rigid in the ancestor's ancestor, if a complete row of free-standing supports is to be generated, which are supported on two supports each.

Nach der Erfindung ist es weiterhin möglich, bei den elastischen Gelenken oben und unten unterschiedliche Spannkräfte zu erzeugen. Hierdurch kann erreicht werden, daß sich die elastischen Gelenke gegenüber positiven und negativen Momenten verschieden verhalten, d.h. bei Einwirkung von negativen Momenten eine größere Steifigkeit entfalten als bei positiven Momenten oder umgekehrt. Die Moment-Winkelverdrehung-Beziehung muß also nicht symmetrisch zum Nullpunkt sein. Durch die teilgelenkige Verbindung der Bauwerkabschnitte oder Bauwerkteile kann das Verhältnis der Schnittgrößen aus Last und Zwängungen optimal gesteuert werden.According to the invention, it is also possible to generate different clamping forces at the elastic joints above and below. In this way it can be achieved that the elastic joints behave differently towards positive and negative moments, i.e. develop greater rigidity when exposed to negative moments than with positive moments or vice versa. The torque-angle rotation relationship does not have to be symmetrical to the zero point. Through the partially articulated connection of the building sections or building parts, the ratio of the internal forces from load and constraints can be optimally controlled.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung und den Zeichnungen, in denen bevorzugte Ausführungsformen der Erfindung an Beispielen näher erläutert sind. Es zeigt:

Fig. 1
einen Unterwassertunnel, der nach einem Verfahren nach der Erfindung hergestellt wird, im Bauzustand in einer Seitenansicht in schematischer Darstellungen,
Fig. 2
eines der offenen Gerbergelenke des Tunnels nach Fig. 1 im Längsschnitt in vergrößertem Maßstab,
Fig. 3
eines der versteiften Gelenke der Tunnelröhre nach Fig. 1 in vergrößertem Maßstab im Längsschnitt,
Fig. 4
ein elastisches Gelenk einer Tunnelröhre der in Fig. 1 dargestellten Art, die beim Vorschieben aus einer durch elastische Gelenke verbundenen Gelenkkette besteht, in vergrößertem Maßstab im Längsschnitt,
Fig. 5 und 6
als Gerberträger ausgebildete Überbauten von mehrfeldrigen Brücken bzw. Tunneln im Bauzustand des Taktschiebens in schematischer Darstellung und
Fig. 7 und 8
Überbauten von Brücken bzw. Tunneln, deren Überbauabschnitte durch elastische Gelenke nach der Erfindung verbunden sind, in den Fig. 5 und 6 entsprechenden Darstellungen.
Further features and advantages of the invention result from the following description and the drawings, in which preferred embodiments of the invention are explained in more detail using examples. It shows:
Fig. 1
an underwater tunnel, which is manufactured by a method according to the invention, in the construction state in a side view in schematic representations,
Fig. 2
1 of the open tanner joints of the tunnel according to FIG. 1 in longitudinal section on an enlarged scale,
Fig. 3
one of the stiffened joints of the tunnel tube according to FIG. 1 in an enlarged scale in longitudinal section,
Fig. 4
an elastic joint of a tunnel tube of the type shown in Fig. 1, which consists of a joint chain connected by elastic joints when pushed forward, on an enlarged scale in longitudinal section,
5 and 6
Superstructures of multi-field bridges or tunnels in the construction state of cycle shifting, designed as tanning beams, in a schematic representation and
7 and 8
Superstructures of bridges or tunnels, the superstructure sections of which are connected by elastic joints according to the invention, in FIGS. 5 and 6 corresponding representations.

Die folgenden Erläuterungen werden am Beispiel eines Tunnels gegeben; sie sind sinngemäß aber auch für Überbauten von Brücken gültig.The following explanations are given using the example of a tunnel; they are also valid for superstructures of bridges.

In Fig. 1 ist mit 10 ein Unterwassertunnel bezeichnet, der einen Fluß 11 unterquert und dessen Tunnelröhre 12 am linken Ufer 13 in aufeinanderfolgenden Abschnitten hergestellt und im Taktschiebeverfahren durchs Wasser zum rechten Ufer 14 geschoben wird. Zu diesem Zweck ist im Flußbett und in den anschließenden Uferbereichen 13 und 14 ein quer zum Fluß 11 angeordneter Graben ausgehoben. Der Raum um den Tunnel herum wird nach dem Einschieben der Tunnelröhre 12 wieder verfüllt, um die Tunnelröhre 12 im Gebrauchszustand im Boden einzubetten und das ursprüngliche Gewässerprofil wieder herzustellen.In Fig. 1, 10 denotes an underwater tunnel, which passes under a river 11 and whose tunnel tube 12 is produced on the left bank 13 in successive sections and is pushed through the water to the right bank 14 in the cycle shift method. For this purpose, a trench arranged transversely to the river 11 is dug in the river bed and in the adjoining bank areas 13 and 14. The space around the tunnel is filled again after the tunnel tube 12 has been pushed in, in order to embed the tunnel tube 12 in the ground when in use and to restore the original water profile.

Am linken Ufer 13 des Flusses 11 befindet sich eine Vorpreßgrube 16, die gegenüber dem Gewässergraben durch ein Dichtungsportal 17 abgeschlossen ist. Die Vorpreßgrube 16 dient als Fertigungsplatz zum Herstellen der einzelnen Bauwerkabschnitte 18 der Tunnelröhre 12 und zum Ausschieben des fertiggestellten Teiles der Tunnelröhre 12 in den mit Wasser gefüllten Kanal, bis diese Tunnelröhre 12 das zweite Dichtungsportal 19 am rechten Ufer 14 erreicht. An dieses Dichtungsportal 19 schließt sich dann die an Ort und Stelle errichtete Tunnelmündung 20 an, die nach dem vollständigen Herstellen und Einschieben der Tunnelröhre auch am linken Ufer 13 gebaut wird und dort mit 21 bezeichnet ist.On the left bank 13 of the river 11 there is a pre-press pit 16, which is closed off from the water ditch by a sealing portal 17. The pre-press pit 16 serves as a manufacturing station for producing the individual structural sections 18 of the tunnel tube 12 and for pushing the finished part of the tunnel tube 12 into the channel filled with water until this tunnel tube 12 reaches the second sealing portal 19 on the right bank 14. This sealing portal 19 is then followed by the tunnel mouth 20, which is built on the spot and, after the tunnel tube has been completely manufactured and inserted, is also built on the left bank 13 and is designated there by 21.

Zwischen den Dichtungsportalen 17 und 19 sind auf der Kanalsohle 15 Stützungen 23, 24, 25, 26, 27, 28 und 29 angeordnet, welche untereinander und von den Dichtungsportalen 17 vorzugsweise alle den gleichen Längsabstand l haben und mit Gleit- oder Rollenlagern 30 und nicht näher dargestellten seitlichen Führungen für den Vorschub der Tunnelröhre 12 durchs Wasser versehen sind.Between the sealing portals 17 and 19, supports 23, 24, 25, 26, 27, 28 and 29 are arranged on the channel base 15, which preferably have the same longitudinal distance l from one another and from the sealing portals 17 and with slide or roller bearings 30 and not Lateral guides for the advancement of the tunnel tube 12 through water are shown.

Die Tunnelröhre 12 ist an ihrem rechten, in Vorschubrichtung 22 vorderen Ende durch eine Stirnplatte 31 wasserdicht verschlossen und wird in der Vorpreßgrube 16 in einzelnen, aneinander anschließenden Abschnitten 18a, 18b, 18c, 18d, 18e, 18f, 18g, 18h, 18i, 18j, 18k, 18l usw. aus Stahlbeton aufeinanderfolgend hergestellt und jeweils nach Fertigstellung und Erhärtung eines Abschnittes in Längsrichtung 22 durch das Dichtungsportal 17 in den Graben ausgeschoben, wobei die Tunnelröhre auf den Stützungen 23 bis 28 entlanggleitet und geführt wird, bis sie das gegenüberliegende Dichtungsportal 19 am rechten Ufer 14 erreicht.The tunnel tube 12 is closed watertight at its right end in the feed direction 22 by an end plate 31 and is in the pre-press pit 16 in individual, adjoining sections 18a, 18b, 18c, 18d, 18e, 18f, 18g, 18h, 18i, 18j , 18k, 18l etc. made of reinforced concrete in succession and pushed out after the completion and hardening of a section in the longitudinal direction 22 through the sealing portal 17 into the trench, the tunnel tube sliding and being guided on the supports 23 to 28 until it reaches the opposite sealing portal 19th reached on the right bank 14.

Bei der Herstellung in der Vorpreßgrube 16 wird zwischen je zwei aufeinanderfolgenden Bauwerkabschnitten 18 ein Gelenk 32 bzw. 33 vorgesehen. Die einzelnen Bauwerkabschnitte 18 haben bei dem in Fig. 1 dargestellten Ausführungsbeispiel alle die gleiche Länge, und diese Länge ist halb so groß wie der Längsabstand l der Stützungen 23 bis 29. Für den in Fig. 1 dargestellten Bauzustand der Längsverschiebung der Tunnelröhre 12 sind die Gelenke 32 zwischen den drei ersten Bauwerkabschnitten 18a, 18b und 18c versteift, während die Gelenke 33 zwischen den Bauwerkabschnitten 18c, 18d und 18e offen sind. Danach wechseln zwischen den folgenden Bauwerkabschnitten 18e bis 18l usw. jeweils zwei versteifte Gelenke 32 mit zwei aufeinanderfolgenden offenen Gelenken 33 ab, so daß ein fortlaufender Gerberträger entsteht, dessen biegesteife Bauwerkteile 35a, 35b und 35c von den Bauwerkabschnitten 18a, 18b, 18c bzw. 18e, 18f, 18g bzw. 18i, 18j, 18k und dessen Einhängeteile 36a, 36b und 36c von den Bauwerkabschnitten 18d bzw. 18h bzw. 18l gebildet werden.During manufacture in the pre-press pit 16, a joint 32 or 33 is provided between two successive building sections 18. In the exemplary embodiment shown in FIG. 1, the individual building sections 18 all have the same length, and this length is half as long as the longitudinal distance l of the supports 23 to 29. For the state of construction of the longitudinal displacement of the tunnel tube 12 shown in FIG Joints 32 between the three first building sections 18a, 18b and 18c stiffened, while the joints 33 between building sections 18c, 18d and 18e are open. Then alternate between the following building sections 18e to 18l, etc., two stiffened joints 32 with two successive open joints 33, so that a continuous tanner beam is formed, the rigid structural parts 35a, 35b and 35c of the building sections 18a, 18b, 18c and 18e , 18f, 18g or 18i, 18j, 18k and its suspension parts 36a, 36b and 36c are formed by the building sections 18d or 18h or 18l.

Wenn im folgenden von "Gelenken" die Rede ist, werden hierunter nur vollkommen bewegliche Gelenke oder begrenzt bewegliche Gelenke, d.h. elastische Gelenke verstanden, von denen die elastischen Gelenke weiter unten noch näher erläutert werden. Die "versteiften" Gelenke werden im folgenden stets als solche bezeichnet.When the term "joints" is used in the following, only fully flexible joints or limitedly movable joints, i.e. understood elastic joints, of which the elastic joints are explained in more detail below. The "stiffened" joints are always referred to as such in the following.

Von den vollkommen beweglichen Gelenken 33 ist in Fig. 2 ein Ausführungsbeispiel dargestellt, während Fig. 3 das Ausführungsbeispiel eines für den Bauzustand des Vorschiebens versteiften Gelenkes 32 erkennen läßt. Beide Gelenke sind einfache Betongelenke, die in den Seitenwandungen 37 der Tunnelröhre angeordnet sind. Hierzu haben die Seitenwandungen 37 des Bauwerkabschnittes 18d eine im Längsschnitt rechteckige Ausnehmung 39, in die ein entsprechender Vorsprung 40 in den Seitenwandungen 37 des benachbarten Bauwerkabschnittes 18c eingreift. Zwischen den einander gegenüberliegenden horizontalen Flächen 41 und 42 bzw. 43 und 44 der Ausnehmungen 39 und der Vorsprünge 40 sind Elastomer-Lagerplatten 45, beispielsweise aus Neopren, angeordnet, die eine Winkelverdrehung der Bauwerkabschnitte 18c und 18d im Gelenkbereich gestatten. Obgleich die Gelenkfugen 46 zwischen den Bauwerkabschnitten 18c und 18d als offene Fugen dargestellt sind, ist doch jedem Fachmann klar, daß diese Fugen so abgedichtet werden müssen, daß sie zwar eine Winkelbewegung zwischen den Bauwerkabschnitten 18c und 18d gestatten, aber einen Wassereintritt mit Sicherheit verhindern. Hierfür können an sich bekannte Dichtungskonstruktionen eingesetzt werden, die jedoch nicht Gegenstand der vorliegenden Erfindung sind und deshalb auch nicht dargestellt wurden.An embodiment of the completely movable joints 33 is shown in FIG. 2, while FIG. 3 shows the embodiment of a joint 32 stiffened for the construction state of the advancement. Both joints are simple concrete joints, which are arranged in the side walls 37 of the tunnel tube. For this purpose, the side walls 37 of the building section 18d have a longitudinally rectangular recess 39 into which a corresponding one Projection 40 engages in the side walls 37 of the adjacent building section 18c. Elastomer bearing plates 45, for example made of neoprene, are arranged between the opposing horizontal surfaces 41 and 42 or 43 and 44 of the recesses 39 and the projections 40, which allow the structural sections 18c and 18d to be rotated angularly in the joint area. Although the hinge joints 46 between the building sections 18c and 18d are shown as open joints, it is clear to any person skilled in the art that these joints must be sealed in such a way that they permit angular movement between the building sections 18c and 18d, but they certainly prevent water from entering. Sealing constructions known per se can be used for this, but they are not the subject of the present invention and therefore have not been shown.

Bei dem in Fig. 3 dargestellten versteiften Gelenk 32 greifen die Bauwerkabschnitte 18b und 18c ebenso wie bei dem offenen Gelenk 33 mit Vorsprung 40 und Ausnehmung 39 ineinander, und es sind auch zwischen den horizontalen Lagerflächen 41 und 42 bzw. 43 und 44 Elastomer-Lagerplatten 45 vorgesehen; die vertikalen Gelenkfugen 46 sind jedoch nicht offen, sondern liegen, natürlich unter Zwischenschaltung eines nicht näher dargestellten Dichtungsmittels, dicht aufeinander und werden durch obere Gelenkspannglieder 48 und untere Gelenkspannglieder 49 fest gegeneinandergepreßt, die im Bereich der Tunnelfirstplatte 50 und der Tunnelsohlplatte 51 angeordnet und an dort vorgesehenen Verstärkungen 52 verankert sind. Wenn die Tunnelröhre ihre Gebrauchslage erreicht hat und die elastische Bettung für den Tunnel fertiggestellt ist werden diese Gelenkspannglieder 48 und 49 wieder gelöst und hierdurch die versteiften Gelenke 32 wieder in Wirkung gesetzt, so daß alle aneinander anschließenden Bauwerkabschnitte 18a bis 18l usw. eine durch wirksame Gelenke miteinander verbundene Gelenkkette bilden.In the stiffened joint 32 shown in FIG. 3, the structural sections 18b and 18c engage in one another, just as in the case of the open joint 33 with a projection 40 and a recess 39, and there are also elastomer bearing plates between the horizontal bearing surfaces 41 and 42 or 43 and 44 45 provided; However, the vertical joint joints 46 are not open, but are, of course with the interposition of a sealant (not shown in more detail), close to one another and are pressed firmly against one another by upper joint tendons 48 and lower joint tendons 49, which are arranged in the region of the tunnel top plate 50 and the tunnel sole plate 51 and there provided reinforcements 52 are anchored. When the tunnel tube has reached its position of use and the elastic bedding for the tunnel has been completed, these articulated tendons 48 and 49 are loosened again and the stiffened joints 32 are thereby put into effect again, so that all adjoining structural sections 18a to 18l etc. one by effective joints form interconnected link chain.

Bei der Herstellung der Tunnelröhre 12 wird zunächst der aus den Bauwerkabschnitten 18a, 18b und 18c bestehende biegesteife Bauwerkteil 35a aus dem Tunnelportal 17 frei auskragend vorgeschoben, bis das vordere Ende 12a der Tunnelröhre 12 die erste Stützung 24 im Gewässergraben erreicht. Der biegesteife Bauwerkteil 35a behält dann beim weiteren Vorschieben, bei dem er nacheinander die weiteren Stützungen 25, 26, 27, 28 und 29 erreicht, immer eine statisch bestimmte Lagerung und stabilisiert, zusammen mit dem später folgenden, biegesteifen Bauwerkteil 35b, den durch die Gelenke 33 angeschlossenen Einhängeteil 18d, wobei etwa auftretende ungleichmäßige Setzungen der Stützungen 24 bis 28 ohne Einfluß bleiben.During the manufacture of the tunnel tube 12, the rigid structural part 35a, consisting of the structural sections 18a, 18b and 18c, is first freely cantilevered out of the tunnel portal 17 until the front end 12a of the tunnel tube 12 reaches the first support 24 in the water ditch. The rigid structural part 35a then maintains a statically determined mounting and stabilization during further advancement, in which it successively reaches the further supports 25, 26, 27, 28 and 29, together with the later rigid structural part 35b, which is supported by the joints 33 connected hook-in part 18d, with any uneven settling of the supports 24 to 28 remaining without influence.

Bei einem anderen Verfahren nach der Erfindung wird die Tunnelröhre 12 nicht als Gerberträger ausgebildet und in biegesteife Bauwerkteile 35a, 35b, 35c und mit diesen gelenkigverbundene Einhängeteile 36a, 36b und 36c unterteilt, sondern alle Bauwerkabschnitte 18a bis 18l werden durch elastische Gelenke 60 (Fig. 4) derart miteinander verbunden, daß sie mindestens während der Längsverschiebung eine begrenzte Biegesteifigkeit und in den Gelenkbereichen eine gewisse Beweglichkeit haben. Hierbei ist die Grundausbildung im wesentlichen die gleiche wie bei dem voll beweglichen Gelenk 33 und bei dem versteiften Gelenk 32, d.h. auch bei dem elastischen Gelenk greift ein Vorsprung 40 in den Seitenwandungen 37 eines Bauwerkabschnittes, z.B. des Bauwerkabschnittes 18a, in eine Ausnehmung 39 des folgenden Bauwerkabschnittes, beispielsweise des Bauwerkabschnittes 18b, ein, wobei wieder zwischen den horizontalen Flächen 41 und 42 bzw. 43 und 44 Elastomer-Lager 45 angeordnet sind, welche die Vertikalkräfte aufnehmen. In den vertikalen, offenen Gelenkfugen 46 sind im Bereich der Tunnelfirstplatte 50 und der Tunnelsohlplatte 51 Lagerplatten 61 bzw. 62 aus einem weich eingestellten Elastomer angeordnet. Außerdem sind obere Gelenkspannglieder 48 und untere Gelenkspannglieder 49 vorgesehen, mit denen die Bauwerkabschnitte 18a und 18b im Bereich der Firstplatte 50 und der Sohlplatte 51 zusammengespannt sind. Die Bauwerkabschnitte 18a und 18b stützen sich also im Bereich ihrer oberen Firstplatte 50 und ihrer unteren Sohlplatte 51 über zusammendrückbare Elemente 61 und 62 gegeneinander ab, wobei die Biegesteifigkeit im Gelenkbereich durch Verändern der Spannung in den Gelenkspanngliedern 48 und 49 beim Vorschieben des Bauwerks verändert und den Erfordernissen entsprechend eingestellt werden kann. Hierbei können mit den oberen Gelenkspanngliedern 48 andere Spannkräfte erzeugt werden als mit den unteren Gelenkspanngliedern 49, so daß die Biegesteifigkeit der Tunnelröhre 12 im Bereich des elastischen Gelenkes 60 bei Einwirkung von negativen Momenten anders ist als bei positiven Momenten. Wird beispielsweise mit den oberen Gelenkspanngliedern 48 eine höhere Spannkraft erzeugt als mit den unteren Gelenkspanngliedern 49, hat das Gelenk bei Einwirkung negativer Momente eine höhere Steifigkeit als bei Einwirkung positiver Momente. Die Biegesteifigkeit im Gelenkbereich kann also nach Belieben eingestellt werden, wobei es auch möglich ist, die Gelenkspannglieder 48 und 49 vollständig zu lösen und die Elastomer-Platten 61 und 62 herauszunehmen, um ein vollständig bewegliches Gelenk der in Fig. 2 gezeigten Art zu erhalten. In der Regel genügt es jedoch auch für den Gebrauchszustand, die Gelenkspannglieder 48 und 49 vollständig wirkungslos zu machen, um die gewünschte Gelenkwirkung im Gebrauchszustand zu erreichen. Andererseits kann durch starkes Anspannen der Gelenkspannglieder die Gelenkwirung auch vollständig aufgehoben werden.In another method according to the invention, the tunnel tube 12 is not designed as a tanning beam and divided into rigid structural parts 35a, 35b, 35c and hinged parts 36a, 36b and 36c, but all structural sections 18a to 18l are separated by elastic joints 60 (Fig. 4) connected to one another in such a way that they have a limited bending stiffness at least during the longitudinal displacement and a certain mobility in the joint areas. Here, the basic design is essentially the same as for the fully movable joint 33 and for the stiffened joint 32, that is to say also for the elastic joint, a projection 40 engages in the side walls 37 of a building section, for example building section 18a, in a recess 39 of the following Building section, for example the building section 18b, a, wherein again between the horizontal surfaces 41 and 42 or 43 and 44 elastomeric bearings 45 are arranged, which absorb the vertical forces. In the vertical, open joint joints 46, bearing plates 61 and 62 made of a soft elastomer are arranged in the area of the tunnel top plate 50 and the tunnel base plate 51. In addition, upper articulated tendons 48 and lower articulated tendons 49 are provided, with which the building sections 18a and 18b are clamped together in the region of the ridge plate 50 and the sole plate 51. The building sections 18a and 18b are thus supported in the area of their upper ridge plate 50 and their lower sole plate 51 against one another by compressible elements 61 and 62, the bending stiffness in the joint area being changed by changing the tension in the joint tendons 48 and 49 when the building is pushed forward and the Can be adjusted accordingly. In this case, different tensioning forces can be generated with the upper joint tendons 48 than with the lower joint tendons 49, so that the bending stiffness of the tunnel tube 12 in the area of the elastic joint 60 is different under the action of negative moments than with positive moments. If, for example, a higher clamping force is generated with the upper joint tendons 48 than with the lower joint tendons 49, the joint has a higher rigidity when acting on negative moments than when acting on positive moments. The bending stiffness in the joint area can thus be adjusted as desired, it being also possible to completely loosen the joint tendons 48 and 49 and to remove the elastomer plates 61 and 62 in order to obtain a fully movable joint of the type shown in FIG. 2. As a rule, however, it is also sufficient for the state of use to make the joint tendons 48 and 49 completely ineffective in order to achieve the desired joint effect in the state of use. On the other hand, the joint action can also be completely eliminated by strongly tightening the joint tendons.

Bei den elastischen Gelenken nach Fig. 4 werden die Spannglieder ohne Verbund eingelegt. Durch entsprechende Wahl der Spanngliedlänge und der Fugenausbildung, z.B. Anordnung der Elastomer-Lager, kann die Biegesteifigkeit in weiten Grenzen beeinflußt werden. Die in den Gelenken nach Fig. 3 und 4 eingelegten oberen und unteren Spannglieder brauchen nicht unbedingt vorgespannt zu werden.In the elastic joints according to Fig. 4, the tendons are inserted without a bond. By appropriate selection of the tendon length and the joint formation, e.g. Arrangement of the elastomer bearings, the bending stiffness can be influenced within wide limits. The upper and lower tendons inserted in the joints according to FIGS. 3 and 4 do not necessarily have to be prestressed.

Wenn die Tunnelröhre 12 nicht als Gerberträger mit einzelnen biegesteifen Bauwerkteilen, sondern als Gelenkkette mit elastischen Gelenken ausgebildet wird, kann sie ebenso wie ein Gerberträger zunächst frei auskragend aus dem Dichtungsportal 17 vorgeschoben werden, wobei das Kragmoment einerseits durch entsprechend höhere Anspannung der oberen Gelenkspannglieder aufgenommen und durch geschickte Wahl des Verhältnisses von Gewicht zu Auftrieb der Tunnelröhre gering gehalten werden kann.If the tunnel tube 12 is not designed as a Gerber beam with individual rigid structural parts, but as an articulated chain with elastic joints, it can be used in the same way as a Gerber beam are initially cantilevered out of the sealing portal 17, the cantilever moment being absorbed on the one hand by a correspondingly higher tensioning of the upper articulated tendons and kept low by skillful choice of the ratio of weight to buoyancy of the tunnel tube.

In den Fig. 5 bis 8 sind die bevorzugten statischen Systeme eines nach dem Verfahren nach der Erfindung herzustellenden Bauwerkes gezeigt, die sowohl für Unterwassertunnel als auch für den über mehrere Stützen durchlaufenden Überbau einer Brücke verwendet werden können. Hierbei entspricht das statische System nach Fig. 6 etwa dem System der in Fig. 1 dargestellten Tunnelröhre, wobei der am vorderen Ende 12a angeordnete biegesteife Bauwerkteil 35a noch einen leichten Vorbauschnabel 54 aufweist, der am vorderen Ende 12a des biegesteifen Bauwerkteiles befestigt ist und es gestattet, den auskragenden Teil zu verlängern, ohne das Eigengewicht zu vergrößern. Ein solcher Vorbauschnabel 54 wird üblicherweise bei Brückenüberbauten verwendet, die im Taktschiebeverfahren hergestellt werden.5 to 8 show the preferred static systems of a structure to be produced according to the method according to the invention, which can be used both for underwater tunnels and for the superstructure of a bridge running over several supports. The static system according to FIG. 6 corresponds approximately to the system of the tunnel tube shown in FIG. 1, the rigid structural part 35a arranged at the front end 12a also having a light stem 54 that is attached to the front end 12a of the rigid structural part and permits it to extend the cantilevered part without increasing its own weight. Such a stem 54 is typically used in bridge superstructures that are manufactured using the cycle shift method.

Die in Fig. 6 dargestellten Gelenke 33 sind offene Gelenke der in Fig. 2 dargestellten Art und man erkennt aus Fig. 6, daß es sich hier um einen Gerberträger handelt, der sich über jeweils zwei Stützungen 24 und 25 bzw. 27 und 28 erstreckende biegesteife Bauwerkteile 35b und 35a und an diese durch Gelenke 33 angeschlossene Einhängeteile 36b und 36a aufweist.The joints 33 shown in Fig. 6 are open joints of the type shown in Fig. 2 and it can be seen from Fig. 6 that this is a Gerber girder which extends over two supports 24 and 25 or 27 and 28 respectively has rigid structural parts 35b and 35a and to these connecting parts 36b and 36a connected by joints 33.

In Fig. 5 besteht das Bauwerk, beispielsweise der Überbau 55 einer mehrfeldrigen Brücke, aus mehreren Überbauabschnitten 56a bis 56f, deren Länge dem Abstand l der Stützungen 23 bis 28 entspricht und die durch offene Gelenke 33 der in Fig. 2 dargestellten Art zu einer durchlaufenden Gelenkkette miteinander verbunden sind. Lediglich das erste Gelenk zwischen den beiden in Vorschubrichtung 22 vorderen Überbauabschnitten 56a und 56b ist ein versteiftes Gelenk 32, so daß diese beiden Überbauabschnitte zusammen mit ihrem Vorbauschnabel 54 als biegesteifer Bauwerkteil wirken, der in jeder Vorschubphase auf zwei aufeinanderfolgenden Stützungen aufliegt und die ihm folgende Gelenkkette der Überbauabschnitte 56c bis 56f im Bauzustand der Längsverschiebung stabilisiert. Im Gebrauchszustand nimmt der Überbau dann eine Lage ein, in der jeder Überbauabschnitt 56 ein Brückenfeld überspannt und mit seinen beiden Enden auf zwei aufeinanderfolgenden Stützungen aufliegt. Die offenen Gelenke 33 und das versteifte Gelenk 32 befinden sich dann jeweils in der Mitte über einer der Stützungen 23 bis 29. Sie werden dann alle vollständig geöffnet, so daß jeder Überbauabschnitt 56 im Gebrauchszustand als frei aufliegender Träger auf zwei Stützen wirkt.In Fig. 5, the structure, for example the superstructure 55 of a multi-span bridge, consists of several superstructure sections 56a to 56f, the length of which corresponds to the distance l of the supports 23 to 28 and which by means of open joints 33 of the type shown in Fig. 2 to a continuous one Link chain are interconnected. Only the first joint between The two front superstructure sections 56a and 56b in the advancing direction 22 is a stiffened joint 32, so that these two superstructure sections, together with their stem 54, act as a rigid component which rests on two successive supports in each feed phase and the joint chain of the superstructure sections 56c to 56f following it stabilized in the state of construction of the longitudinal displacement. In the state of use, the superstructure then takes up a position in which each superstructure section 56 spans a bridge field and rests with its two ends on two successive supports. The open joints 33 and the stiffened joint 32 are then each in the middle above one of the supports 23 to 29. They are then all fully opened so that each superstructure section 56 acts as a free-standing support on two supports in use.

Bei dem in Fig. 8 dargestellten Ausführungsbeispiel, bei dem das herzustellende Bauwerk hindern die Tunnelröhre eines Unterwassertunnels oder der Überbau 55 einer über mehrere Felder durchlaufenden Brücke sein kann, haben alle Überbauabschnitte 56a, 56b, 56c, 56d und 56e wie bei dem in Fig. 5 dargestellten Ausführungsbeispiel die Länge l eines Überbaufeldes, die dem Abstand l der Stützungen entspricht. Alle Überbauabschnitte 56a bis 56f sind durch Gelenke miteinander verbunden. Diese Gelenke sind jedoch nicht teilweise offene Gelenke und versteifte Gelenke wie bei dem Gerberträger nach Fig. 5, sondern sie sind alle elastische Gelenke 60 der in Fig. 4 dargestellten Art. Diese elastischen Gelenke 60 können beim Vorschieben des Überbaues in Längsrichtung 22 durch Verändern der Spannung in den Gelenkspanngliedern 48 und 49 in ihrer Elastizität verändert werden, um die Biegesteifigkeit der Gelenkkette im Gelenkbereich den wechselnden Beanspruchungen beim Vorschieben anzupassen.In the exemplary embodiment shown in FIG. 8, in which the structure to be produced can be the tunnel tube of an underwater tunnel or the superstructure 55 of a bridge which spans several fields, all superstructure sections 56a, 56b, 56c, 56d and 56e have the same as in the case in FIG. 5 illustrated embodiment, the length l of a superstructure field, which corresponds to the distance l of the supports. All superstructure sections 56a to 56f are connected to one another by joints. 5, but they are all elastic joints 60 of the type shown in FIG. 4. These elastic joints 60 can be moved in the longitudinal direction 22 when the superstructure is pushed forward by changing the Tension in the articulated tendons 48 and 49 can be changed in their elasticity in order to adapt the bending stiffness of the articulated chain in the articulated area to the changing stresses during advancement.

Bei dem in Fig. 7 dargestellten Ausführungsbeispiel besteht der Tunnel 55 aus einer Vielzahl von Bauabschnitten 56, die ebenso wie bei dem Ausführungsbeispiel nach Fig. 8 durch elastische Gelenke 60 miteinander verbunden sind. Die Länge der Bauabschnitte 56 ist jedoch kleiner als der Abstand l der Stützungen 23 bis 29.In the exemplary embodiment shown in FIG. 7, the tunnel 55 consists of a plurality of construction sections 56 which, like the exemplary embodiment according to FIG. 8, are connected to one another by elastic joints 60. However, the length of the construction sections 56 is smaller than the distance l of the supports 23 to 29.

Man erkennt, daß es mit allen vorgeschriebenen Ausführungsformen, und zwar sowohl in Gerberträgeranordnung als auch in Gelenkkettenanordnung mit elastischen Gelenken, möglich ist, Gradienten mit wechselnder Krümmung zu durchfahren, da sich der Stabzug dank seiner Gelenke unterschiedlichen Krümmungen anpassen kann. Ebenso sind natürlich auch Zwängungen aus Setzungen vermieden. Das gleiche Prinzip kann auch angewendet werden, wenn es gilt, ein langgestrecktes Bauwerk über im Abstand voneinander angeordnete Stützungen vorzuschieben, die im Grundriß Punkte einer Kurve sind, deren Krümmung sich ändert. In diesem Falle müssen die Gelenke natürlich anders ausgebildet werden, um eine Winkelverdrehung um eine vertikale Achse zuzulassen.It can be seen that it is possible with all the prescribed embodiments, both in the Gerber carrier arrangement and in the link chain arrangement with elastic joints, to pass through gradients with alternating curvature, since the rod train can adapt to different curvatures thanks to its joints. Of course, constraints from subsidence are also avoided. The same principle can also be used when it is a question of advancing an elongated structure via supports which are arranged at a distance from one another and which are plan points of a curve whose curvature changes. In this case, the joints must of course be designed differently to allow angular rotation about a vertical axis.

Die Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt, sondern es sind mehrere Änderungen und Ergänzungen möglich, ohne den durch die anschließenden Ansprüche vorgegebenen Rahmen der Erfindung zu verlassen. Beispielsweise kann die Gelenkausbildung anders sein und die Gelenke müssen auch nicht symmetrisch zur Nullinie angeordnet werden. Ferner können die Längenverhältnisse der biegesteifen Teile und Einhängeteile der Gerberträger je nach dem Abstand der Stützungen und der Querschnittsausbildung des Bauwerkes anders gewählt werden und es ist auch möglich, die elastischen Gelenke im Gebrauchszustand des Bauwerkes beizubehalten. Schließlich besteht auch die Möglichkeit, in den biegesteifen Bauwerkteilen der für den Vorschub als Gerberträger ausgebildeten Bauwerke elastische Gelenke vorzusehen, die nur soweit versteift werden, daß die Biegesteifigkeit ausreicht, um das Bauwerk vorzuschieben und die folgende Gelenkkette ausreichend zu stabilisieren.The invention is not limited to the exemplary embodiments shown and described, but several changes and additions are possible without departing from the scope of the invention specified by the subsequent claims. For example, the joint formation can be different and the joints do not have to be arranged symmetrically to the zero line. Furthermore, the length ratios of the rigid parts and suspension parts of the tanning beams can be chosen differently depending on the spacing of the supports and the cross-sectional design of the structure, and it is also possible to maintain the elastic joints in the use state of the structure. Finally, there is also the possibility of providing elastic joints in the rigid structural parts of the structures designed for the feed as tanning beams which only stiffen as far be that the bending stiffness is sufficient to advance the structure and to sufficiently stabilize the following link chain.

Claims (11)

  1. Method for producing an elongate architectural structure (12, 55), such as the superstructure of a bridge, an underwater tunnel, or the like, made in consecutive sections (18, 56) from the site of one end of the structure using the timed shifting method and pushed in the structure's longitudinal direction into its operational position along supports (23 to 29) spaced (l) apart lengthways,
    characterised in that at least for the lengthways displacement stage of construction the structure is in the form of a beam with articulations (32, 33, 60) and includes a rigid part (35) which extends at least the length of the spacing between two supports.
  2. Method according to claim 1, characterised in that the rigid part (35) is located at the front end (12a) of the structure in the direction of advance (22).
  3. Method according to claim 1 or 2, characterised in that the parts of the structure (56) adjoining the rigid part and connected by articulations (33) are of a corresponding length to the spacing (l) of the supports (23 to 29).
  4. Method according to claim 1 or 2, characterised in that on the structure (12) being advanced, rigid parts of the structure (35a) extending over a plurality of supports (24, 25, and 27, 28, respectively) alternate with slung parts (36) linked to said rigid parts (35a) by articulations (33), the length of said slung parts (36) being less than the spacing (l) of the supports (23 to 29).
  5. Method for producing an elongate architectural structure (55), such as the superstructure of a bridge, an underwater tunnel, or the like, made in consecutive sections (56) from the site of one end of the structure using the timed shifting method and pushed in the structure's longitudinal direction into its operational position along supports (23 to 29) spaced (l) apart lengthways, more particularly according to one of claims 1 to 4,
    characterised in that joints or articulations (60) provided in the structure for the operational state are in part braced during the longitudinal displacement by compressing the sections of the structure or parts of the structure in the articulated region, the sections of the structure (18 and 56, respectively) or parts of the structure being supported against one another in the articulated regions using compressible elements (61, 62) and thereby having some mobility and limited rigidity in the articulated regions at least during the longitudinal displacement.
  6. Method according to claim 5, characterised in that elastomer (61, 62) is disposed in the articulated joints (46) of the articulations (60) between the sections of the structure (18 and 56, respectively) or parts of the structure, and the parts or sections (18 and 56, respectively) of the structure are mutually stressed in the articulated region by upper and lower joint prestressing elements (48 and 49, respectively).
  7. Method according to claim 6, characterised in that while the structure is being advanced the rigidity in the articulated regions is altered by altering the stress in the joint prestressing elements (48, 49).
  8. Method according to claim 6 or 7, characterised in that different stressing forces are generated in upper joint prestressing elements (48) than in lower joint prestressing elements (49).
  9. Method according to any of claims 5 to 8, characterised in that a plurality of elastic articulations (60) are respectively provided in the structure for the length of the spacing (l) between two supports.
  10. Method according to any of claims 1 to 4, characterised in that at the front end (12a) of the Gerber beam, at the spacing (l) of the supports 23 to 29), the rigid part (35a or 56a, 56b) has articulations (32) which are braced for the longitudinal displacement stage of construction.
  11. Method according to any of claims 1 to 10, characterised in that a launching nose (54) is fastened on the end of the structure that is at the front in the direction of advance (22), the rigidity of which nose is much less than that of the structure.
EP87117436A 1987-01-22 1987-11-26 Method of producing an elongate structure Expired - Lifetime EP0275412B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87117436T ATE84826T1 (en) 1987-01-22 1987-11-26 METHOD OF MANUFACTURING AN ELONGED STRUCTURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873701682 DE3701682A1 (en) 1987-01-22 1987-01-22 METHOD FOR PRODUCING A LONG-STRETCHED CONSTRUCTION
DE3701682 1987-01-22

Publications (3)

Publication Number Publication Date
EP0275412A2 EP0275412A2 (en) 1988-07-27
EP0275412A3 EP0275412A3 (en) 1990-02-14
EP0275412B1 true EP0275412B1 (en) 1993-01-20

Family

ID=6319239

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117436A Expired - Lifetime EP0275412B1 (en) 1987-01-22 1987-11-26 Method of producing an elongate structure

Country Status (4)

Country Link
EP (1) EP0275412B1 (en)
AT (1) ATE84826T1 (en)
DE (2) DE3701682A1 (en)
ES (1) ES2038648T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108360384A (en) * 2018-02-28 2018-08-03 浙江省交通规划设计研究院 Underway push construction method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244741A (en) * 1990-02-20 1991-10-31 Harumoto Tekkosho:Kk Method for laying member
DE10119687A1 (en) * 2001-04-20 2002-10-24 Boegl Max Bauunternehmung Gmbh Multiple field carrier has at least two segments with hollow walls and joined by pulley and pressure elements in gap between segments
DE102007019276A1 (en) * 2007-04-16 2008-11-13 Heinze, Peter, Dr.-Ing. Method for construction of tunnels by prefabricated concrete tunnel sections employed in crossing of rivers, involves fixing guide rails with axle supported rolling elements e.g. roller or ball in tunnel shoring for loading tunnel section
CN103249893B (en) * 2010-09-30 2015-11-25 爱安世技有限公司 For the cement board structure of bridge
CN105714626B (en) * 2016-01-21 2017-05-10 中铁第四勘察设计院集团有限公司 Joggle joint type bearing rail beam structure for middle and low-speed magnetic suspension traffic engineering low line
CN110706349B (en) * 2019-11-19 2023-08-22 中国交通建设股份有限公司 Design method of three-dimensional elastic model of suspension tunnel and three-dimensional elastic model
CN113789813B (en) * 2021-08-25 2023-03-07 广州市市政工程设计研究总院有限公司 Underwater tunnel construction method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1946389A (en) * 1932-06-20 1934-02-06 Merritt Chapman And Scott Corp Mechanism for building submerged structures
DE1247369B (en) * 1963-07-19 1967-08-17 Holzmann Philipp Ag Method for making an underwater tunnel
DE1299104C2 (en) * 1966-10-18 1973-11-22 Philipp Dipl Ing Articulated connection for building and bridge construction
ES405140A1 (en) * 1971-08-02 1975-07-16 Macchi Assembly method for beam structures
DE2938030A1 (en) * 1979-09-20 1981-04-02 Polensky & Zöllner, 6000 Frankfurt Variably curved or sloped gradient bridge superstructure - is made straight or constantly curved, and forwarded across piers built up to required levels
DE3129347C2 (en) * 1981-07-24 1984-05-03 Richard Dipl.-Ing. 8332 Massing Laumer Prefabricated roof trusses or frame parts made of reinforced concrete
DE3326608C2 (en) * 1983-07-23 1986-10-30 Walter-Thosti-Boswau Bau-AG, 8900 Augsburg Method of constructing the superstructure of a bridge
DE3338652A1 (en) * 1983-10-25 1985-05-02 Philipp Holzmann Ag, 6000 Frankfurt Method of producing a subaqueous tunnel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108360384A (en) * 2018-02-28 2018-08-03 浙江省交通规划设计研究院 Underway push construction method

Also Published As

Publication number Publication date
DE3783753D1 (en) 1993-03-04
ES2038648T3 (en) 1993-08-01
ATE84826T1 (en) 1993-02-15
EP0275412A2 (en) 1988-07-27
DE3701682A1 (en) 1988-08-04
EP0275412A3 (en) 1990-02-14

Similar Documents

Publication Publication Date Title
EP1904682B1 (en) Fixed running track on a bridge structure
DE2938029A1 (en) METHOD FOR PRODUCING A CABLE ROPE OR TOW BELT BRIDGE
DE102005026819A1 (en) Fixed carriageway for rail vehicles
DE68904159T2 (en) HEART PIECE WITH A MOVABLE TIP AND METHOD FOR PRODUCING SUCH A HEART PIECE.
EP0133850A1 (en) Method and apparatus for constructing a prestressed concrete superstructure of a bridge
EP0275412B1 (en) Method of producing an elongate structure
DE2421964A1 (en) EXPANSION JOINT
DE19936756A1 (en) Track of a track-bound vehicle
DE4205192A1 (en) PLATFORM
DE202005020020U1 (en) Transverse force coupling for rail support plates has depression formed on front surface of each rail support plate
DE3738291C2 (en)
DE3114219A1 (en) Articulated structure for building and bridge construction
DE3335058A1 (en) Two-track, supported roadway construction for magnetic cushion vehicles
DE3322019A1 (en) Device for transmitting forces acting from outside the cross-sectional area of a structure parallel to its outer face
DE1932464A1 (en) Method and device for the production and advancement of bridging components from prestressed concrete
DE1237603B (en) Process for the production of long structures, in particular bridges, from steel or prestressed concrete
AT388004B (en) Supporting device for tracks
DE2820457A1 (en) Bridge embankment structural pressure absorption - uses flat foundation units in bridge end sections, with central swivel bearing
AT396139B (en) METHOD FOR THE RENOVATION OF BRIDGES
DE2528114C3 (en) Feed scaffolding for the production of the superstructure of prestressed concrete bridges or similar supporting structures from prefabricated parts
DE975592C (en) Process for the production of a truss bridge made of reinforced concrete and movable scaffolding for carrying out the process
DE1124075B (en) Method for prestressing statically indeterminate composite beams, in particular bridge beams
DE2723770A1 (en) Varying gradient bridge superstructure stepped advancing system - uses packing members under guide track to vary height of advancing sections
AT8080U1 (en) TEMPORARY SUPPORT DEVICE
AT219083B (en) Dismountable bridge, e.g. B. floating bridge or moat bridge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871127

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910905

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930120

REF Corresponds to:

Ref document number: 84826

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3783753

Country of ref document: DE

Date of ref document: 19930304

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2038648

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19930723

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931130

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87117436.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951116

Year of fee payment: 9

Ref country code: ES

Payment date: 19951116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960301

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961127

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19961127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961130

Ref country code: CH

Effective date: 19961130

Ref country code: BE

Effective date: 19961130

BERE Be: lapsed

Owner name: STRABAG BAU - A.G.

Effective date: 19961130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 87117436.3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011115

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011116

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011130

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051126