EP0270968A2 - Roentgen microscope - Google Patents

Roentgen microscope Download PDF

Info

Publication number
EP0270968A2
EP0270968A2 EP87117658A EP87117658A EP0270968A2 EP 0270968 A2 EP0270968 A2 EP 0270968A2 EP 87117658 A EP87117658 A EP 87117658A EP 87117658 A EP87117658 A EP 87117658A EP 0270968 A2 EP0270968 A2 EP 0270968A2
Authority
EP
European Patent Office
Prior art keywords
ray
radiation
phase shift
order
microscope according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87117658A
Other languages
German (de)
French (fr)
Other versions
EP0270968B1 (en
EP0270968A3 (en
Inventor
Günter Prof. Dr. Schmahl
Dietbert Dr. Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Carl Zeiss AG
Original Assignee
Carl Zeiss SMT GmbH
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH, Carl Zeiss AG filed Critical Carl Zeiss SMT GmbH
Publication of EP0270968A2 publication Critical patent/EP0270968A2/en
Publication of EP0270968A3 publication Critical patent/EP0270968A3/en
Application granted granted Critical
Publication of EP0270968B1 publication Critical patent/EP0270968B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Definitions

  • the present invention relates to an X-ray microscope in which the object is illuminated coherently or partially coherently with quasi monochromatic X-ray radiation via a condenser and is magnified in the image plane by means of a high-resolution X-ray objective.
  • each imaging element ie condenser and X-ray lens
  • a zone plate consists of a large number of very thin rings, for example made of gold, which are applied to a thin carrier film (for example made of polyimide). These rings form a circular grid with a radially increasing line density.
  • the zone plates diffract the incident monochromatic X-ray radiation of the wavelength and thus cause an image.
  • the contrast in the image is mediated by photoelectric absorption in the object, i.e. structures are imaged which effect an amplitude modulation of the X-rays passing through.
  • the wavelength range of the X-rays which is between 2.4 nm and 4.5 nm, ie between the oxygen K edge and the carbon K edge, is particularly suitable.
  • This area is also known as the water window, since water has a transmission that is about ten times higher than that of organic materials. It can be used in this wavelength range examine organic materials and thus cells and cell organelles in living condition.
  • the resolution achieved so far in X-ray microscopy is about a factor of 10 better than in light microscopy, with a further increase in X-ray microscope resolution by about an order of magnitude being still possible.
  • the limit resolution in X-ray microscopy of amplitude structures will be given by the radiation exposure of the objects to be examined.
  • This object is achieved, starting from an X-ray microscope according to the invention, in that an element is arranged in the Fourier plane of the X-ray objective, which element extends over the area affected by the zero or a preselectable other order of the radiation deflected by the object, and gives the radiation passing through a phase shift.
  • phase-shifting properties of object structures are used to form contrast.
  • the phase-shifting element arranged in the beam path gives the preselected order of the X-ray radiation coming from the object a phase shift with respect to the other radiation coming from the object that does not pass through the element.
  • the phase-shifted and the unaffected radiation components interfere in the image plane and create a high-contrast, enlarged picture of the object.
  • the quantity ⁇ describes the absorption, which becomes smaller as the wavelength ⁇ of the X-ray radiation becomes shorter.
  • the size ⁇ is decisive for the phase shift which is given to the continuous X-ray radiation.
  • the size ⁇ generally varies very slowly with the wavelength. For this reason, if the phase shift is used by the object, a significant improvement in the contrast in the image can be achieved.
  • images can also be generated with a lower radiation exposure to the object, the contrast of which is no worse than when the amplitude contrast is used with a higher radiation exposure.
  • phase-shifting element is designed according to claim 5.
  • phase-shifting element used in the X-ray microscope according to the invention. It may therefore be necessary to adjust the intensities of the interfering orders in the image plane of the radiation coming from the object.
  • the phase-shifting and the absorbing effect of the phase-shifting element is advantageously distributed over different corresponding surfaces in the Fourier plane of the X-ray objective. The radiation passing through these corresponding surfaces is influenced independently of one another in phase and amplitude, specifically in such a way that the intensities of the radiation interferences in the image plane are matched to one another.
  • the radiation coming from an X-ray source is designated by (1).
  • a synchrotron or another source described in Part 1 of the book “X-Ray Microscopy” by Schmahl and Rudolph, Springer-Verlag 1984 can be used as the X-ray source.
  • the x-ray radiation passes through an x-ray condenser (2) and is guided by this to the object (3) to be observed, which is arranged on a central diaphragm (4).
  • the X-ray radiation deflected by the object (3) passes through a high-resolution X-ray lens (5) and is imaged by the latter into the image plane (6).
  • the Fourier plane of the lens (5) is designated, in which the decomposition of the radiation passing through the object (3) is found in harmonic Fourier components. This distribution is represented again in the image plane (6) by a Fourier inverse transformation as a real image.
  • Zone plates such as are shown, for example, in FIG. 2 are advantageously used as imaging elements (2) and (5).
  • This zone plate consists of a large number of rings which are placed on a very thin carrier foil, e.g. are applied from polyimide.
  • the rings are usually made of gold or chrome and have a low layer thickness of approx. 0.1 ⁇ m.
  • the rings form a circular grid with a radially increasing line density.
  • a phase-shifting and / or absorbing element (8) is arranged in the Fourier plane (7) of the objective (5).
  • This consists, as shown in FIG. 3, of a thin carrier film (9) which is contained in a ring (10) and on which a thin layer of phase-shifting material, for example chrome in the form a central circular disc (11) is applied.
  • the zero-order X-ray radiation (1) coming from the object (3) penetrates the central circular disk (11).
  • This radiation is given a phase shift of 90 ° with respect to the orders diffracted by the object structures.
  • the image plane (6) there is interference between the phase-shifted radiation and the uninfluenced radiation and thus a high-contrast, enlarged image of the object (3) is created, which can be captured directly on a photosensitive layer, for example.
  • Fig. 4 shows an embodiment of an element (8) serving for phase shift and / or absorption, in which a ring (12) made of the appropriate material, for example chrome, is attached to the carrier film (9).
  • This ring gives higher orders of the radiation deflected by the object a phase shift. Which order is to be influenced is determined by the diameter and the width of the ring (12).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Liquid Crystal Substances (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Bei einem Röntgenmikroskop wird das Objekt (3) uber einen Kondensor (2) mit quasi monochromatischer Röntgenstrahlung (1) kohärent oder teilkohärent beleuchtet und mittels eines hochauflösenden Röntgenobjektivs (5) vergrößert in die Bildebene (6) abgebildet. Um einen möglichst hohen Bildkontrast zu erreichen ist in der Fourierebene (7) des Röntgenobjektivs ein Element (8) angeordnet, das einer vorgewählten Beugungsordnung der Strahlung eine Phasenverschiebung erteilt. Das Element erstreckt sich über den Flächenbereich in der Fourierebene, der hier von der zu beeinflußenden abgebeugten Strahlung beaufschlagt wird. Die Ausnutzung der Phasenverschiebung einer vorgewählten Beugungsordnung der Strahlung gegenüber der unbeeinflußten Strahlung ermöglicht es, Untersuchungen, insbesondere biologischer Strukturen mit geringer Strahlendosis durchzuführen und dennoch einen hohen Bildkontrast zu erzeugen. Außerdem wird es möglich den zu verwendeten Wellenlängenbereich der Röntgenstrahlung zu kürzeren Wellenlängen hin zu verschieben, bei denen infolge der geringen Absorption bisher Röntgenmikroskopie nicht sinnvoll möglich war.In an X-ray microscope, the object (3) is illuminated coherently or partially coherently with quasi monochromatic X-ray radiation (1) via a condenser (2) and is magnified in the image plane (6) using a high-resolution X-ray objective (5). In order to achieve the highest possible image contrast, an element (8) is arranged in the Fourier plane (7) of the x-ray objective, which element gives a preselected diffraction order of the radiation a phase shift. The element extends over the surface area in the Fourier plane, which is acted upon here by the diffracted radiation to be influenced. The use of the phase shift of a preselected diffraction order of the radiation with respect to the uninfluenced radiation makes it possible to carry out investigations, in particular biological structures with a low radiation dose, and yet to produce a high image contrast. In addition, it will be possible to shift the wavelength range of the X-ray radiation to be used for shorter wavelengths at which X-ray microscopy has so far not been possible due to the low absorption.

Description

Die vorliegende Erfindung bezieht sich auf ein Röntgen-­Mikroskop, bei dem das Objekt uber einen Kondensor mit quasi monochromatischer Röntgenstrahlung kohärent oder teilkohärent beleuchtet und mittels eines hochauflösenden Röntgenobjektivs vergrößert in die Bildebene abgebildet wird.The present invention relates to an X-ray microscope in which the object is illuminated coherently or partially coherently with quasi monochromatic X-ray radiation via a condenser and is magnified in the image plane by means of a high-resolution X-ray objective.

Solche Röntgen-Mikroskope sind beispielsweise in Teil IV des Buches "X-Ray Microscopy" von Schmahl und Rudolph, Springer-­Verlag 1984 beschrieben. Auf den Seiten 192/202 dieses Buches findet sich die Beschreibung eines Röntgen-Mikroskops bei dem jedes abbildende Element, d.h. also Kondensor und Röntgen­objektiv als Zonenplatte ausgebildet ist. Eine solche Zonen­platte besteht aus einer Vielzahl von sehr dünnen Ringen, beispielsweise aus Gold, die auf eine dünne Trägerfolie (z.B. aus Polyimid) aufgebracht sind. Diese Ringe bilden ein Zirkular-Gitter mit radial ansteigender Liniendichte. Die Zonenplatten beugen die auftreffende monochromatische Röntgen-­Strahlung der Wellenlänge und bewirken damit eine Abbildung. Unter quasi monochromatischer Strahlung wird hier Strahlung einer gewissen Bandweite Δλ verstanden, wobei im Zusammenhang mit Zonenplatten diese Bandweite gegeben ist durch die Bezie­hung λ/Δλχ p . m ( p = Linienzahl, m = Nummer der noch zu erfassenden Beugungsordnüng).Such X-ray microscopes are described, for example, in Part IV of the book "X-Ray Microscopy" by Schmahl and Rudolph, Springer-Verlag 1984. On pages 192/202 of this book you will find a description of an X-ray microscope in which each imaging element, ie condenser and X-ray lens, is designed as a zone plate. Such a zone plate consists of a large number of very thin rings, for example made of gold, which are applied to a thin carrier film (for example made of polyimide). These rings form a circular grid with a radially increasing line density. The zone plates diffract the incident monochromatic X-ray radiation of the wavelength and thus cause an image. Quasi monochromatic radiation is understood here to mean radiation of a certain bandwidth Δλ, this bandwidth being given in connection with zone plates by the relationship λ / Δλχ p. m (p = number of lines, m = number of the diffraction order still to be determined).

Bei solchen bekannten Röntgen-Mikroskopen wird der Kontrast im Bild durch photoelektrische Absorption im Objekt vermittelt, d.h. es werden Strukturen abgebildet, die eine Amplituden­modulation der hindurchgehenden Röntgenstrahlen bewirken.In such known X-ray microscopes, the contrast in the image is mediated by photoelectric absorption in the object, i.e. structures are imaged which effect an amplitude modulation of the X-rays passing through.

Besonders geeignet ist dabei der Wellenlängenbereich der Röntgenstrahlung, der zwischen 2.4 nm und 4.5 nm liegt, d.h. zwischen der Sauerstoff-K-Kante und der Kohlenstoff-K-Kante. Dieses Gebiet wird auch als Wasserfenster bezeichnet, da hier Wasser eine etwa zehnmal höhere Transmission hat als organische Materialien. Damit lassen sich in diesem Wellenlängenbereich organische Materialien und damit Zellen und Zellorganellen in lebendem Zustand untersuchen.The wavelength range of the X-rays, which is between 2.4 nm and 4.5 nm, ie between the oxygen K edge and the carbon K edge, is particularly suitable. This area is also known as the water window, since water has a transmission that is about ten times higher than that of organic materials. It can be used in this wavelength range examine organic materials and thus cells and cell organelles in living condition.

Die bisher erreichte Auflösung in der Röntgen-Mikroskopie ist etwa um einen Faktor 10 besser als in der Lichtmikroskopie, wobei eine weitere Steigerung der röntgenmikroskopischen Auf­lösung um etwa eine Größenordnung noch möglich ist. Dabei wird die Grenzauflösung in der Röntgenmikroskopie von Amplituden­strukturen durch die Strahlenbelastung der zu untersuchenden Objekte gegeben sein.The resolution achieved so far in X-ray microscopy is about a factor of 10 better than in light microscopy, with a further increase in X-ray microscope resolution by about an order of magnitude being still possible. The limit resolution in X-ray microscopy of amplitude structures will be given by the radiation exposure of the objects to be examined.

Es ist nun die Aufgabe der vorliegenden Erfindung ein Röntgen­mikroskop zu schaffen, das es ermöglicht Untersuchungen, ins­besondere von biologischen Strukturen mit einer Strahlendosis durchzuführen, die zu einer geringeren Strahlenbelastung der Objekte führt als die bisher üblichen Verfahren, ohne daß eine Verschlechterung des Bildkontrastes in Kauf genommen werden muß.It is now the object of the present invention to provide an X-ray microscope which enables examinations, in particular of biological structures, to be carried out with a radiation dose which leads to a lower radiation exposure of the objects than the previously usual methods, without having to accept a deterioration in the image contrast must become.

Diese Aufgabe wird, ausgehend von einem Röntgenmikroskop nach dem Oberbegriff des Anspruches 1 erfindungsgemäß dadurch gelöst, daß in der Fourierebene des Röntgenobjektivs ein Element angeordnet ist, das sich über den von der nullten oder einer vorwählbaren anderen Ordnung der vom Objekt abgebeugten Strahlung beaufschlagten Flächenbereich erstreckt und der hin­durchgehenden Strahlung eine Phasenverschiebung erteilt.This object is achieved, starting from an X-ray microscope according to the invention, in that an element is arranged in the Fourier plane of the X-ray objective, which element extends over the area affected by the zero or a preselectable other order of the radiation deflected by the object, and gives the radiation passing through a phase shift.

Bei dem Röntgen-Mikroskop nach der Erfindung werden phasen­schiebende Eigenschaften von Objektstrukturen zur Kontrast­bildung benutzt. Das im Strahlengang angeordnete phasenschie­bende Element erteilt der durch die Form des Elements vorge­wählten Ordnung der vom Objekt kommenden Röntgen-Strahlung eine Phasenverschiebung gegenuber der anderen, nicht durch das Ele­ment tretenden, vom Objekt kommenden Strahlung. Die phasenver­schobenen und die nicht beeinflußten Strahlungsanteile interfe­rieren in der Bildebene und erzeugen dabei ein kontrastreiches, vergrößertes Bild des Objekts.In the X-ray microscope according to the invention, phase-shifting properties of object structures are used to form contrast. The phase-shifting element arranged in the beam path gives the preselected order of the X-ray radiation coming from the object a phase shift with respect to the other radiation coming from the object that does not pass through the element. The phase-shifted and the unaffected radiation components interfere in the image plane and create a high-contrast, enlarged picture of the object.

Es hat sich als besonders vorteilhaft erwiesen der Röntgen­strahlung nullter Ordnung der vom Objekt kommenden Strahlung gegenüber den von den Objektstrukturen abgebeugten Ordnungen eine Phasenverschiebung von 90° zu geben. Dies kann besonders einfach geschehen, da die Strahlung nullter Ordnung in der Fourierebene des Röntgenobjektivs eine zentrale Kreisscheibe beleuchtet. Eine dazu geeignete Ausbildung des phasenschieben­den Elementes ist in den Ansprüchen 3 und 4 beschrieben.It has proven to be particularly advantageous to give the zero-order X-ray radiation of the radiation coming from the object a phase shift of 90 ° with respect to the orders refracted by the object structures. This can be done particularly easily since the zero-order radiation illuminates a central circular disk in the Fourier plane of the X-ray objective. A suitable design of the phase-shifting element is described in claims 3 and 4.

Die Erfindung geht aus von der Erkenntnis, daß sich der Brechungsindex n eines Elements im Röntgenbereich aus zwei unterschiedlich wirkenden Größen zusammensetzt, was sich sche­matisch durch die Beziehung n = 1 - δ - i β ausdrücken läßt. Die Größe β beschreibt dabei die Absorption, die mit kürzer werdender Wellenlänge λ der Röntgen-Strahlung kleiner wird. Die Größe δ ist maßgebend für die Phasenverschiebung, die der durchgehenden Röntgenstrahlung erteilt wird. Die Größe δ variiert im allgemeinen nur sehr langsam mit der Wellenlänge. Aus diesem Grunde kann also bei Ausnutzung der Phasenver­schiebung durch das Objekt eine deutliche Verbesserung des Kontrastes im Bild erreicht werden.The invention is based on the knowledge that the refractive index n of an element in the X-ray range is composed of two differently acting variables, which can be expressed schematically by the relationship n = 1 - δ - i β. The quantity β describes the absorption, which becomes smaller as the wavelength λ of the X-ray radiation becomes shorter. The size δ is decisive for the phase shift which is given to the continuous X-ray radiation. The size δ generally varies very slowly with the wavelength. For this reason, if the phase shift is used by the object, a significant improvement in the contrast in the image can be achieved.

Es lassen sich insbesondere auch bei geringerer Strahlenbe­lastung des Objekts Bilder erzeugen, deren Kontrast nicht schlechter ist als bei Ausnutzung des Amplitudenkontrast bei höherer Strahlenbelastung.In particular, images can also be generated with a lower radiation exposure to the object, the contrast of which is no worse than when the amplitude contrast is used with a higher radiation exposure.

Aus dieser Betrachtung ergibt sich auch der weitere wesentliche Vorteil des Röntgen-Mikroskops nach der Erfindung. Da sich die Größe δ mit der Wellenlänge λ nur wenig ändert, läßt sich bei Ausnutzung der Phasenverschiebung der Wellenlängenbereich der Röntgenstrahlung zu kürzeren Wellenlängen hin verschieben, bei denen infolge der geringen Absorption, d.h. kleinem β eine Röntgenmikroskopie wegen der geringen erreichbaren Kontraste im Bild bisher nicht sinnvoll möglich war.This consideration also gives the further essential advantage of the X-ray microscope according to the invention. Since the size δ changes only slightly with the wavelength λ, when using the phase shift, the wavelength range of the X-rays can be shifted to shorter wavelengths at which X-ray microscopy has so far not been possible due to the low absorption, ie small β, because of the low contrast levels that can be achieved in the image was sensibly possible.

Es kann unter Umständen auch möglich sein nicht die Röntgen­strahlung nullter Ordnung in der Phase zu beeinflussen, sondern höhere Ordnungen der vom Objekt abgebeugten Strahlung. Diese Ordnungen bilden in der Fourierebene des Röntgenobjektivs Ringe, so daß das phasenschiebende Element nach Anspruch 5 ausgebildet wird.Under certain circumstances, it may also be possible not to influence the zero-order X-ray radiation in the phase, but rather higher orders of the radiation refracted by the object. These orders form rings in the Fourier plane of the X-ray objective, so that the phase-shifting element is designed according to claim 5.

Wie die Formel für den Brechungsindex n im Röntgenbereich, nämlich n = 1 - δ - i β zeigt ist mit einer Phasenverschiebung stets auch eine absorbierende Wirkung verbunden. Dies gilt natürlich auch für das bei dem Röntgenmikroskop nach der Erfin­dung verwendete phasenschiebende Element. Deshalb kann es er­forderlich werden die Intensitäten der in der Bildebene inter­ferierenden Ordnungen der vom Objekt kommenden Strahlung einan­der anzugleichen. Dazu wird vorteilhaft die phasenschiebende und die absorbierende Wirkung des phasenschiebenden Elementes auf verschiedene korrespondierende Flächen in der Fourierebene des Röntgenobjektivs verteilt. Die durch diese korrespondieren­den Flächen tretende Strahlung wird dabei unabhängig voneinan­der in Phase und Amplitude beeinflußt und zwar so, daß die Intensitäten der in der Bildebene interferierenden Ordnungen der Strahlung aneinander angeglichen sind.As the formula for the refractive index n in the X-ray range, namely n = 1 - δ - i β shows, a phase shift is always associated with an absorbing effect. Of course, this also applies to the phase-shifting element used in the X-ray microscope according to the invention. It may therefore be necessary to adjust the intensities of the interfering orders in the image plane of the radiation coming from the object. For this purpose, the phase-shifting and the absorbing effect of the phase-shifting element is advantageously distributed over different corresponding surfaces in the Fourier plane of the X-ray objective. The radiation passing through these corresponding surfaces is influenced independently of one another in phase and amplitude, specifically in such a way that the intensities of the radiation interferences in the image plane are matched to one another.

Die Erfindung wird im folgenden anhand der Figuren 1-4 der beigefügten Zeichnungen näher erläutert. Im einzelnen zeigen:

  • Fig. 1 ein Ausführungsbeispiel für den prinzipiellen Aufbau eines Röntgen-Mikroskops nach der Erfindung;
  • Fig. 2 die Draufsicht auf eine als abbildendes Element ver­wendete Zonenplatte;
  • Fig. 3 das im Mikroskop der Fig. 1 enthaltene phasenschie­bende Element in Draufsicht;
  • Fig. 4 eine Draufsicht eines anderen Ausführungsbeispiels für ein phasenschiebendes Element.
The invention is explained below with reference to Figures 1-4 of the accompanying drawings. In detail show:
  • Figure 1 shows an embodiment of the basic structure of an X-ray microscope according to the invention.
  • 2 shows the top view of a zone plate used as an imaging element;
  • 3 shows the phase-shifting element contained in the microscope of FIG. 1 in a top view;
  • Fig. 4 is a plan view of another embodiment for a phase shifting element.

In Fig. 1 ist die von einer Röntgenquelle kommende Strahlung mit (1) bezeichnet. Als Röntgenquelle kann beispielsweise ein Synchrotron oder eine andere in Teil 1 des Buches "X-Ray Micro­scopy" von Schmahl und Rudolph, Springer-Verlag 1984 beschrie­bene Quelle verwendet werden.In Fig. 1, the radiation coming from an X-ray source is designated by (1). For example, a synchrotron or another source described in Part 1 of the book "X-Ray Microscopy" by Schmahl and Rudolph, Springer-Verlag 1984 can be used as the X-ray source.

Die Röntgenstrahlung tritt durch einen Röntgenkondensor (2) und wird von diesem zu dem zu beobachtenden Objekt (3) geleitet, das auf einer Zentralblende (4) angeordnet ist. Die vom Objekt (3) abgebeugte Röntgenstrahlung tritt durch ein hochauflösendes Röntgenobjektiv (5) und wird von diesem in die Bildebene (6) abgebildet.The x-ray radiation passes through an x-ray condenser (2) and is guided by this to the object (3) to be observed, which is arranged on a central diaphragm (4). The X-ray radiation deflected by the object (3) passes through a high-resolution X-ray lens (5) and is imaged by the latter into the image plane (6).

Mit (7) ist die Fourierebene des Objektivs (5) bezeichnet, in der sich die Zerlegung der durch das Objekt (3) tretenden Strahlung in harmonische Fourierkomponenten findet. In der Bildebene (6) wird diese Verteilung durch Fourier-Rücktransfor­mation als reelles Bild wieder dargestellt.With (7) the Fourier plane of the lens (5) is designated, in which the decomposition of the radiation passing through the object (3) is found in harmonic Fourier components. This distribution is represented again in the image plane (6) by a Fourier inverse transformation as a real image.

Als abbildende Elemente (2) und (5) finden vorteilhaft Zonen­platten Verwendung, wie sie beispielsweise in Fig. 2 darge­stellt sind. Diese Zonenplatte besteht aus einer Vielzahl von Ringen, die auf einer sehr dunnen Tragefolie, z.B. aus Polyimid aufgebracht sind. Die Ringe sind meist aus Gold oder Chrom und haben eine geringe Schichtdicke von ca. 0.1 µm. Die Ringe bilden ein Zirkular-Gitter mit radial ansteigender Linien­dichte.Zone plates such as are shown, for example, in FIG. 2 are advantageously used as imaging elements (2) and (5). This zone plate consists of a large number of rings which are placed on a very thin carrier foil, e.g. are applied from polyimide. The rings are usually made of gold or chrome and have a low layer thickness of approx. 0.1 µm. The rings form a circular grid with a radially increasing line density.

In der Fourierebene (7) des Objektivs (5) ist ein phasenschie­bendes und/oder absorbierendes Element (8) angeordnet. Dieses besteht, wie Fig. 3 zeigt aus einer dünnen Trägerfolie (9), die in einem Ring (10) gefaßt ist und auf die eine dünne Schicht aus phasenschiebenen Material, beispielsweise Chrom in Form einer zentralen Kreisscheibe (11) aufgebracht ist.A phase-shifting and / or absorbing element (8) is arranged in the Fourier plane (7) of the objective (5). This consists, as shown in FIG. 3, of a thin carrier film (9) which is contained in a ring (10) and on which a thin layer of phase-shifting material, for example chrome in the form a central circular disc (11) is applied.

Wie aus Fig. 1 zu erkennen ist durchdringt, die vom Objekt (3) kommende Röntgenstrahlung (1) nullter Ordnung die zentrale Kreisscheibe (11). Dabei wird dieser Strahlung gegenüber den von den Objektstrukturen abgebeugten Ordnungen eine Phasenver­schiebung von 90° erteilt. In der Bildebene (6) entsteht Inter­ferenz zwischen der phasenverschobenen Strahlung und der un­beeinflußten Strahlung und damit entsteht ein kontrastreiches, vergrößertes Bild des Objektes (3), das beispielsweise direkt auf einer photoempfindlichen Schicht festgehalten werden kann.As can be seen from FIG. 1, the zero-order X-ray radiation (1) coming from the object (3) penetrates the central circular disk (11). This radiation is given a phase shift of 90 ° with respect to the orders diffracted by the object structures. In the image plane (6) there is interference between the phase-shifted radiation and the uninfluenced radiation and thus a high-contrast, enlarged image of the object (3) is created, which can be captured directly on a photosensitive layer, for example.

Verwendet man zum Beispiel Röntgenstrahlung einer Wellenlänge λ = 4.5 nm und besteht der zentralen Kreisscheibe (11) des Elementes (8) aus einer 0.09 µm dicken Chromschicht, so liefert eine Proteinstruktur von 10 nm Dicke in Wasser bei dem Röntgen-­Mikroskop der Fig. 1 einen etwa 20 mal besseren Kontrast als die bisher übliche Abbildung im Amplitudenkontrast.If, for example, X-ray radiation with a wavelength λ = 4.5 nm is used and the central circular disk (11) of the element (8) consists of a 0.09 μm thick chrome layer, then a protein structure of 10 nm thickness in water results in the X-ray microscope of FIG. 1 an approximately 20 times better contrast than the usual image in the amplitude contrast.

Fig. 4 zeigt ein Ausführungsbeispiel für ein zur Phasenver­schiebung und/oder zur Absorption dienendes Element (8), bei dem auf der Trägerfolie (9) ein Ring (12) aus entsprechendem Material, beispielsweise Chrom angebracht ist. Dieser Ring erteilt höheren Ordnungen der vom Objekt abgebeugten Strahlung eine Phasenverschiebung. Welche Ordnung beeinflußt werden soll, wird durch den Durchmesser und die Breite des Rings (12) festgelegt.Fig. 4 shows an embodiment of an element (8) serving for phase shift and / or absorption, in which a ring (12) made of the appropriate material, for example chrome, is attached to the carrier film (9). This ring gives higher orders of the radiation deflected by the object a phase shift. Which order is to be influenced is determined by the diameter and the width of the ring (12).

Claims (5)

1. Röntgen-Mikroskop, bei dem das Objekt über einen Kondensor mit quasi monochromatischer Röntgenstrahlung kohärent oder teilkohärent beleuchtet und mittels eines hochauflösenden Röntgenobjektivs vergrößert in die Bildebene abgebildet wird, dadurch gekennzeichnet, daß in der Fourierebene (7) des Röntgenobjektivs (5) ein Element (8) angeordnet ist, das sich über den von der nullten oder einer vorwählbaren ande­ren Ordnung der vom Objekt (3) abgebeugten Strahlung beauf­schlagten Flächenbereich erstreckt und der hindurchgehenden Strahlung eine Phasenverschiebung erteilt.1. X-ray microscope in which the object is coherently or partially coherently illuminated with a condenser with quasi-monochromatic X-radiation and enlarged in the image plane by means of a high-resolution X-ray lens, characterized in that an element in the Fourier plane (7) of the X-ray lens (5) (8) is arranged, which extends over the area affected by the zeroth or a preselectable other order of the radiation deflected by the object (3) and gives the radiation passing through a phase shift. 2. Röntgen-Mikroskop nach Anspruch 1, dadurch gekennzeichnet, daß die phasenschiebende und die absorbierende Wirkung des Elements (8) zur Ausgleichung der Intensitäten der verschiedenen Ordnungen, unabhängig voneinander auf die verschiedenen korrespondierenden Flächen in der Fourierebene (7) des Röntgenobjektivs (5) verteilt ist.2. X-ray microscope according to claim 1, characterized in that the phase-shifting and the absorbing effect of the element (8) to compensate for the intensities of the different orders, independently of one another on the different corresponding surfaces in the Fourier plane (7) of the X-ray objective (5) is distributed. 3. Röntgen-Mikroskop nach Anspruch 1 und 2, dadurch gekenn­zeichnet, daß das Element (8) aus einer in Form einer zentralen Kreisscheibe (11) auf einer Trägerfolie (9) aufge­brachten Schicht einer solchen Dicke besteht, daß die hin­durchtretende Röntgenstrahlung nullter Ordnung eine Phasen­verschiebung von 90° und eine gegebenenfalls amplitudenan­paßende Absorption erhält.3. X-ray microscope according to claim 1 and 2, characterized in that the element (8) from a in the form of a central circular disc (11) on a carrier film (9) applied layer of such a thickness that the zero-order X-ray radiation passing through it Phase shift of 90 ° and a possibly amplitude-adapting absorption. 4. Röntgen-Mikroskop nach Anspruch 3, dadurch gekennzeichnet, daß der Zentralkreis (11) des Elementes (8) bei einer Röntgen-Wellenlänge λ = 4.5 nm aus einer 0.09 µm dicken Chromschicht besteht.4. X-ray microscope according to claim 3, characterized in that the central circle (11) of the element (8) at an X-ray wavelength λ = 4.5 nm consists of a 0.09 µm thick chrome layer. 5. Röntgen-Mikroskop nach Anspruch 1 und 2, dadurch gekenn­zeichnet, daß das Element (8) aus einer ringförmigen Schicht (12) besteht, die der vom Objekt (3) abgebeugten Strahlung nter Ordnung (|n|≧1) eine Phasenverschiebung und gegebenen­ falls eine amplitudenanpaßende Absorption erteilt.5. X-ray microscope according to claim 1 and 2, characterized in that the element (8) consists of an annular layer (12) of the diffracted by the object (3) Radiation n th order (| n | ≧ 1) a phase shift and given if an amplitude matching absorption is given.
EP87117658A 1986-12-12 1987-11-28 Roentgen microscope Expired - Lifetime EP0270968B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3642457 1986-12-12
DE19863642457 DE3642457A1 (en) 1986-12-12 1986-12-12 ROENTGEN MICROSCOPE

Publications (3)

Publication Number Publication Date
EP0270968A2 true EP0270968A2 (en) 1988-06-15
EP0270968A3 EP0270968A3 (en) 1989-08-02
EP0270968B1 EP0270968B1 (en) 1993-12-15

Family

ID=6316038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87117658A Expired - Lifetime EP0270968B1 (en) 1986-12-12 1987-11-28 Roentgen microscope

Country Status (5)

Country Link
US (1) US4870674A (en)
EP (1) EP0270968B1 (en)
JP (1) JPH0814640B2 (en)
DE (2) DE3642457A1 (en)
DK (1) DK174016B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008174A1 (en) * 1993-09-15 1995-03-23 Carl-Zeiss-Stiftung Handelnd Als Carl Zeiss Phase contrast x-ray mocroscope

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH678663A5 (en) * 1988-06-09 1991-10-15 Zeiss Carl Fa
US5199057A (en) * 1989-08-09 1993-03-30 Nikon Corporation Image formation-type soft X-ray microscopic apparatus
JP2775949B2 (en) * 1990-01-10 1998-07-16 株式会社ニコン X-ray optical element holding frame
US5022061A (en) * 1990-04-30 1991-06-04 The United States Of America As Represented By The United States Department Of Energy An image focusing means by using an opaque object to diffract x-rays
US5204887A (en) * 1990-06-01 1993-04-20 Canon Kabushiki Kaisha X-ray microscope
DE4027285A1 (en) * 1990-08-29 1992-03-05 Zeiss Carl Fa X-RAY MICROSCOPE
US5432607A (en) * 1993-02-22 1995-07-11 International Business Machines Corporation Method and apparatus for inspecting patterned thin films using diffracted beam ellipsometry
US5432349A (en) * 1993-03-15 1995-07-11 The United State Of America As Represented By The Secretary Of The Navy Fourier transform microscope for x-ray and/or gamma-ray imaging
JP3741411B2 (en) * 1999-10-01 2006-02-01 株式会社リガク X-ray focusing apparatus and X-ray apparatus
US6996207B2 (en) * 2002-03-05 2006-02-07 Muradin Abubekirovich Kumakhov X-ray microscope
US7245696B2 (en) * 2002-05-29 2007-07-17 Xradia, Inc. Element-specific X-ray fluorescence microscope and method of operation
US7365909B2 (en) * 2002-10-17 2008-04-29 Xradia, Inc. Fabrication methods for micro compounds optics
US7119953B2 (en) * 2002-12-27 2006-10-10 Xradia, Inc. Phase contrast microscope for short wavelength radiation and imaging method
DE10352741B4 (en) * 2003-11-12 2012-08-16 Austriamicrosystems Ag Radiation-detecting optoelectronic component, process for its production and use
US20050211910A1 (en) * 2004-03-29 2005-09-29 Jmar Research, Inc. Morphology and Spectroscopy of Nanoscale Regions using X-Rays Generated by Laser Produced Plasma
GB0409572D0 (en) * 2004-04-29 2004-06-02 Univ Sheffield High resolution imaging
US7302043B2 (en) * 2004-07-27 2007-11-27 Gatan, Inc. Rotating shutter for laser-produced plasma debris mitigation
US7466796B2 (en) * 2004-08-05 2008-12-16 Gatan, Inc. Condenser zone plate illumination for point X-ray sources
US7452820B2 (en) * 2004-08-05 2008-11-18 Gatan, Inc. Radiation-resistant zone plates and method of manufacturing thereof
US8001862B2 (en) * 2007-11-20 2011-08-23 Harley-Davidson Motor Company Group, Inc. Reverse drive assembly for a motorcycle
EP2410921A1 (en) 2009-03-27 2012-02-01 Koninklijke Philips Electronics N.V. Differential phase-contrast imaging with circular gratings
US9291578B2 (en) 2012-08-03 2016-03-22 David L. Adler X-ray photoemission microscope for integrated devices
US9129715B2 (en) 2012-09-05 2015-09-08 SVXR, Inc. High speed x-ray inspection microscope
US11885753B2 (en) * 2020-10-23 2024-01-30 Rigaku Corporation Imaging type X-ray microscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105289A (en) * 1976-04-29 1978-08-08 University Patents, Inc. Apparatus and method for image sampling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49300A (en) * 1972-03-15 1974-01-05
JPS6049300A (en) * 1983-08-29 1985-03-18 日本電子株式会社 X-ray microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105289A (en) * 1976-04-29 1978-08-08 University Patents, Inc. Apparatus and method for image sampling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, Band 64, Nr. 3, M{rz 1974, Seiten 301-309, New York, US; J. KIRZ: "Phase zone plates for X rays and the extreme UV" *
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, Sektion A, Band A246, Nr. 1/3, Mai 1986, Seiten 698-701, Elsevier Science Publishers B.V., Amsterdam, NL; X.-S. XIE et al.: "Soft X-ray microscopy at the hefei synchrotron radiation laboratory" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008174A1 (en) * 1993-09-15 1995-03-23 Carl-Zeiss-Stiftung Handelnd Als Carl Zeiss Phase contrast x-ray mocroscope
US5550887A (en) * 1993-09-15 1996-08-27 Carl-Zeiss-Stiftung Phase contrast X-ray microscope

Also Published As

Publication number Publication date
DK652287A (en) 1988-06-13
JPH0814640B2 (en) 1996-02-14
JPS63163300A (en) 1988-07-06
DE3788508D1 (en) 1994-01-27
US4870674A (en) 1989-09-26
EP0270968B1 (en) 1993-12-15
DE3642457A1 (en) 1988-06-30
EP0270968A3 (en) 1989-08-02
DK652287D0 (en) 1987-12-11
DK174016B1 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
EP0270968B1 (en) Roentgen microscope
DE69023073T2 (en) Manufacture of devices using lithographic processes.
DE3888395T2 (en) Test system for a microcircuit arrangement with redundancy circuit systems.
DE69132110T2 (en) METHOD AND DEVICE FOR EXPOSURE
DE10240859B4 (en) Differential Contrast Transmission Electron Microscope and Method of Processing Electron Microscopic Image Data
DE2643990A1 (en) DEVICE FOR OPTICAL READING OF A RECORDING
DE2360197A1 (en) PROCESS FOR INCREASING THE DEPTH OF FOCUS AND / OR THE RESOLUTION OF LIGHT MICROSCOPES
DE2116713B2 (en) Exposure method for imaging very finely structured light patterns on photoresist layers and a suitable exposure device
DE102015105018A1 (en) Method and scanning fluorescence light microscope for multi-dimensionally high-resolution imaging of a structure or a path of a particle in a sample
DE10141958A1 (en) X-ray diffractometer
DE102017208340A1 (en) Projection exposure method and projection objective with adjustment of the pupil transmission
EP0040704B1 (en) Method for the testing of optical systems using moiré fringes
DE4420409B4 (en) Photomask with patterns to reduce the required light output of a stepper
EP4095505A1 (en) Method for determining the imaging quality of an optical system upon illumination with illumination light within a pupil to be measured
DE2722958A1 (en) METHOD FOR ADJUSTING A SEMICONDUCTOR DISC RELATIVE TO A RADIATION MASK IN X-RAY PHOTOLITHOGRAPHY
DE2306764A1 (en) MICROWARNING MEASURING METHODS AND MICROWARNING KNIFE AND MICRODENSITOMETER
DE69523800T2 (en) Fixed point detection device
EP1476890B1 (en) Phase plate for electron microscopy and electron microscopic imaging
DE102018124314A1 (en) Device for determining the exposure energy when exposing an element in an optical system, in particular for microlithography
DE1564075B1 (en) Method for high-contrast imaging of phase or amplitude objects in a corpuscular beam device, especially an electron microscope
DE102005023137B4 (en) Arrangement for high-resolution digital inline holography
DE2740366A1 (en) METHOD AND EQUIPMENT FOR PRODUCING VERY SMALL INTEGRATED ELECTRICAL CIRCUITS
DE1797473C3 (en) Process for the production of a hologran uncopy
DE2827085B1 (en) Method and device for determining the focal length of long focal length electron-optical lenses
DE69519143T2 (en) Pattern generation method and method and apparatus for manufacturing a semiconductor device using this method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900201

17Q First examination report despatched

Effective date: 19911106

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3788508

Country of ref document: DE

Date of ref document: 19940127

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940124

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87117658.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021017

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021028

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021030

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021104

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021111

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021114

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031209

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

BERE Be: lapsed

Owner name: FIRMA CARL *ZEISS

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051128

BERE Be: lapsed

Owner name: FIRMA CARL *ZEISS

Effective date: 20041130