EP0270968A2 - Roentgen microscope - Google Patents
Roentgen microscope Download PDFInfo
- Publication number
- EP0270968A2 EP0270968A2 EP87117658A EP87117658A EP0270968A2 EP 0270968 A2 EP0270968 A2 EP 0270968A2 EP 87117658 A EP87117658 A EP 87117658A EP 87117658 A EP87117658 A EP 87117658A EP 0270968 A2 EP0270968 A2 EP 0270968A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ray
- radiation
- phase shift
- order
- microscope according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 claims abstract description 41
- 230000010363 phase shift Effects 0.000 claims abstract description 15
- 238000010521 absorption reaction Methods 0.000 claims abstract description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000003963 x-ray microscopy Methods 0.000 abstract description 6
- 238000011835 investigation Methods 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K7/00—Gamma- or X-ray microscopes
Definitions
- the present invention relates to an X-ray microscope in which the object is illuminated coherently or partially coherently with quasi monochromatic X-ray radiation via a condenser and is magnified in the image plane by means of a high-resolution X-ray objective.
- each imaging element ie condenser and X-ray lens
- a zone plate consists of a large number of very thin rings, for example made of gold, which are applied to a thin carrier film (for example made of polyimide). These rings form a circular grid with a radially increasing line density.
- the zone plates diffract the incident monochromatic X-ray radiation of the wavelength and thus cause an image.
- the contrast in the image is mediated by photoelectric absorption in the object, i.e. structures are imaged which effect an amplitude modulation of the X-rays passing through.
- the wavelength range of the X-rays which is between 2.4 nm and 4.5 nm, ie between the oxygen K edge and the carbon K edge, is particularly suitable.
- This area is also known as the water window, since water has a transmission that is about ten times higher than that of organic materials. It can be used in this wavelength range examine organic materials and thus cells and cell organelles in living condition.
- the resolution achieved so far in X-ray microscopy is about a factor of 10 better than in light microscopy, with a further increase in X-ray microscope resolution by about an order of magnitude being still possible.
- the limit resolution in X-ray microscopy of amplitude structures will be given by the radiation exposure of the objects to be examined.
- This object is achieved, starting from an X-ray microscope according to the invention, in that an element is arranged in the Fourier plane of the X-ray objective, which element extends over the area affected by the zero or a preselectable other order of the radiation deflected by the object, and gives the radiation passing through a phase shift.
- phase-shifting properties of object structures are used to form contrast.
- the phase-shifting element arranged in the beam path gives the preselected order of the X-ray radiation coming from the object a phase shift with respect to the other radiation coming from the object that does not pass through the element.
- the phase-shifted and the unaffected radiation components interfere in the image plane and create a high-contrast, enlarged picture of the object.
- the quantity ⁇ describes the absorption, which becomes smaller as the wavelength ⁇ of the X-ray radiation becomes shorter.
- the size ⁇ is decisive for the phase shift which is given to the continuous X-ray radiation.
- the size ⁇ generally varies very slowly with the wavelength. For this reason, if the phase shift is used by the object, a significant improvement in the contrast in the image can be achieved.
- images can also be generated with a lower radiation exposure to the object, the contrast of which is no worse than when the amplitude contrast is used with a higher radiation exposure.
- phase-shifting element is designed according to claim 5.
- phase-shifting element used in the X-ray microscope according to the invention. It may therefore be necessary to adjust the intensities of the interfering orders in the image plane of the radiation coming from the object.
- the phase-shifting and the absorbing effect of the phase-shifting element is advantageously distributed over different corresponding surfaces in the Fourier plane of the X-ray objective. The radiation passing through these corresponding surfaces is influenced independently of one another in phase and amplitude, specifically in such a way that the intensities of the radiation interferences in the image plane are matched to one another.
- the radiation coming from an X-ray source is designated by (1).
- a synchrotron or another source described in Part 1 of the book “X-Ray Microscopy” by Schmahl and Rudolph, Springer-Verlag 1984 can be used as the X-ray source.
- the x-ray radiation passes through an x-ray condenser (2) and is guided by this to the object (3) to be observed, which is arranged on a central diaphragm (4).
- the X-ray radiation deflected by the object (3) passes through a high-resolution X-ray lens (5) and is imaged by the latter into the image plane (6).
- the Fourier plane of the lens (5) is designated, in which the decomposition of the radiation passing through the object (3) is found in harmonic Fourier components. This distribution is represented again in the image plane (6) by a Fourier inverse transformation as a real image.
- Zone plates such as are shown, for example, in FIG. 2 are advantageously used as imaging elements (2) and (5).
- This zone plate consists of a large number of rings which are placed on a very thin carrier foil, e.g. are applied from polyimide.
- the rings are usually made of gold or chrome and have a low layer thickness of approx. 0.1 ⁇ m.
- the rings form a circular grid with a radially increasing line density.
- a phase-shifting and / or absorbing element (8) is arranged in the Fourier plane (7) of the objective (5).
- This consists, as shown in FIG. 3, of a thin carrier film (9) which is contained in a ring (10) and on which a thin layer of phase-shifting material, for example chrome in the form a central circular disc (11) is applied.
- the zero-order X-ray radiation (1) coming from the object (3) penetrates the central circular disk (11).
- This radiation is given a phase shift of 90 ° with respect to the orders diffracted by the object structures.
- the image plane (6) there is interference between the phase-shifted radiation and the uninfluenced radiation and thus a high-contrast, enlarged image of the object (3) is created, which can be captured directly on a photosensitive layer, for example.
- Fig. 4 shows an embodiment of an element (8) serving for phase shift and / or absorption, in which a ring (12) made of the appropriate material, for example chrome, is attached to the carrier film (9).
- This ring gives higher orders of the radiation deflected by the object a phase shift. Which order is to be influenced is determined by the diameter and the width of the ring (12).
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Liquid Crystal Substances (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Bei einem Röntgenmikroskop wird das Objekt (3) uber einen Kondensor (2) mit quasi monochromatischer Röntgenstrahlung (1) kohärent oder teilkohärent beleuchtet und mittels eines hochauflösenden Röntgenobjektivs (5) vergrößert in die Bildebene (6) abgebildet. Um einen möglichst hohen Bildkontrast zu erreichen ist in der Fourierebene (7) des Röntgenobjektivs ein Element (8) angeordnet, das einer vorgewählten Beugungsordnung der Strahlung eine Phasenverschiebung erteilt. Das Element erstreckt sich über den Flächenbereich in der Fourierebene, der hier von der zu beeinflußenden abgebeugten Strahlung beaufschlagt wird. Die Ausnutzung der Phasenverschiebung einer vorgewählten Beugungsordnung der Strahlung gegenüber der unbeeinflußten Strahlung ermöglicht es, Untersuchungen, insbesondere biologischer Strukturen mit geringer Strahlendosis durchzuführen und dennoch einen hohen Bildkontrast zu erzeugen. Außerdem wird es möglich den zu verwendeten Wellenlängenbereich der Röntgenstrahlung zu kürzeren Wellenlängen hin zu verschieben, bei denen infolge der geringen Absorption bisher Röntgenmikroskopie nicht sinnvoll möglich war.In an X-ray microscope, the object (3) is illuminated coherently or partially coherently with quasi monochromatic X-ray radiation (1) via a condenser (2) and is magnified in the image plane (6) using a high-resolution X-ray objective (5). In order to achieve the highest possible image contrast, an element (8) is arranged in the Fourier plane (7) of the x-ray objective, which element gives a preselected diffraction order of the radiation a phase shift. The element extends over the surface area in the Fourier plane, which is acted upon here by the diffracted radiation to be influenced. The use of the phase shift of a preselected diffraction order of the radiation with respect to the uninfluenced radiation makes it possible to carry out investigations, in particular biological structures with a low radiation dose, and yet to produce a high image contrast. In addition, it will be possible to shift the wavelength range of the X-ray radiation to be used for shorter wavelengths at which X-ray microscopy has so far not been possible due to the low absorption.
Description
Die vorliegende Erfindung bezieht sich auf ein Röntgen-Mikroskop, bei dem das Objekt uber einen Kondensor mit quasi monochromatischer Röntgenstrahlung kohärent oder teilkohärent beleuchtet und mittels eines hochauflösenden Röntgenobjektivs vergrößert in die Bildebene abgebildet wird.The present invention relates to an X-ray microscope in which the object is illuminated coherently or partially coherently with quasi monochromatic X-ray radiation via a condenser and is magnified in the image plane by means of a high-resolution X-ray objective.
Solche Röntgen-Mikroskope sind beispielsweise in Teil IV des Buches "X-Ray Microscopy" von Schmahl und Rudolph, Springer-Verlag 1984 beschrieben. Auf den Seiten 192/202 dieses Buches findet sich die Beschreibung eines Röntgen-Mikroskops bei dem jedes abbildende Element, d.h. also Kondensor und Röntgenobjektiv als Zonenplatte ausgebildet ist. Eine solche Zonenplatte besteht aus einer Vielzahl von sehr dünnen Ringen, beispielsweise aus Gold, die auf eine dünne Trägerfolie (z.B. aus Polyimid) aufgebracht sind. Diese Ringe bilden ein Zirkular-Gitter mit radial ansteigender Liniendichte. Die Zonenplatten beugen die auftreffende monochromatische Röntgen-Strahlung der Wellenlänge und bewirken damit eine Abbildung. Unter quasi monochromatischer Strahlung wird hier Strahlung einer gewissen Bandweite Δλ verstanden, wobei im Zusammenhang mit Zonenplatten diese Bandweite gegeben ist durch die Beziehung λ/Δλχ p . m ( p = Linienzahl, m = Nummer der noch zu erfassenden Beugungsordnüng).Such X-ray microscopes are described, for example, in Part IV of the book "X-Ray Microscopy" by Schmahl and Rudolph, Springer-Verlag 1984. On pages 192/202 of this book you will find a description of an X-ray microscope in which each imaging element, ie condenser and X-ray lens, is designed as a zone plate. Such a zone plate consists of a large number of very thin rings, for example made of gold, which are applied to a thin carrier film (for example made of polyimide). These rings form a circular grid with a radially increasing line density. The zone plates diffract the incident monochromatic X-ray radiation of the wavelength and thus cause an image. Quasi monochromatic radiation is understood here to mean radiation of a certain bandwidth Δλ, this bandwidth being given in connection with zone plates by the relationship λ / Δλχ p. m (p = number of lines, m = number of the diffraction order still to be determined).
Bei solchen bekannten Röntgen-Mikroskopen wird der Kontrast im Bild durch photoelektrische Absorption im Objekt vermittelt, d.h. es werden Strukturen abgebildet, die eine Amplitudenmodulation der hindurchgehenden Röntgenstrahlen bewirken.In such known X-ray microscopes, the contrast in the image is mediated by photoelectric absorption in the object, i.e. structures are imaged which effect an amplitude modulation of the X-rays passing through.
Besonders geeignet ist dabei der Wellenlängenbereich der Röntgenstrahlung, der zwischen 2.4 nm und 4.5 nm liegt, d.h. zwischen der Sauerstoff-K-Kante und der Kohlenstoff-K-Kante. Dieses Gebiet wird auch als Wasserfenster bezeichnet, da hier Wasser eine etwa zehnmal höhere Transmission hat als organische Materialien. Damit lassen sich in diesem Wellenlängenbereich organische Materialien und damit Zellen und Zellorganellen in lebendem Zustand untersuchen.The wavelength range of the X-rays, which is between 2.4 nm and 4.5 nm, ie between the oxygen K edge and the carbon K edge, is particularly suitable. This area is also known as the water window, since water has a transmission that is about ten times higher than that of organic materials. It can be used in this wavelength range examine organic materials and thus cells and cell organelles in living condition.
Die bisher erreichte Auflösung in der Röntgen-Mikroskopie ist etwa um einen Faktor 10 besser als in der Lichtmikroskopie, wobei eine weitere Steigerung der röntgenmikroskopischen Auflösung um etwa eine Größenordnung noch möglich ist. Dabei wird die Grenzauflösung in der Röntgenmikroskopie von Amplitudenstrukturen durch die Strahlenbelastung der zu untersuchenden Objekte gegeben sein.The resolution achieved so far in X-ray microscopy is about a factor of 10 better than in light microscopy, with a further increase in X-ray microscope resolution by about an order of magnitude being still possible. The limit resolution in X-ray microscopy of amplitude structures will be given by the radiation exposure of the objects to be examined.
Es ist nun die Aufgabe der vorliegenden Erfindung ein Röntgenmikroskop zu schaffen, das es ermöglicht Untersuchungen, insbesondere von biologischen Strukturen mit einer Strahlendosis durchzuführen, die zu einer geringeren Strahlenbelastung der Objekte führt als die bisher üblichen Verfahren, ohne daß eine Verschlechterung des Bildkontrastes in Kauf genommen werden muß.It is now the object of the present invention to provide an X-ray microscope which enables examinations, in particular of biological structures, to be carried out with a radiation dose which leads to a lower radiation exposure of the objects than the previously usual methods, without having to accept a deterioration in the image contrast must become.
Diese Aufgabe wird, ausgehend von einem Röntgenmikroskop nach dem Oberbegriff des Anspruches 1 erfindungsgemäß dadurch gelöst, daß in der Fourierebene des Röntgenobjektivs ein Element angeordnet ist, das sich über den von der nullten oder einer vorwählbaren anderen Ordnung der vom Objekt abgebeugten Strahlung beaufschlagten Flächenbereich erstreckt und der hindurchgehenden Strahlung eine Phasenverschiebung erteilt.This object is achieved, starting from an X-ray microscope according to the invention, in that an element is arranged in the Fourier plane of the X-ray objective, which element extends over the area affected by the zero or a preselectable other order of the radiation deflected by the object, and gives the radiation passing through a phase shift.
Bei dem Röntgen-Mikroskop nach der Erfindung werden phasenschiebende Eigenschaften von Objektstrukturen zur Kontrastbildung benutzt. Das im Strahlengang angeordnete phasenschiebende Element erteilt der durch die Form des Elements vorgewählten Ordnung der vom Objekt kommenden Röntgen-Strahlung eine Phasenverschiebung gegenuber der anderen, nicht durch das Element tretenden, vom Objekt kommenden Strahlung. Die phasenverschobenen und die nicht beeinflußten Strahlungsanteile interferieren in der Bildebene und erzeugen dabei ein kontrastreiches, vergrößertes Bild des Objekts.In the X-ray microscope according to the invention, phase-shifting properties of object structures are used to form contrast. The phase-shifting element arranged in the beam path gives the preselected order of the X-ray radiation coming from the object a phase shift with respect to the other radiation coming from the object that does not pass through the element. The phase-shifted and the unaffected radiation components interfere in the image plane and create a high-contrast, enlarged picture of the object.
Es hat sich als besonders vorteilhaft erwiesen der Röntgenstrahlung nullter Ordnung der vom Objekt kommenden Strahlung gegenüber den von den Objektstrukturen abgebeugten Ordnungen eine Phasenverschiebung von 90° zu geben. Dies kann besonders einfach geschehen, da die Strahlung nullter Ordnung in der Fourierebene des Röntgenobjektivs eine zentrale Kreisscheibe beleuchtet. Eine dazu geeignete Ausbildung des phasenschiebenden Elementes ist in den Ansprüchen 3 und 4 beschrieben.It has proven to be particularly advantageous to give the zero-order X-ray radiation of the radiation coming from the object a phase shift of 90 ° with respect to the orders refracted by the object structures. This can be done particularly easily since the zero-order radiation illuminates a central circular disk in the Fourier plane of the X-ray objective. A suitable design of the phase-shifting element is described in
Die Erfindung geht aus von der Erkenntnis, daß sich der Brechungsindex n eines Elements im Röntgenbereich aus zwei unterschiedlich wirkenden Größen zusammensetzt, was sich schematisch durch die Beziehung n = 1 - δ - i β ausdrücken läßt. Die Größe β beschreibt dabei die Absorption, die mit kürzer werdender Wellenlänge λ der Röntgen-Strahlung kleiner wird. Die Größe δ ist maßgebend für die Phasenverschiebung, die der durchgehenden Röntgenstrahlung erteilt wird. Die Größe δ variiert im allgemeinen nur sehr langsam mit der Wellenlänge. Aus diesem Grunde kann also bei Ausnutzung der Phasenverschiebung durch das Objekt eine deutliche Verbesserung des Kontrastes im Bild erreicht werden.The invention is based on the knowledge that the refractive index n of an element in the X-ray range is composed of two differently acting variables, which can be expressed schematically by the relationship n = 1 - δ - i β. The quantity β describes the absorption, which becomes smaller as the wavelength λ of the X-ray radiation becomes shorter. The size δ is decisive for the phase shift which is given to the continuous X-ray radiation. The size δ generally varies very slowly with the wavelength. For this reason, if the phase shift is used by the object, a significant improvement in the contrast in the image can be achieved.
Es lassen sich insbesondere auch bei geringerer Strahlenbelastung des Objekts Bilder erzeugen, deren Kontrast nicht schlechter ist als bei Ausnutzung des Amplitudenkontrast bei höherer Strahlenbelastung.In particular, images can also be generated with a lower radiation exposure to the object, the contrast of which is no worse than when the amplitude contrast is used with a higher radiation exposure.
Aus dieser Betrachtung ergibt sich auch der weitere wesentliche Vorteil des Röntgen-Mikroskops nach der Erfindung. Da sich die Größe δ mit der Wellenlänge λ nur wenig ändert, läßt sich bei Ausnutzung der Phasenverschiebung der Wellenlängenbereich der Röntgenstrahlung zu kürzeren Wellenlängen hin verschieben, bei denen infolge der geringen Absorption, d.h. kleinem β eine Röntgenmikroskopie wegen der geringen erreichbaren Kontraste im Bild bisher nicht sinnvoll möglich war.This consideration also gives the further essential advantage of the X-ray microscope according to the invention. Since the size δ changes only slightly with the wavelength λ, when using the phase shift, the wavelength range of the X-rays can be shifted to shorter wavelengths at which X-ray microscopy has so far not been possible due to the low absorption, ie small β, because of the low contrast levels that can be achieved in the image was sensibly possible.
Es kann unter Umständen auch möglich sein nicht die Röntgenstrahlung nullter Ordnung in der Phase zu beeinflussen, sondern höhere Ordnungen der vom Objekt abgebeugten Strahlung. Diese Ordnungen bilden in der Fourierebene des Röntgenobjektivs Ringe, so daß das phasenschiebende Element nach Anspruch 5 ausgebildet wird.Under certain circumstances, it may also be possible not to influence the zero-order X-ray radiation in the phase, but rather higher orders of the radiation refracted by the object. These orders form rings in the Fourier plane of the X-ray objective, so that the phase-shifting element is designed according to
Wie die Formel für den Brechungsindex n im Röntgenbereich, nämlich n = 1 - δ - i β zeigt ist mit einer Phasenverschiebung stets auch eine absorbierende Wirkung verbunden. Dies gilt natürlich auch für das bei dem Röntgenmikroskop nach der Erfindung verwendete phasenschiebende Element. Deshalb kann es erforderlich werden die Intensitäten der in der Bildebene interferierenden Ordnungen der vom Objekt kommenden Strahlung einander anzugleichen. Dazu wird vorteilhaft die phasenschiebende und die absorbierende Wirkung des phasenschiebenden Elementes auf verschiedene korrespondierende Flächen in der Fourierebene des Röntgenobjektivs verteilt. Die durch diese korrespondierenden Flächen tretende Strahlung wird dabei unabhängig voneinander in Phase und Amplitude beeinflußt und zwar so, daß die Intensitäten der in der Bildebene interferierenden Ordnungen der Strahlung aneinander angeglichen sind.As the formula for the refractive index n in the X-ray range, namely n = 1 - δ - i β shows, a phase shift is always associated with an absorbing effect. Of course, this also applies to the phase-shifting element used in the X-ray microscope according to the invention. It may therefore be necessary to adjust the intensities of the interfering orders in the image plane of the radiation coming from the object. For this purpose, the phase-shifting and the absorbing effect of the phase-shifting element is advantageously distributed over different corresponding surfaces in the Fourier plane of the X-ray objective. The radiation passing through these corresponding surfaces is influenced independently of one another in phase and amplitude, specifically in such a way that the intensities of the radiation interferences in the image plane are matched to one another.
Die Erfindung wird im folgenden anhand der Figuren 1-4 der beigefügten Zeichnungen näher erläutert. Im einzelnen zeigen:
- Fig. 1 ein Ausführungsbeispiel für den prinzipiellen Aufbau eines Röntgen-Mikroskops nach der Erfindung;
- Fig. 2 die Draufsicht auf eine als abbildendes Element verwendete Zonenplatte;
- Fig. 3 das im Mikroskop der Fig. 1 enthaltene phasenschiebende Element in Draufsicht;
- Fig. 4 eine Draufsicht eines anderen Ausführungsbeispiels für ein phasenschiebendes Element.
- Figure 1 shows an embodiment of the basic structure of an X-ray microscope according to the invention.
- 2 shows the top view of a zone plate used as an imaging element;
- 3 shows the phase-shifting element contained in the microscope of FIG. 1 in a top view;
- Fig. 4 is a plan view of another embodiment for a phase shifting element.
In Fig. 1 ist die von einer Röntgenquelle kommende Strahlung mit (1) bezeichnet. Als Röntgenquelle kann beispielsweise ein Synchrotron oder eine andere in Teil 1 des Buches "X-Ray Microscopy" von Schmahl und Rudolph, Springer-Verlag 1984 beschriebene Quelle verwendet werden.In Fig. 1, the radiation coming from an X-ray source is designated by (1). For example, a synchrotron or another source described in Part 1 of the book "X-Ray Microscopy" by Schmahl and Rudolph, Springer-Verlag 1984 can be used as the X-ray source.
Die Röntgenstrahlung tritt durch einen Röntgenkondensor (2) und wird von diesem zu dem zu beobachtenden Objekt (3) geleitet, das auf einer Zentralblende (4) angeordnet ist. Die vom Objekt (3) abgebeugte Röntgenstrahlung tritt durch ein hochauflösendes Röntgenobjektiv (5) und wird von diesem in die Bildebene (6) abgebildet.The x-ray radiation passes through an x-ray condenser (2) and is guided by this to the object (3) to be observed, which is arranged on a central diaphragm (4). The X-ray radiation deflected by the object (3) passes through a high-resolution X-ray lens (5) and is imaged by the latter into the image plane (6).
Mit (7) ist die Fourierebene des Objektivs (5) bezeichnet, in der sich die Zerlegung der durch das Objekt (3) tretenden Strahlung in harmonische Fourierkomponenten findet. In der Bildebene (6) wird diese Verteilung durch Fourier-Rücktransformation als reelles Bild wieder dargestellt.With (7) the Fourier plane of the lens (5) is designated, in which the decomposition of the radiation passing through the object (3) is found in harmonic Fourier components. This distribution is represented again in the image plane (6) by a Fourier inverse transformation as a real image.
Als abbildende Elemente (2) und (5) finden vorteilhaft Zonenplatten Verwendung, wie sie beispielsweise in Fig. 2 dargestellt sind. Diese Zonenplatte besteht aus einer Vielzahl von Ringen, die auf einer sehr dunnen Tragefolie, z.B. aus Polyimid aufgebracht sind. Die Ringe sind meist aus Gold oder Chrom und haben eine geringe Schichtdicke von ca. 0.1 µm. Die Ringe bilden ein Zirkular-Gitter mit radial ansteigender Liniendichte.Zone plates such as are shown, for example, in FIG. 2 are advantageously used as imaging elements (2) and (5). This zone plate consists of a large number of rings which are placed on a very thin carrier foil, e.g. are applied from polyimide. The rings are usually made of gold or chrome and have a low layer thickness of approx. 0.1 µm. The rings form a circular grid with a radially increasing line density.
In der Fourierebene (7) des Objektivs (5) ist ein phasenschiebendes und/oder absorbierendes Element (8) angeordnet. Dieses besteht, wie Fig. 3 zeigt aus einer dünnen Trägerfolie (9), die in einem Ring (10) gefaßt ist und auf die eine dünne Schicht aus phasenschiebenen Material, beispielsweise Chrom in Form einer zentralen Kreisscheibe (11) aufgebracht ist.A phase-shifting and / or absorbing element (8) is arranged in the Fourier plane (7) of the objective (5). This consists, as shown in FIG. 3, of a thin carrier film (9) which is contained in a ring (10) and on which a thin layer of phase-shifting material, for example chrome in the form a central circular disc (11) is applied.
Wie aus Fig. 1 zu erkennen ist durchdringt, die vom Objekt (3) kommende Röntgenstrahlung (1) nullter Ordnung die zentrale Kreisscheibe (11). Dabei wird dieser Strahlung gegenüber den von den Objektstrukturen abgebeugten Ordnungen eine Phasenverschiebung von 90° erteilt. In der Bildebene (6) entsteht Interferenz zwischen der phasenverschobenen Strahlung und der unbeeinflußten Strahlung und damit entsteht ein kontrastreiches, vergrößertes Bild des Objektes (3), das beispielsweise direkt auf einer photoempfindlichen Schicht festgehalten werden kann.As can be seen from FIG. 1, the zero-order X-ray radiation (1) coming from the object (3) penetrates the central circular disk (11). This radiation is given a phase shift of 90 ° with respect to the orders diffracted by the object structures. In the image plane (6) there is interference between the phase-shifted radiation and the uninfluenced radiation and thus a high-contrast, enlarged image of the object (3) is created, which can be captured directly on a photosensitive layer, for example.
Verwendet man zum Beispiel Röntgenstrahlung einer Wellenlänge λ = 4.5 nm und besteht der zentralen Kreisscheibe (11) des Elementes (8) aus einer 0.09 µm dicken Chromschicht, so liefert eine Proteinstruktur von 10 nm Dicke in Wasser bei dem Röntgen-Mikroskop der Fig. 1 einen etwa 20 mal besseren Kontrast als die bisher übliche Abbildung im Amplitudenkontrast.If, for example, X-ray radiation with a wavelength λ = 4.5 nm is used and the central circular disk (11) of the element (8) consists of a 0.09 μm thick chrome layer, then a protein structure of 10 nm thickness in water results in the X-ray microscope of FIG. 1 an approximately 20 times better contrast than the usual image in the amplitude contrast.
Fig. 4 zeigt ein Ausführungsbeispiel für ein zur Phasenverschiebung und/oder zur Absorption dienendes Element (8), bei dem auf der Trägerfolie (9) ein Ring (12) aus entsprechendem Material, beispielsweise Chrom angebracht ist. Dieser Ring erteilt höheren Ordnungen der vom Objekt abgebeugten Strahlung eine Phasenverschiebung. Welche Ordnung beeinflußt werden soll, wird durch den Durchmesser und die Breite des Rings (12) festgelegt.Fig. 4 shows an embodiment of an element (8) serving for phase shift and / or absorption, in which a ring (12) made of the appropriate material, for example chrome, is attached to the carrier film (9). This ring gives higher orders of the radiation deflected by the object a phase shift. Which order is to be influenced is determined by the diameter and the width of the ring (12).
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3642457 | 1986-12-12 | ||
DE19863642457 DE3642457A1 (en) | 1986-12-12 | 1986-12-12 | ROENTGEN MICROSCOPE |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0270968A2 true EP0270968A2 (en) | 1988-06-15 |
EP0270968A3 EP0270968A3 (en) | 1989-08-02 |
EP0270968B1 EP0270968B1 (en) | 1993-12-15 |
Family
ID=6316038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87117658A Expired - Lifetime EP0270968B1 (en) | 1986-12-12 | 1987-11-28 | Roentgen microscope |
Country Status (5)
Country | Link |
---|---|
US (1) | US4870674A (en) |
EP (1) | EP0270968B1 (en) |
JP (1) | JPH0814640B2 (en) |
DE (2) | DE3642457A1 (en) |
DK (1) | DK174016B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995008174A1 (en) * | 1993-09-15 | 1995-03-23 | Carl-Zeiss-Stiftung Handelnd Als Carl Zeiss | Phase contrast x-ray mocroscope |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH678663A5 (en) * | 1988-06-09 | 1991-10-15 | Zeiss Carl Fa | |
US5199057A (en) * | 1989-08-09 | 1993-03-30 | Nikon Corporation | Image formation-type soft X-ray microscopic apparatus |
JP2775949B2 (en) * | 1990-01-10 | 1998-07-16 | 株式会社ニコン | X-ray optical element holding frame |
US5022061A (en) * | 1990-04-30 | 1991-06-04 | The United States Of America As Represented By The United States Department Of Energy | An image focusing means by using an opaque object to diffract x-rays |
US5204887A (en) * | 1990-06-01 | 1993-04-20 | Canon Kabushiki Kaisha | X-ray microscope |
DE4027285A1 (en) * | 1990-08-29 | 1992-03-05 | Zeiss Carl Fa | X-RAY MICROSCOPE |
US5432607A (en) * | 1993-02-22 | 1995-07-11 | International Business Machines Corporation | Method and apparatus for inspecting patterned thin films using diffracted beam ellipsometry |
US5432349A (en) * | 1993-03-15 | 1995-07-11 | The United State Of America As Represented By The Secretary Of The Navy | Fourier transform microscope for x-ray and/or gamma-ray imaging |
JP3741411B2 (en) * | 1999-10-01 | 2006-02-01 | 株式会社リガク | X-ray focusing apparatus and X-ray apparatus |
US6996207B2 (en) * | 2002-03-05 | 2006-02-07 | Muradin Abubekirovich Kumakhov | X-ray microscope |
US7245696B2 (en) * | 2002-05-29 | 2007-07-17 | Xradia, Inc. | Element-specific X-ray fluorescence microscope and method of operation |
US7365909B2 (en) * | 2002-10-17 | 2008-04-29 | Xradia, Inc. | Fabrication methods for micro compounds optics |
US7119953B2 (en) * | 2002-12-27 | 2006-10-10 | Xradia, Inc. | Phase contrast microscope for short wavelength radiation and imaging method |
DE10352741B4 (en) * | 2003-11-12 | 2012-08-16 | Austriamicrosystems Ag | Radiation-detecting optoelectronic component, process for its production and use |
US20050211910A1 (en) * | 2004-03-29 | 2005-09-29 | Jmar Research, Inc. | Morphology and Spectroscopy of Nanoscale Regions using X-Rays Generated by Laser Produced Plasma |
GB0409572D0 (en) * | 2004-04-29 | 2004-06-02 | Univ Sheffield | High resolution imaging |
US7302043B2 (en) * | 2004-07-27 | 2007-11-27 | Gatan, Inc. | Rotating shutter for laser-produced plasma debris mitigation |
US7466796B2 (en) * | 2004-08-05 | 2008-12-16 | Gatan, Inc. | Condenser zone plate illumination for point X-ray sources |
US7452820B2 (en) * | 2004-08-05 | 2008-11-18 | Gatan, Inc. | Radiation-resistant zone plates and method of manufacturing thereof |
US8001862B2 (en) * | 2007-11-20 | 2011-08-23 | Harley-Davidson Motor Company Group, Inc. | Reverse drive assembly for a motorcycle |
EP2410921A1 (en) | 2009-03-27 | 2012-02-01 | Koninklijke Philips Electronics N.V. | Differential phase-contrast imaging with circular gratings |
US9291578B2 (en) | 2012-08-03 | 2016-03-22 | David L. Adler | X-ray photoemission microscope for integrated devices |
US9129715B2 (en) | 2012-09-05 | 2015-09-08 | SVXR, Inc. | High speed x-ray inspection microscope |
US11885753B2 (en) * | 2020-10-23 | 2024-01-30 | Rigaku Corporation | Imaging type X-ray microscope |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4105289A (en) * | 1976-04-29 | 1978-08-08 | University Patents, Inc. | Apparatus and method for image sampling |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49300A (en) * | 1972-03-15 | 1974-01-05 | ||
JPS6049300A (en) * | 1983-08-29 | 1985-03-18 | 日本電子株式会社 | X-ray microscope |
-
1986
- 1986-12-12 DE DE19863642457 patent/DE3642457A1/en not_active Withdrawn
-
1987
- 1987-11-28 EP EP87117658A patent/EP0270968B1/en not_active Expired - Lifetime
- 1987-11-28 DE DE87117658T patent/DE3788508D1/en not_active Expired - Fee Related
- 1987-12-08 JP JP62308806A patent/JPH0814640B2/en not_active Expired - Fee Related
- 1987-12-09 US US07/130,755 patent/US4870674A/en not_active Expired - Lifetime
- 1987-12-11 DK DK198706522A patent/DK174016B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4105289A (en) * | 1976-04-29 | 1978-08-08 | University Patents, Inc. | Apparatus and method for image sampling |
Non-Patent Citations (2)
Title |
---|
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, Band 64, Nr. 3, M{rz 1974, Seiten 301-309, New York, US; J. KIRZ: "Phase zone plates for X rays and the extreme UV" * |
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, Sektion A, Band A246, Nr. 1/3, Mai 1986, Seiten 698-701, Elsevier Science Publishers B.V., Amsterdam, NL; X.-S. XIE et al.: "Soft X-ray microscopy at the hefei synchrotron radiation laboratory" * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995008174A1 (en) * | 1993-09-15 | 1995-03-23 | Carl-Zeiss-Stiftung Handelnd Als Carl Zeiss | Phase contrast x-ray mocroscope |
US5550887A (en) * | 1993-09-15 | 1996-08-27 | Carl-Zeiss-Stiftung | Phase contrast X-ray microscope |
Also Published As
Publication number | Publication date |
---|---|
DK652287A (en) | 1988-06-13 |
JPH0814640B2 (en) | 1996-02-14 |
JPS63163300A (en) | 1988-07-06 |
DE3788508D1 (en) | 1994-01-27 |
US4870674A (en) | 1989-09-26 |
EP0270968B1 (en) | 1993-12-15 |
DE3642457A1 (en) | 1988-06-30 |
EP0270968A3 (en) | 1989-08-02 |
DK652287D0 (en) | 1987-12-11 |
DK174016B1 (en) | 2002-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0270968B1 (en) | Roentgen microscope | |
DE69023073T2 (en) | Manufacture of devices using lithographic processes. | |
DE3888395T2 (en) | Test system for a microcircuit arrangement with redundancy circuit systems. | |
DE69132110T2 (en) | METHOD AND DEVICE FOR EXPOSURE | |
DE10240859B4 (en) | Differential Contrast Transmission Electron Microscope and Method of Processing Electron Microscopic Image Data | |
DE2643990A1 (en) | DEVICE FOR OPTICAL READING OF A RECORDING | |
DE2360197A1 (en) | PROCESS FOR INCREASING THE DEPTH OF FOCUS AND / OR THE RESOLUTION OF LIGHT MICROSCOPES | |
DE2116713B2 (en) | Exposure method for imaging very finely structured light patterns on photoresist layers and a suitable exposure device | |
DE102015105018A1 (en) | Method and scanning fluorescence light microscope for multi-dimensionally high-resolution imaging of a structure or a path of a particle in a sample | |
DE10141958A1 (en) | X-ray diffractometer | |
DE102017208340A1 (en) | Projection exposure method and projection objective with adjustment of the pupil transmission | |
EP0040704B1 (en) | Method for the testing of optical systems using moiré fringes | |
DE4420409B4 (en) | Photomask with patterns to reduce the required light output of a stepper | |
EP4095505A1 (en) | Method for determining the imaging quality of an optical system upon illumination with illumination light within a pupil to be measured | |
DE2722958A1 (en) | METHOD FOR ADJUSTING A SEMICONDUCTOR DISC RELATIVE TO A RADIATION MASK IN X-RAY PHOTOLITHOGRAPHY | |
DE2306764A1 (en) | MICROWARNING MEASURING METHODS AND MICROWARNING KNIFE AND MICRODENSITOMETER | |
DE69523800T2 (en) | Fixed point detection device | |
EP1476890B1 (en) | Phase plate for electron microscopy and electron microscopic imaging | |
DE102018124314A1 (en) | Device for determining the exposure energy when exposing an element in an optical system, in particular for microlithography | |
DE1564075B1 (en) | Method for high-contrast imaging of phase or amplitude objects in a corpuscular beam device, especially an electron microscope | |
DE102005023137B4 (en) | Arrangement for high-resolution digital inline holography | |
DE2740366A1 (en) | METHOD AND EQUIPMENT FOR PRODUCING VERY SMALL INTEGRATED ELECTRICAL CIRCUITS | |
DE1797473C3 (en) | Process for the production of a hologran uncopy | |
DE2827085B1 (en) | Method and device for determining the focal length of long focal length electron-optical lenses | |
DE69519143T2 (en) | Pattern generation method and method and apparatus for manufacturing a semiconductor device using this method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19900201 |
|
17Q | First examination report despatched |
Effective date: 19911106 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3788508 Country of ref document: DE Date of ref document: 19940127 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940124 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87117658.2 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20021017 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20021028 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021030 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021104 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021111 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20021114 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20031209 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040602 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040730 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
BERE | Be: lapsed |
Owner name: FIRMA CARL *ZEISS Effective date: 20041130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051128 |
|
BERE | Be: lapsed |
Owner name: FIRMA CARL *ZEISS Effective date: 20041130 |