EP0268679A1 - Material for alloying a metal with vanadium - Google Patents

Material for alloying a metal with vanadium Download PDF

Info

Publication number
EP0268679A1
EP0268679A1 EP86904463A EP86904463A EP0268679A1 EP 0268679 A1 EP0268679 A1 EP 0268679A1 EP 86904463 A EP86904463 A EP 86904463A EP 86904463 A EP86904463 A EP 86904463A EP 0268679 A1 EP0268679 A1 EP 0268679A1
Authority
EP
European Patent Office
Prior art keywords
vanadium
metal
oxide
alloying
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86904463A
Other languages
German (de)
French (fr)
Other versions
EP0268679A4 (en
Inventor
Leonid Andreevich Smirnov
Jury Stepanovich Schekalev
Anatoly Anatolievich Filippenkov
Vyacheslav Nikolaevich Zelenov
Irek Nasyrovich Gubaidullin
Ganbar Nutfullovich Nutfullin
Ivan Timofeevich Ryabov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
URALSKY NAUCHNO-ISSLEDOVATELSKY INSTITUT CHERNYKH METALLOV 'URALNIICHERMET'
CHUSOVSKOI METALLURGICHESKY ZAVOD
Original Assignee
URALSKY NAUCHNO-ISSLEDOVATELSKY INSTITUT CHERNYKH METALLOV 'URALNIICHERMET'
CHUSOVSKOI METALLURGICHESKY ZAVOD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by URALSKY NAUCHNO-ISSLEDOVATELSKY INSTITUT CHERNYKH METALLOV 'URALNIICHERMET', CHUSOVSKOI METALLURGICHESKY ZAVOD filed Critical URALSKY NAUCHNO-ISSLEDOVATELSKY INSTITUT CHERNYKH METALLOV 'URALNIICHERMET'
Publication of EP0268679A1 publication Critical patent/EP0268679A1/en
Publication of EP0268679A4 publication Critical patent/EP0268679A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys

Definitions

  • the present invention relates to the field of black metallurgy and in particular relates to a material for alloying a metal with vanadium.
  • vanadium-containing products such as pig iron, steel and alloys containing vanadium
  • the need for the use of vanadium-containing alloys, silicavanavanadin, ferrovanadin and others as alloying material has increased considerably.
  • vanadium pentoxide is required for the production of alloying vanadium alloys and especially ferrovanadium
  • alloys containing vanadium are mainly used for alloying pig iron and steel with vanadium. This led to the search for new alloying substances containing vanadium.
  • vanadium-containing slag which is obtained in the oxidation of pig iron-containing vanadium, as an alloying substance containing vanadium (SU, PS, A, 196064, C 21 05/52, published in 1967; SU, PS, A, 358374, C 21 C 5/52, published 1972; SU, PS; A, 394437 C 21 C 5/52, published 1973.
  • the slag used here has a mass%:
  • vanadium-containing slags made in China, in% by mass: vanadium oxide - from 10 to 15; Iron oxide from 33 to 45; Titanium oxide - from 8 to 13.5; Silicon oxide - from 7.6 to 35.4; Manganese oxide - from 2.7 to 5.7; Calcium oxide - from 0.9 to 1.5, are extremely low in vanadium and require a considerable consumption of accompanying reaction participants (flux and reducing agents) (see KNSokolova, "Proizvodstvo i potrebleniye vanadiya za rubezhom" (production and consumption of vanadium in Abroad), Bulletin of the Institute "Chermetinformaciya", 1981, Issue 10, pp. 3-15).
  • vanadium-containing slags produced in the Republic of South Africa, the mass%: vanadium oxide 27.8; Iron oxide - 22.4; C. Calcium oxide - 0.5, magnesium oxide -0.3; Silicon oxide - 17.3; Alumina - 3.5; Carbon - 3.5; Additions (TiO 2 , MnO, Cr 2 O 3 ) - rest, (due to their chemical composition) can occur as a material for alloying metal with vanadium, which is characterized by good production-technical behavior, but in the literature concrete There is no information about the alloying of metal, so it can be said that a low concentration of calcium and magnesium oxides in this substance will lead to an increased consumption of flux and reducing agents when used.
  • slag is also known Metallic materials that consist of a (vanadium-containing) slag component and a metal component that have any random shape and a homogeneous structure.
  • the fabric is in the form of two-layer granules with a diameter of 5 to 20 mm.
  • a considerable amount of carbon is contained in the surface layer of the granules, and the inner layer thereof is filled with a homogeneous solution of the oxides and the cement (SU-PS 926024 1 C 21 C 1/06, published 1982).
  • the disadvantage of these alloying substances is that their dissolution in the metal is slow, which lengthens the alloying process and reduces the performance of the manufacturing process of a product containing vanadium.
  • the object of the present invention is to search for such a material for alloying a metal with vanadium, which reduces the duration of the alloying and increases the performance of the production process of a product containing vanadium without deteriorating its quality.
  • a material containing a metal component in the form of granules is proposed for alloying metal, which is characterized according to the invention in that its Metal component is coated with a coating of a slag component which has the following composition in mass%: the ratio between the metal and slag components in mass% is as follows:
  • a suitable variant of the substance mentioned is a substance in which the metal component has the following composition in mass%: Manganese and chrome composed. It is recommended to keep the dimensions of the granules of the named substance in a range from 0.5 to 30.0 mm.
  • the main advantage of the substance according to the invention is that it relates extremely quickly in a liquid metal, for example in cast iron dissolve wisely in steel.
  • the substance according to the invention is immersed in the metal to 80 to 90% of its volume; therefore, it is actively mixed with the circulating metal streams, especially during decarburization or during another process for exciting the metal surface.
  • the extremely high-melting and slag component firmly adhering to the metal component cannot be destroyed when the substance is heated until the "encapsulated" metal component breaks up into a large number of smaller drops as a result of the crude oxide formed in it.
  • This explosive disintegration of the substance significantly increases the reaction surface of the interaction between the alloying substance and the liquid metal and consequently leads to a significant increase in the speed of its dissolution.
  • the positive effect of the "encapsulation" of the metal component by the high-melting and chemically resistant slag component is mainly achieved in a certain range of grain sizes. If the grain size (average diameter) is less than 0.5 mm, the above-described effect will be weaker due to the insufficient thickness of the slag coating.
  • the oxides the g on the composition of a slag component of a Granalienüberzu include it, play a dual role.
  • the iron and silicon oxides form a silicate component that accelerates the reduction of the iron and vanadium oxides.
  • the silicate component is solidified due to a substantial sorption against the vanadium and titanium oxides and especially against aen chromium oxides, which together with the iron oxides form a complex spinellide, and at the same time due to the presence of manganese oxides, it wets the metal component well, whereby a constant slag coating of the alloy substance is formed.
  • the alloying substance according to the invention will have the above-mentioned positive effect if the limit quantities for the components belonging to its composition are observed. If the silicon oxide content is below 10% and the vanadium oxide below 14%, the softening of the slag coating and consequently its premature destruction is demonstrated. A similar phenomenon is also demonstrated when the silicon oxide content is above 24% and the vanadium oxide above 25%.
  • the presence of manganese oxide in the stated range of 4 to 14% contributes to the complete wetting of the metal component of the slag coating, which is noticeably reduced when the manganese oxide concentration is below 4% or above 14%.
  • the presence of titanium oxides in an amount of 3 to 10% and chromium oxide in an amount of 1 to 4% in a slag coating promotes the solidification of the complex iron-vanadium spinellide, which is dissolved in the silicate binder.
  • the calcium or magnesium oxides in an amount of 3 to 50% promote the presence of iron and silicon oxides the formation of a chemically stable silicate component which has an increased sorption capacity compared to the complex iron-vanadium spinellide.
  • the ratio between the metal and slag component in the substance according to the invention makes it possible to productively alloy a metal with vanadium: the smallest grain size in a range from 0.5 to 1 mm corresponds to the increased metal component content of 70 to 95%, and in the case of the larger grain sizes of 20 to 30 mm, on the other hand, it is expedient that the alloying substance has 5 to 20% of the metal component.
  • the oxides belonging to the composition of the substance, which form mineral, mutually detachable compounds create a solid and chemically resistant topcoat coating on the surface of the granules, which prevents the premature destruction of the granules.
  • This intermediate layer contains, in contrast to the usual fires that arise in the slag and metal materials, in addition to the silicon and iron oxides, also significant amounts of vanadium and titanium oxides, which form a phase that can be dissolved in iron silicates.
  • a sufficiently low content (from 0.1 to 0.5%) of carbon in the transition layer also contributes to the firm adherence between the slag and metal components.
  • Metal iron with the carbon dissolved in it which is located in the inner part of the granules blocked by the environment with the slag coating, which is why its oxidation during heating and melting is excluded, which in turn reduces the duration of the dissolution.
  • concentration range of the metal iron contributes to such immersion of the substance according to the invention in the metal, at which the greatest degree of its dissolution is achieved.
  • composition of the slag coating of the substance can also include aluminum and phosphorus oxides in a total amount of 3 to 5%, which are considered additives for this substance and which get into the same with the substances with the help of which the main components are introduced.
  • the above-mentioned oxides in the quantities mentioned do not have any negative influence on the rate of dissolution of the substance.
  • the above alloy is made as follows.
  • the vanadium slag which is produced by blowing vanadium-containing cast iron in Bessemer converters, is crushed to a grain size of 0.5 to 30 mm, after which the manganese fraction of the vanadium slag is separated from the non-magnetic component by ring magnet separation.
  • the granules of the fabric produced with a grain size of 0.5 to 30 mm, which are covered with a slag coating, are separated according to size and used for alloying cast iron, steel and alloys.
  • Vanadium-containing steel or cast iron is melted in a charging furnace containing waste from this steel or cast iron in an arc furnace with a basic or acidic feed.
  • a material in the form of granules with a grain size of 15 to 30 mm is used as the alloying material, the coating of which contains from 80 to 95% of the slag containing vanadium with the following composition in mass%: silicon oxide - 15 to 20; vanadium oxide - 16 to 20; Manganese oxide - 6 to 8; Titanium oxide - 3 to 6; Chromium oxide - 1 to 3; Calcium or magnesium oxide - 25 to 40; Iron oxide remainder and 5 to 20% of the metal component, which contains% by mass: carbon - 0.5 to 2.0; Vanadium - 0.01 to 0.05; Iron rest.
  • the substance mentioned is placed in the furnace together with the feed material in an amount which makes it possible to reach the lower concentration limit of vanadium in the finished metal.
  • the lime or oxidation slag was left to heat and the metal was heated, the slag was deoxidized with coke and ferrosilicon, after which the metal was additionally alloyed with vanadium, with the above-mentioned substance of the same composition, vanadium in an amount, based on its average content in the finished metal.
  • the degree of extraction of the vanadium from the alloy according to the invention through the metal was 95.4%.
  • Carbon steel containing chromium and vanadium was melted in a remelting process in an industrial arc furnace with a basic lining.
  • Man used a feed containing 80% wastes of a chromium-containing steel and 20% of a carbon-containing semi-product containing 2.6% carbon, 0.04% phosphorus, 0.023% sulfur and 0.06% vanadium and the balance iron. 5% lime and 2 to 3% firebrick were also introduced into the load.
  • the surface of the metal After the feed material had melted down, the surface of the metal, the mass% of 0.57 to 0.62 carbon; 0.018 to 0.021 phosphorus; Contains 0.015 to 0.020 vanadium, the alloying substance, which has a shape of granules with a grain size of 0.5 mm, at a temperature of 1520 to 1540 ° C.
  • the metal component of the alloy contained% by mass; Carbon - 2.4, vanadium - 0.03, chromium - 0.03, manganese - 0.04, iron residue, and the slag component, in an amount of 95%, based on the weight of the granules, showed in bulk % on: silicon oxide - 10; Vanadium oxide - 25; Manganese oxide - 14; Titanium oxide - 10: chromium oxide - 4; Calcium oxide - 3; Iron oxide rest.
  • the alloying substance is taken in an amount which is calculated on the introduction of vanadium, based on the average content (0.12%) of the vanadium in the finished steel.
  • the slag was processed with ferrosilicon with a consumption of 2 to 5 kg / t.
  • the degree of exhaustion of the vanadium was 88.4%, and the relative wear resistance of the steel produced compared to the same steel alloyed with ferrovanadium increased by 12% while the alloying cost was reduced by 80%.
  • the remelting process melted carbon-containing steel, which had chromium and vanadium, from a feed material that contained 70% of waste of the carbon-containing steel containing chromium, 20% from a carbon-containing semi-product, which contains 2.5% carbon, 0.03% phosphorus, 0.021% sulfur and 0.05% vanadium and the rest of iron, and consists of 10% steel scrap. 4.5% lime and 2% fireclay were also introduced into the load.
  • the alloying material was added in portions to the surface of the metal, which contained% by mass 0.54 carbon, 0.017% phosphorus, 0.019 sulfur and 0.02 vanadium, at a temperature of 1550 ° C., which was in the form of Has granules with a grain size of 10 to 20 mm.
  • the metal component had a mass percentage of: carbon - 3.2, vanadium - 0.03, chromium - 0.03, manganese - 0.05, iron remainder, and the slag component, which in an amount of 5% , based on the weight of the granule, had in mass%: silicon oxide - 18; Vanadium oxide - 14; Manganese oxide - 4; Titanium oxide - 3; Chromium oxide - 1; Calcium oxide - 50; Iron oxide residue.
  • the alloying substance is taken in an amount calculated on the loading of the vanadium, based on the average age (0.12%) of the vanadium in the finished steel. After the bath had "boiled over", the slag was treated with granulated ferrosilicon for 15 to 20 minutes.
  • the degree of exhaustion of the vanadium was 87.2%, the relative wear resistance of the steel produced compared to the same steel alloyed with ferrovanadium increased by 14% while the alloying cost was reduced by 120%.
  • the metal component had a mass%: carbon 2.9, vanadium 0.04, chromium 0.02, manganese 0.02, iron balance, and the slag component taken in an amount of 85 %, based on the weight of the granules, had in mass%: silicon oxide - 24; Vanadium oxide - 18; Manganese oxide - 6; Titanium oxide - 6; Chromium oxide - 3; Calcium oxide - 24 and iron oxide residue.
  • the alloying substance is taken in an amount which is calculated on the loading of the vanadium, based on the average content (0.12%) of vanadium in the finished steel. After boiling over, the slag was processed for 10 to 15 minutes with ground ferrosilicon.
  • the degree of extraction of the vanadium was 87%, the relative wear resistance of the steel produced increased by 16% compared to the steel alloyed with ferrovanadium, while the alloying costs were reduced by 80%.
  • the cast iron which was alloyed with up to 0.5% vanadium, was melted in an induction furnace with acidic feed. Cast iron (60%) and rolled iron (40%) were used in the feed. The metal was heated to a temperature of 1500 to 1520 ° C., after which the alloying material was added to the cast iron surface in the form of granules with a grain size of 10 to 15 mm in portions, calculated on the average content of vanadium (0.45%).
  • An alloy was melted in an electric arc furnace, which comprised 35 to 45% vanadium and 5 to 25% silicon.
  • the alloying substance mentioned was also introduced into the loading goods in an amount of 20% (based on the vanadium content in the loading goods).
  • the fabric was fed to the hearth of the furnace before loading the remaining feed.
  • the fabric was in the form of granules with a grain size of 30 mm.
  • the metal component of the alloy contained% by mass: carbon - 3.5, vanadium - 0.05, chromium and manganese traces, iron residue, and the slag component, in an amount of 50%, based on the weight of the granules % by mass contained: silicon oxide - 14; Vanadium oxide - 20; Manganese oxide - 6; Titanium oxide - 4; Chromium oxide - 3; Magnesium oxide - 20; calcium oxide - 22; Iron oxide - rest.
  • the degree of extraction of the vanadium through the metal from the fabric was 94.9%.
  • the cost of alloying with vanadium was reduced by 40% compared to melting the alloy only with the use of vanadium pentoxide.
  • the present invention can be used in pyrometallurgical production for alloying cast iron, steel or alloys with vanadium as well as for producing products containing vanadium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A material intended for alloying a metal with vanadium comprises a metallic component which is covered by an envelope consisting of an alloying component of the following composition, in per cent by weight: 10-24 of silicon oxide, 14-25 of vanadium oxide, 4-14 of manganese oxide, 3-10 of titanium oxide, 1-4 of chromium oxide, 3-50 of calcium oxide or/and of magnesium oxide, the balance being iron. In the said material the content of the metallic component, comprising carbon, metal and iron, is 5-95, the balance consisting of the alloying component. The material has the form of granules measuring 0.5-30.0 mm.

Description

Gebiet der TechnikTechnical field

Die vorliegende Erfindung bezieht sich auf das Gebiet der Schwarzmetallurgie und betrifft insbesondere einen Stoff zum Legieren eines Metalls mit Vanadin.The present invention relates to the field of black metallurgy and in particular relates to a material for alloying a metal with vanadium.

Vorhergehender Stand der TechnikPrevious state of the art

In der pyrometallurgischen Produktion von vanadinhaltigen Produkten wie Roheisen, Stahl und vanadinhaltige Legierungen, ist der Bedarf an der Verwendung vanadinhaltiger Legierungen, Silikavanadin,Ferrovanadin und anderer als Legierungsstoff beträchtlich angestiegen. Für die Herstellung legierender Vanadinlegierungen und vor allem von Ferrovanadin ist das defizitäre und relativ kostspielige Vanadinpentoxid erforderlich, und zum Legieren von Roheisen und Stahl mit Vanadin werden hauptsächlich vanadinhaltige Legierungen eingesetzt. Das führte zur Suche nach neuen legierenden vanadinhaltigen Stoffen. In diesem Zusammenhang wurde vorgeschlagen, vanadinhaltige Schlacke, die bei der Oxydation von vanadinhaltigem Roheisen anfällt, als legierenden vanadinhaltigen Stoff zu verwenden (SU, PS, A, 196064, C 21 05/52, veröffentlicht 1967; SU, PS, A, 358374, C 21 C 5/52, veröffentlicht 1972; SU, PS; A, 394437 C 21 C 5/52, veröffentlicht 1973.In the pyrometallurgical production of vanadium-containing products such as pig iron, steel and alloys containing vanadium, the need for the use of vanadium-containing alloys, silicavanavanadin, ferrovanadin and others as alloying material has increased considerably. Deficient and relatively expensive vanadium pentoxide is required for the production of alloying vanadium alloys and especially ferrovanadium, and alloys containing vanadium are mainly used for alloying pig iron and steel with vanadium. This led to the search for new alloying substances containing vanadium. In this connection, it has been proposed to use vanadium-containing slag, which is obtained in the oxidation of pig iron-containing vanadium, as an alloying substance containing vanadium (SU, PS, A, 196064, C 21 05/52, published in 1967; SU, PS, A, 358374, C 21 C 5/52, published 1972; SU, PS; A, 394437 C 21 C 5/52, published 1973.

Die dabei zum Einsatz kommende Schlacke weist in Masse% auf:

Figure imgb0001
The slag used here has a mass%:
Figure imgb0001

Beimengungen (MgO, Al2O3 R2O) - Rest.Additions (MgO, Al 2 O 3 R 2 O) - rest.

Die genannte Schlacke wurde im Buch von N.P.Leki- shev und andere "Vanadii v chernoi metallurgii" (Vanadin in der Schwarzmetallurgie), Verlag "Metal - lurgiya", Moskau, 1983, S. 36 beschrieben, infolge eines hohen Oxydationsgrades und eines niedrigen Gehaltes an calcium- und Vanadinoxiden vergrößert sich jedoch die Dauer des Legierens eines Metalls mit Vanadin und demzufolge verringert sich die Produktivität der Herstellung eines fertigen vanadinhaitigen Produktes insgesamt.The said slag was found in the book by NPLekishev and others "Vanadii v chernoi metallurgii" (Vanadin in black metallurgy), publisher "Metal - lurgiya ", Moscow, 1983, p. 36, however, due to a high degree of oxidation and a low content of calcium and vanadium oxides, the duration of alloying a metal with vanadium increases and consequently the productivity of the production of a finished vanadium-containing product decreases overall.

Das gleiche gilt auch für die Verwendung von vanadinhaltigen Schlacken, die in China und in der Republik Südafrika produziert werden, als vanadinhaltigen Stoff.The same also applies to the use of vanadium-containing slags, which are produced in China and in the Republic of South Africa, as a substance containing vanadium.

Die in China hergestellten vanadinhaltigen Schlacken, die in Masse%: Vanadinoxid - von 10 bis 15; Eisenoxid von 33 bis 45; Titanoxid - von 8 bis13,5; Siliziumoxid - von 7,6 bis 35,4; Manganoxid - von 2,7 bis 5,7; Calciumoxid - von 0,9 bis 1,5 aufweisen, sind äußerst arm an Vanadin und verlangen einen beträchtlichen Verbrauch an Begleitreaktionsteilnehmern (Fluß- und Reduktionsmitteln) (siehe K.N.Sokolova, "Proizvodstvo i potrebleniye vanadiya za rubezhom" (Produktion und Verbrauch von Vanadin im Ausland), Bulletin des Institutes "Chermetinformaciya", 1981, Ausgabe 10, S. 3-15).The vanadium-containing slags made in China, in% by mass: vanadium oxide - from 10 to 15; Iron oxide from 33 to 45; Titanium oxide - from 8 to 13.5; Silicon oxide - from 7.6 to 35.4; Manganese oxide - from 2.7 to 5.7; Calcium oxide - from 0.9 to 1.5, are extremely low in vanadium and require a considerable consumption of accompanying reaction participants (flux and reducing agents) (see KNSokolova, "Proizvodstvo i potrebleniye vanadiya za rubezhom" (production and consumption of vanadium in Abroad), Bulletin of the Institute "Chermetinformaciya", 1981, Issue 10, pp. 3-15).

Die in der Republik Südafrika hergestellten vanadinhaltigen Schlacken, die in Masse%: Vanadinoxid- 27,8; Eisenoxid - 22,4; C.alciumoxid - 0,5, Magnesiumoxid -0,3; Siliziumoxid - 17,3; Aluminiumoxid - 3,5; Kohlenstoff - 3,5; Beimengungen (TiO2, MnO, Cr2O3) - Rest aufweisen, können (auf Grund ihrer chemischen Zusammensetzung) als ein Stoff zum Legieren von Metall mit Vanadin auftreten, der sich durch ein gutes produktionstechnisches Verhalten auszeichnet, da aber in der Literatur konkrete Angaben über das Legieren von Metall fehlen, so kann man behaupten, daß eine geringe Konzentration an Calcium- und Magnesiumoxiden in diesem Stoff bei seiner Anwendung zum erhöhten Verbrauch von Fluß- und Reduktionsmitteln führen wird.The vanadium-containing slags produced in the Republic of South Africa, the mass%: vanadium oxide 27.8; Iron oxide - 22.4; C. Calcium oxide - 0.5, magnesium oxide -0.3; Silicon oxide - 17.3; Alumina - 3.5; Carbon - 3.5; Additions (TiO 2 , MnO, Cr 2 O 3 ) - rest, (due to their chemical composition) can occur as a material for alloying metal with vanadium, which is characterized by good production-technical behavior, but in the literature concrete There is no information about the alloying of metal, so it can be said that a low concentration of calcium and magnesium oxides in this substance will lead to an increased consumption of flux and reducing agents when used.

Bekannt ist ebenfalls die Verwendung von Schlackemetallstoffen, die sich aus einer (vanadinhaltigen) Schlackenkomponente und einer Metallkomponente zusammensetzen, die eine beliebige wüllkürliche Form und ein homogenes Gefüge haben.The use of slag is also known Metallic materials that consist of a (vanadium-containing) slag component and a metal component that have any random shape and a homogeneous structure.

Diese Stoffe weisen in Masee% auf:

Figure imgb0002
In Masee these substances have%:
Figure imgb0002

Der Stoff ist in Form von zweischichtigen Granalien mit einem Durchmesser von 5 bis 20 mm ausgeführt. In der Oberflächenschicht der Granalien ist eine beträchtliche Kohlenstoffmenge enthalten, und die Innenschichtderselben ist mit einer homogenen Lösung aus den Oxyden und dem Zement ausgefüllt (SU-PS 9260241 C 21 C 1/06, vereffentlicht 1982). Der Nachteil dieser legierenden Stoffe besteht in einer niedrigen Geschwindigkeit ihrer Auflösung im Metall, was den Legierungsprozeß verlängert und die Leistung des Herstellungsprozesses eines vanadinhaltigen Produktes herabsetzt.The fabric is in the form of two-layer granules with a diameter of 5 to 20 mm. A considerable amount of carbon is contained in the surface layer of the granules, and the inner layer thereof is filled with a homogeneous solution of the oxides and the cement (SU-PS 926024 1 C 21 C 1/06, published 1982). The disadvantage of these alloying substances is that their dissolution in the metal is slow, which lengthens the alloying process and reduces the performance of the manufacturing process of a product containing vanadium.

Hierdurch entsteht das Problem der Suche nach effektiven vanadinhaitigen Stoffen, die zum Legieren eines Metalls mit Vanadin eingesetzt werden.This creates the problem of finding effective vanadium-containing substances that are used to alloy a metal with vanadium.

Offenbarung der ErfindungDisclosure of the invention

Die Aufgabe der vorliegenden Erfindung besteht in der Suche nach einem solchen Stoff zum Legieren eines Metalls mit Vanadin, welcher die Dauer des Legierens reduziert und die Leistung des Herstellungsprozesses eines vanadinhaltigen Produktes ohne Veschlechterung seiner Qualität erhöht.The object of the present invention is to search for such a material for alloying a metal with vanadium, which reduces the duration of the alloying and increases the performance of the production process of a product containing vanadium without deteriorating its quality.

Die gestellte Aufgabe wurde dadurch gelöst, daß zum Legieren von Metall ein eine Metallkomponente enthaltender Stoff in Form von Granulat vorgeschlagen wird, welcher erfindungsgemäß dadurch gekennzeichnet wird, daß seine Metallkomponente mit einem Überzug aus einer Schlackenkomponente überzogen wird, die folgende Zusammensetzung im Masae% aufweist:

Figure imgb0003
dabei das Verhältnis zwischen der Metall- und Schlackenkomponente in Masse% wie folgt ist:
Figure imgb0004
The object was achieved in that a material containing a metal component in the form of granules is proposed for alloying metal, which is characterized according to the invention in that its Metal component is coated with a coating of a slag component which has the following composition in mass%:
Figure imgb0003
the ratio between the metal and slag components in mass% is as follows:
Figure imgb0004

Zweckmäßige Variante des genannten Stoffes ist ein Stoff, in dem die Metallkomponente folgende Zusammensetzung in Masse% aufweist:

Figure imgb0005
Mangan und Chrom zusammensetzt. Es wird empfohlen, die Abmessungen der Granalien des genannten Stoffes in einem Bereich von 0,5 bis 30,0 mm zu halten.A suitable variant of the substance mentioned is a substance in which the metal component has the following composition in mass%:
Figure imgb0005
Manganese and chrome composed. It is recommended to keep the dimensions of the granules of the named substance in a range from 0.5 to 30.0 mm.

Der erfindungsgemäße Stoff zum Legieren eines Metalls mit Vanadin weist im Vergleich zu den bekannten Stoffen folgende Vorteile auf:

  • - eine höhere Geschwindigkeit der Auflösung;
  • - er bewirkt die Verringerung der Dauer des Legierens eines Metalls mit Vanadin;
  • - er vergrößert das Ausbringen des Vanadins ins Metall und verringert die Kosten zum Legieren des letzteren mit Vanadin.
The substance according to the invention for alloying a metal with vanadium has the following advantages over the known substances:
  • - a higher speed of dissolution;
  • - it reduces the duration of alloying a metal with vanadium;
  • - It increases the spreading of the vanadium into the metal and reduces the cost of alloying the latter with vanadium.

Der Hauptvorteil des erfindungsgemäßen Stoffes besteht darin, daß er sich äußerst schnell in einem flüssigen Metall, beispielsweise im Gußeisen beziehungsweise im Stahl auflösen läßt.The main advantage of the substance according to the invention is that it relates extremely quickly in a liquid metal, for example in cast iron dissolve wisely in steel.

Im Unterschied zu Metallstoffen (Ferrolegierungen und Ligaturen), die als legierendes Mittel eingesetzt werden und die sich beim Niedersinken auf den schwachmischbaren Boden eines Sohmelzbades nicht immer volletändig im Metall aufzulösen vermögen, sowie im Unterschied zu den bekannten Schlacke- Metallstoffen, die sich im Gegenteil vollständig an der Metalloberfläche befinden (infolge einer sehr entwickelten - über 50% - Porosität des Reduktionseisens) ist der erfindungsgemäße Stoff zu 80 bis 90% seines Volumens ins metall getaucht; deshalb wird er mit den zirkulierenden Metallströmen, insbesondere während der Entkohlung beziehungsweise während eines anderen Verfahrens zur Erregung der Metalloberfläche aktiv vermischt. Dabei läßt sich die äußerst hochschmelzende und fest mit der Metallkomponente zusammenhaftende Schlackenkomponente bei der Erhitzung des Stoffes solange nicht zerstören, bis die "sich eingekapselte" Metallkomponente durch das in ihr entstandene Rohlenstoffoxid in eine Vielzahl von kleineren Tropfen zerbricht. Dieser explosionsartige Zerfall des Stoffes vergrößert wesentlich die Reaktionsoberfläche der Wechselwirkung zwischen dem legierenden Stoff und dem flüssigen Metall und führt als Folge dessen zu einer bedeutenden Vergrößerung der Geschwindigkeit seiner Auflösung. Die positive Einwirkung uer "Einkapselung" der Metallkomponente durch die hochschimelzende und chemisch beständige Schlackenkomponente wird vorwiegend in einem bestimmten Bereich der korngrößen erreicht. Bei einer korngröBe (durchschnittlichem Durchmesser) unter 0,5 mm tritt der obenbeschriebene Effekt infolge der unzureichenden Stärke des Schlackenüberzuges schwächer auf. Ähnlich erfolgt auch bei einer Korngröße über 30,0 mm die Verringerung des Effektes der "Einkapselung", die offensichtlich durch eine stärkere Verformung des Schlackenüberzuges (bis zur Zerstörung) hervorgerufen wird, was zur vorzeitigen Ausscheidung von Kohlenstoffmonoxid aus der Metallkomponente führt.In contrast to metal materials (ferro alloys and ligatures), which are used as an alloying agent and which cannot sink completely into the metal when sinking down onto the poorly miscible floor of a sol-bath, and in contrast to the known slag metal materials, which on the contrary are completely located on the metal surface (as a result of a very developed - over 50% - porosity of the reduction iron), the substance according to the invention is immersed in the metal to 80 to 90% of its volume; therefore, it is actively mixed with the circulating metal streams, especially during decarburization or during another process for exciting the metal surface. The extremely high-melting and slag component firmly adhering to the metal component cannot be destroyed when the substance is heated until the "encapsulated" metal component breaks up into a large number of smaller drops as a result of the crude oxide formed in it. This explosive disintegration of the substance significantly increases the reaction surface of the interaction between the alloying substance and the liquid metal and consequently leads to a significant increase in the speed of its dissolution. The positive effect of the "encapsulation" of the metal component by the high-melting and chemically resistant slag component is mainly achieved in a certain range of grain sizes. If the grain size (average diameter) is less than 0.5 mm, the above-described effect will be weaker due to the insufficient thickness of the slag coating. Similarly, with a grain size above 30.0 mm, the effect of the "encapsulation" is reduced, which is obviously caused by a greater deformation of the slag coating (until it is destroyed) becomes, which leads to the premature elimination of carbon monoxide from the metal component.

Die Oxyde, die zur Zusammensetzung einer SchlacKenkomponente einer Granalienüberzuges gehören, spielen eine doppelte Rolle. Einerseits bilden, beispielsweise, die Eisen- und Siliziumoxide eine Silikatkomponente, die die Reduktion der Eisen- und Vanadinoxide beschleunigt. Andererseits wird die Silikatkomponente infolge einer wesentlichen Sorption gegenüber den Vanadin- und Titanoxiden und insbesondere gegenüber aen Chromoxiden, die zasammen mit den Eisenoxiden einen komplexen Spinellid bilden, verfestigt, und gleichzeitig infolge des Vorliegens von Manganoxiden benetzt sie gut die Metallkomponente, wodurch ein beständiger Schlackenüberzug des legierenden Stoffes herausgebildet wird.The oxides, the g on the composition of a slag component of a Granalienüberzu include it, play a dual role. On the one hand, for example, the iron and silicon oxides form a silicate component that accelerates the reduction of the iron and vanadium oxides. On the other hand, the silicate component is solidified due to a substantial sorption against the vanadium and titanium oxides and especially against aen chromium oxides, which together with the iron oxides form a complex spinellide, and at the same time due to the presence of manganese oxides, it wets the metal component well, whereby a constant slag coating of the alloy substance is formed.

Der erfindungsgemäße legierende Stoff wird in dem Fall die genannte positive Wirkung aufweisen, wenn die Grenzmengen für die zu seiner Zusammensetzung gehörenden Komponenten eingehalten werden. bei einem Gehalt an Siliziumoxid unterhalb 10% und an Vanadinoxid unterhalb 14% wird die Entfestigung des Schlackenüberzuges und demzufolge ihre vorzeitige Zerstörung nachgewiesen Eine ähnliche Erscheinung wird auch bei einem Gehalt an Siliziumoxid oberhalb 24% und an Vanadinoxid oberhalb 25% nachgewiesen.The alloying substance according to the invention will have the above-mentioned positive effect if the limit quantities for the components belonging to its composition are observed. If the silicon oxide content is below 10% and the vanadium oxide below 14%, the softening of the slag coating and consequently its premature destruction is demonstrated. A similar phenomenon is also demonstrated when the silicon oxide content is above 24% and the vanadium oxide above 25%.

Das Vorhandensein von Manganoxid in dem genannten Bereich von 4 bis 14% trägt zur vollständigen Benetzung der Metallkomponente des Schlackenüberzuges bei, die sich bei einer Konzentration an Manganoxid unter 4% oder über 14% spürbar verringert. Das Vorliegen von Titanoxiden in einer Menge von 3 bis 10% und von Chromoxid in einer Menge von 1 bis 4% in einem Schlackenüberzug fördert die Verfestigung des komplexen Eisen-Vanadin-Spinellids, der im Silikatbindemittel aufgelöst ist. Die Calcium- beziehungsweise Magnesiumoxide in einer Menge von 3 bis 50% fördern beim Vorhandensein von Eisen-und Siliziumoxiden die Herausbildung einer chemisch beständigen Silikatkomponente, die ein erhöhtes Sorptionsvermögen gegenüber dem komplexen Eisen-Vanadin-Spinellid besitzt.The presence of manganese oxide in the stated range of 4 to 14% contributes to the complete wetting of the metal component of the slag coating, which is noticeably reduced when the manganese oxide concentration is below 4% or above 14%. The presence of titanium oxides in an amount of 3 to 10% and chromium oxide in an amount of 1 to 4% in a slag coating promotes the solidification of the complex iron-vanadium spinellide, which is dissolved in the silicate binder. The calcium or magnesium oxides in an amount of 3 to 50% promote the presence of iron and silicon oxides the formation of a chemically stable silicate component which has an increased sorption capacity compared to the complex iron-vanadium spinellide.

Das Verhältnis zwischen der Metall- und Schlackenkomponente ermöglicht es in dem erfindungsgemäßen Stoff, das Legieren eines Metalls mit Vanadin produktiv durchzuführen: Der kleinsten Korngröße in einem Bereich von 0,5 bis 1 mm entspricht dabei der erhöhte Gehalt an Metallkomponente von 70 bis 95%, und bei den größeren Korngrößen von 20 bis 30 mm ist es dagegen zweckmäßig, daß der legierende Stoff von 5 bis 20% der Metallkomponente aufweist. Hierdurch schaffen die zur Zusammensetzung des Stoffes gehörenden Oxyde, die mineralische, ineinander lösbare Verbindungen bilden, einen festen und chemisch beständigen Sohlackenüberzug an der Granalienoberfläohe, der die vorzeitige Zerstörung des Granulats verhindert.The ratio between the metal and slag component in the substance according to the invention makes it possible to productively alloy a metal with vanadium: the smallest grain size in a range from 0.5 to 1 mm corresponds to the increased metal component content of 70 to 95%, and in the case of the larger grain sizes of 20 to 30 mm, on the other hand, it is expedient that the alloying substance has 5 to 20% of the metal component. As a result, the oxides belonging to the composition of the substance, which form mineral, mutually detachable compounds, create a solid and chemically resistant topcoat coating on the surface of the granules, which prevents the premature destruction of the granules.

Ein festes Aneinanderhaften des Sohlackenüberzuges mit der in ihm enthaltenen Metallkomponente wird dadurch gefördert, daß die diese beiden Komponenten bei der Herausbildung des Stoffes verbindende Zone in der Oberflächenschicht der Schlackenkomponente herausgebildet wird. In diesem Fall erreicht ihre Stärke eine bedeutende Größe, und sie läßt sich äußerst schwierig abtrennen. Diese Zwischenschicht (Übergangsschicht) enthält im Unterschied zu den gewöhnlichen Zubränden, die in den Schlacke- und Metallstoffen entstehen, neben den Silizium- und Eisenoxiden auch wesentliche Mengen von Vanadin- und Titanoxiden, die eine Phase bilden, die sich in Eisensilikaten auflösen läßt. Zum festen Aneinanderhaften zwischen der Schlacken- und Metallkomponenten trägt auch ein ausreichend niedriger Gehalt (von 0,1 bis 0,5%) an Kohlenstoff in der Übergangsschicht bei.A firm adherence of the base coat with the metal component contained in it is promoted in that the zone connecting these two components during the formation of the substance is formed in the surface layer of the slag component. In this case, their strength reaches a significant size and it is extremely difficult to separate. This intermediate layer (transition layer) contains, in contrast to the usual fires that arise in the slag and metal materials, in addition to the silicon and iron oxides, also significant amounts of vanadium and titanium oxides, which form a phase that can be dissolved in iron silicates. A sufficiently low content (from 0.1 to 0.5%) of carbon in the transition layer also contributes to the firm adherence between the slag and metal components.

Metalleisen mit dem darin aufgelösten Kohlenstoff, das sich im inneren Teil der Granalien befindet, wird von der Umwelt mit dem Schlackenüberzug blockiert, weshalb auch seine Oxydation bei Erhitzung und beim Schmelzen ausgeschlossen wird, was wiederum die Dauer der Auflösung reduziert. Der Konzentrationsbereich des Metalleisens trägt dabei zu einem solchen Eintauchen des erfindungsgemäßen Stoffes in das Metall bei, bei dem der größte Grad seiner Auflösung erreicht wird.Metal iron with the carbon dissolved in it, which is located in the inner part of the granules blocked by the environment with the slag coating, which is why its oxidation during heating and melting is excluded, which in turn reduces the duration of the dissolution. The concentration range of the metal iron contributes to such immersion of the substance according to the invention in the metal, at which the greatest degree of its dissolution is achieved.

Zur Zusammensetzung des Schlackenüberzuges des Stoffes können auch Aluminium- und Phosphoroxide in einer Gesamtmenge von 3 bis 5% gehören, die für diesen Stoff als Beimengungen gelten und die in denselben mit den Stoffen geraten, mit deren Hilfe die Hauptkomponenten eingeführt werden. Die genannten 0xyde erweisen in den erwähnten Mengen keinen negativen Einfluß auf die Geschwindigkeit der Auflösung des Stoffes.The composition of the slag coating of the substance can also include aluminum and phosphorus oxides in a total amount of 3 to 5%, which are considered additives for this substance and which get into the same with the substances with the help of which the main components are introduced. The above-mentioned oxides in the quantities mentioned do not have any negative influence on the rate of dissolution of the substance.

Der genannte legierende Stoff wird wie folgt hergestellt. Die Vanadinschlacke, die beim Verblasen von vanadinhaltigen Gußeisen in Bessemerkonvertern hergestellt wird, wird bis zu einer Korngröße von 0,5 bis 30 mm zerkleinert, wonach man die Mangnetfraktion der Vanadinschlacke von dem Nichtmagnetbestandteil durch Ringmagnet abscheidung abscheidet. Die Granalien des hergestellten Stoffes mit einer Korngröße von 0,5 bis 30 mm, die mit einem Schlackenüberzug bedeckt sind, werden nach Größen getrennt und zum Legieren von Gußeisen, Stahl und Legierungen eingesetzt.The above alloy is made as follows. The vanadium slag, which is produced by blowing vanadium-containing cast iron in Bessemer converters, is crushed to a grain size of 0.5 to 30 mm, after which the manganese fraction of the vanadium slag is separated from the non-magnetic component by ring magnet separation. The granules of the fabric produced with a grain size of 0.5 to 30 mm, which are covered with a slag coating, are separated according to size and used for alloying cast iron, steel and alloys.

Beste Ausführungsvarianten der ErfindungBest execution variants of the invention

1. In einem Lichtbogenofen mit basischem beziehungsweise sauerem Futter wird vanadinhaltiger Stahl oder Gußeisen auf einem beschickungsgut geschmolzen, das Abfälle von diesem Stahl oder Gußeisen enthält. Als legierender Stoff wird ein Stoff in Form von Granulat mit einer Korngröße von 15 bis 30 mm verwendet, deren Überzug von 80 bis 95% der vanadinhaltigen Schlacke folgender Zusammensetzung in Masse% enthält: Siliziumoxid - 15 bis 20; vanadinoxid - 16 bis 20; Manganoxid - 6 bis 8; Titanoxid - 3 bis 6; Chromoxid - 1 bis 3; Calcium- beziehungsweise Magnesiumoxid - 25 bis 40; Eisenoxid - Rest und 5 bis 20% der Metallkomponente aufweist, die in Masse% enthält: Kohlenstoff - 0,5 bis 2,0; Vanadin - 0,01 bis 0,05; Eisen Rest. Der genannte Stoff wird zusammen mit dem Beschickungsgut in den Ofen in einer Menge aufgegeben, die es ermöglicht, die untere Konzentrationsgrenze an Vanadin im fertigen Metall zu erreichen. Nach dem vollständigen Herunterschmelzen des beschickungsgutes, dem Anlassen von Kalk-beziehungsweise Oxydationsschlacke una der Erhitzung des Metalls wurue die Schlacke mit Koksklein und Ferrosilizium desoxydiert, wonach man das Metall zusätzlich mit Vanadin, mit uem genannten Stoff derselben Zusammensetzung legiert, wobei Vanadin in einer Menge, bezogen auf seinen Durchschnittsgehalt im fertigen Metall, eingeführt wird.1. Vanadium-containing steel or cast iron is melted in a charging furnace containing waste from this steel or cast iron in an arc furnace with a basic or acidic feed. A material in the form of granules with a grain size of 15 to 30 mm is used as the alloying material, the coating of which contains from 80 to 95% of the slag containing vanadium with the following composition in mass%: silicon oxide - 15 to 20; vanadium oxide - 16 to 20; Manganese oxide - 6 to 8; Titanium oxide - 3 to 6; Chromium oxide - 1 to 3; Calcium or magnesium oxide - 25 to 40; Iron oxide remainder and 5 to 20% of the metal component, which contains% by mass: carbon - 0.5 to 2.0; Vanadium - 0.01 to 0.05; Iron rest. The substance mentioned is placed in the furnace together with the feed material in an amount which makes it possible to reach the lower concentration limit of vanadium in the finished metal. After the charge had melted completely, the lime or oxidation slag was left to heat and the metal was heated, the slag was deoxidized with coke and ferrosilicon, after which the metal was additionally alloyed with vanadium, with the above-mentioned substance of the same composition, vanadium in an amount, based on its average content in the finished metal.

Die Analyse der Betriebskenndaten des mit dem genannten Stoff legierten Metalls, solcher wie Festigkeit, Dünnflüssigkeit, Kerbschlagzähigkeit, Härte, Durchhärtbarkeit und bezogene Verschleißfestigkeit, zeigt, daß es die Verwendung des legierenden Stoffes gestattet, die Zuverlässigkeit und Langlebigkeit von Gußstücken aus Stahl oder Gußeisen um 10 bis 30% gegenüber den Gußstücken, die mit den bekannten legierenden Stoffen legiert werden, zu erhöhen und die Kosten zum Legieren mit Vanadin um 50 bis 100% herabzusetzen. Die Ausnutzung des Vanadins aus dem legierenden Stoff durch das Metall beträgt von 85 bis 88%.Analysis of the operating characteristics of the metal alloyed with the material mentioned, such as strength, thin liquid, impact strength, hardness, hardenability and related wear resistance, shows that the use of the alloy material allows the reliability and durability of castings made of steel or cast iron by 10 up to 30% compared to the castings which are alloyed with the known alloying substances, and the costs for alloying with vanadium are reduced by 50 to 100%. The utilization of the vanadium from the alloying material by the metal is from 85 to 88%.

2. Ahnlich wird in einem Lichtbogenofen Stahl oder Gußeisen unter Verwendung eines Scnlacke-Metall-Stoffes in Form von Granulat mit einer Korngröße von 15 bis 30 mm geschmolzen, der von 5 bis 30% der Schlackenkomponente der gleichen Zusammensetzung, wie in der ersten Variante, und von 70 bis 95% der Metallkomponente derselben Zusammensetzung enthält. Dabei wird bei der Beschickung beziehungsvreise zu Beginn der Oxydationsperiode 100% Vanadin zusammen mit dem Stoff in das Metall eingeführt, was bei einer Schmelzeführung ohne Abschlackung den Übergang von 85 bis 87% Vanadin, das in den Ofen aufgegeben wird, ins Metall und die Erhöhung der Zuverlässigkeit und der Langlebigkeit des Metalls um 20 bis 30% bewirkt. Die Kosten für die Herstellung des legierten Metalls sinken um 50 bis 100% im Vergleich zu dem mit den bekannten Ferrolegierungen legierten Metall.2. Similarly, steel or cast iron is melted in an electric arc furnace using a slag metal material in the form of granules with a grain size of 15 to 30 mm, which contains 5 to 30% of the slag component of the same composition as in the first variant, and contains from 70 to 95% of the metal component of the same composition. At the beginning, the feeder price for the feed is Oxidation period 100% vanadium is introduced into the metal together with the substance, which, in the case of melting without slagging, results in the transition from 85 to 87% vanadium which is introduced into the furnace into the metal and the increase in the reliability and longevity of the metal by 20 to 30% causes. The cost of manufacturing the alloyed metal is reduced by 50 to 100% compared to the metal alloyed with the known ferroalloys.

3. In einem Lichtbogenofen wurde eine Legierung geschmolzen, die 35 bis 45% Vanadin und 1 bis 25% Silizium enthielt. In das Beschickungsgut, das 82%Vanadinpentoxid, Kalk, Ferrosilizium und Aluminium aufwies, führte man auch 10 bis 25% (bezogen auf den Vanadingehalt im Beschickungsgut) des legierenden Stoffes in Form von Granulat mit einer Korngröße von 15 bis 30 mm ein, der von 70 bis 95% der Schlackenkomponente folgender Zusammensetzung in Masse% enthält: Siliziumoxid - 14 bis 18; Vanadinoxid - 16 bis 20; Manganoxid - 6 bis 8; Titanoxid - 6 bis 10; Chranoxid - 1 bis 3; Calcium - und (oder) Magnesiumoxid - 30 bis 50; Eisenoxid - Rest und der von 5 bis 30% der Metallkomponente folgender Zusammensetzung in Masse% aufweist: Kohlenstoff - 0,5 bis 1,2, Vanadin - 0,01 bis 0,05 und Eisen - Rest.3. An alloy containing 35 to 45% vanadium and 1 to 25% silicon was melted in an arc furnace. Into the feed, which had 8 2% vanadium pentoxide, lime, ferrosilicon and aluminum, 10 to 25% (based on the vanadin content in the feed) of the alloying material was introduced in the form of granules with a grain size of 15 to 30 mm, the contains from 70 to 95% of the slag component of the following composition in mass%: silicon oxide - 14 to 18; Vanadium oxide - 16 to 20; Manganese oxide - 6 to 8; Titanium oxide - 6 to 10; Chromium Oxide - 1 to 3; Calcium and (or) magnesium oxide - 30 to 50; Iron oxide residue and which has from 5 to 30% of the metal component of the following composition in mass%: carbon - 0.5 to 1.2, vanadium - 0.01 to 0.05 and iron residue.

Der Grad des Ausziehens des Vanadins aus dem erfindungsqemäßen legierenden Stoff durch das Metall betrug 95,4%.The degree of extraction of the vanadium from the alloy according to the invention through the metal was 95.4%.

Zur besseren Erläuterung der vorliegenden Erfindung werden nachstehend konkrete Beispiele angeführt, die die Anwendung des vanadinhaltigen legierenden Stoffes zum Legieren von Stahl, Gußeisen und Legierungen mit Vanadin veranschaulichen.To better explain the present invention, concrete examples are given below which illustrate the use of the vanadium-containing alloy for alloying steel, cast iron and alloys with vanadium.

Beispiel 1example 1

In einem Industrie-Lichtbogenofen mit basischem Futter wurde im Umschmelzverfahren kohlenstoffhaltiger Stahl geschmolzen, der Chrom und Vanadin enthielt. Man verwendete ein Beschickungsgut, das 80% Abfälle eines chromhaltigen Stahles und 20% eines kohlenstoffhaltigen Halbproduktes enthielt, das 2,6% Kohlenstoff, 0,04% Phosphor, 0,023% Schwefel und 0,06% Vanadin sowie als Rest Eisen aufweist. In das Beschickungsgut wurden auch 5% Kalk und von 2 bis 3% Schamottbruch eingeführt. Nach dem Herunterschmelzen des Beschickungsgutes setzte man der Oberfläche des Metalls, das in Masse% 0,57 bis 0,62 Kohlenstoff; 0,018 bis 0,021 Phosphor; 0,015 bis 0,020 Vanadin enthält, den legierenden Stoff, der eine Form von Granulat mit einer korngröße von 0,5 mm aufweist, bei einer Temperatur von 1520 bis 1540°C zu. Die Metallkomponente des legierenden Stoffes enthielt in Masse%; Kohlenstoff - 2,4, Vanadin - 0,03, Chrom - 0,03, Mangan - 0,04, Eisen-Rest , und die Schlackenkomponente, die in einer Menge von 95%, bezogen auf das Gewicht der Granalien, wies in Masse% auf: Siliziumoxid - 10; Vanadinoxid - 25; Manganoxid - 14; Titanoxid - 10: Chromoxid - 4; Calciumoxid - 3; Eisenoxid Rest. Den legierenden Stoff nimmt man in einer Menge, die auf die Einführung von Vanadin, bezogen auf den Durchschnittsgehalt (0,12%) des Vanadins im fertigem Stahl, berechnet wird. Nach einem unwesentlichen (10 bis 15 Minuten) "Uberkochen" des Bades wurde die Schlacke mit Ferrosilizium bei einem Verbrauch an demselben von 2 bis 5 kg/t bearbeitet. Der Grad des Ausziehens des Vanadins betrug 88,4%, und die relative Verschleißfestigkeit des hergestellten Stahls gegenüber demselben mit Ferrovanadin legierten Stahl erhöhte sich um 12% bei einer Senkung der Kosten zum Legieren um 80%.Carbon steel containing chromium and vanadium was melted in a remelting process in an industrial arc furnace with a basic lining. Man used a feed containing 80% wastes of a chromium-containing steel and 20% of a carbon-containing semi-product containing 2.6% carbon, 0.04% phosphorus, 0.023% sulfur and 0.06% vanadium and the balance iron. 5% lime and 2 to 3% firebrick were also introduced into the load. After the feed material had melted down, the surface of the metal, the mass% of 0.57 to 0.62 carbon; 0.018 to 0.021 phosphorus; Contains 0.015 to 0.020 vanadium, the alloying substance, which has a shape of granules with a grain size of 0.5 mm, at a temperature of 1520 to 1540 ° C. The metal component of the alloy contained% by mass; Carbon - 2.4, vanadium - 0.03, chromium - 0.03, manganese - 0.04, iron residue, and the slag component, in an amount of 95%, based on the weight of the granules, showed in bulk % on: silicon oxide - 10; Vanadium oxide - 25; Manganese oxide - 14; Titanium oxide - 10: chromium oxide - 4; Calcium oxide - 3; Iron oxide rest. The alloying substance is taken in an amount which is calculated on the introduction of vanadium, based on the average content (0.12%) of the vanadium in the finished steel. After an insignificant (10 to 15 minutes) "boiling over" of the bath, the slag was processed with ferrosilicon with a consumption of 2 to 5 kg / t. The degree of exhaustion of the vanadium was 88.4%, and the relative wear resistance of the steel produced compared to the same steel alloyed with ferrovanadium increased by 12% while the alloying cost was reduced by 80%.

Beispiel 2Example 2

In einem Industrie-Licntbogenofen mit basischem Futter wurde im Umschmelzverfahren kohlenstoffhaltiger Stahl, der Chrom und Vanadin aufwies, aus einem Beschickungsgut geschmolzen, das zu 70% aus Abfällen des kohlenstoffhaltigen Stahls, der Chrom enthält, zu 20% aus einem kohlenstoffhaltigen halbprodukt, das 2,5% Kohlenstoff, 0,03% Phosphor, 0,021% Schwefel und 0,05% Vanadin sowie Eisen - Rest enthält, und zu 10% aus Stahlschrott besteht. In das Beschickungsgut wurden auch 4,5% Kalk und 2% Schamottbruch eingeführt. Nach dem Heruntersohmelzen des Beschickungsgutes setzte man der Oberfläche des Metalls, das in Masse% 0,54 Kohlenstoff, 0,017% Phosphor, 0,019 Schwefel und 0,02 Vanadin enthält, legierenden Stoff portionsweise bei einer Temperatur von 1550oC zu, der die Form von Granulat mit einer Korngröße von 10 bis 20 mm hat. Im legierenaen Stoff wies die Metallkomponente in Masse% auf: Kohlenstoff - 3,2, Vanadin - 0,03, Chrom - 0,03, Mangan - 0,05, Eisen - Rest, und die Schlackenkomponente, die in einer Menge von 5%, bezogen auf das Gewicht der Granalie, genommen wurde, wies in Masse% auf: Siliziumoxid - 18; Vanadinoxid - 14; Manganoxid - 4; Titanoxid - 3; Chromoxid - 1; Calciumoxid - 50; Eisenoxid - Rest. Den legierenden Stoff nimmt man in einer Menge, berechnet auf die Beschickung des Vanadins, bezogen auf den Durchschnittsgenalt (0,12%) des Vanadins im fertigen Stahl. Nach dem "Überkochen" des Bades wurde die Schlacke während 15 bis 20 Minuten mit gemanlenem Ferrosilizium bearbeitet.In an industrial baking oven with basic feed, the remelting process melted carbon-containing steel, which had chromium and vanadium, from a feed material that contained 70% of waste of the carbon-containing steel containing chromium, 20% from a carbon-containing semi-product, which contains 2.5% carbon, 0.03% phosphorus, 0.021% sulfur and 0.05% vanadium and the rest of iron, and consists of 10% steel scrap. 4.5% lime and 2% fireclay were also introduced into the load. After the feed material had been melted down, the alloying material was added in portions to the surface of the metal, which contained% by mass 0.54 carbon, 0.017% phosphorus, 0.019 sulfur and 0.02 vanadium, at a temperature of 1550 ° C., which was in the form of Has granules with a grain size of 10 to 20 mm. In the alloying substance, the metal component had a mass percentage of: carbon - 3.2, vanadium - 0.03, chromium - 0.03, manganese - 0.05, iron remainder, and the slag component, which in an amount of 5% , based on the weight of the granule, had in mass%: silicon oxide - 18; Vanadium oxide - 14; Manganese oxide - 4; Titanium oxide - 3; Chromium oxide - 1; Calcium oxide - 50; Iron oxide residue. The alloying substance is taken in an amount calculated on the loading of the vanadium, based on the average age (0.12%) of the vanadium in the finished steel. After the bath had "boiled over", the slag was treated with granulated ferrosilicon for 15 to 20 minutes.

Der Grad des Ausziehens des Vanadins betrug 87,2%, die relative Verschleißfestigkeit des hergestellten Stahls im Vergleich zum demgleichen Stahl, der mit Ferrovanadin legiert wurde, erhöhte sich um 14% bei Senkung der Kosten zum Legieren um 120%.The degree of exhaustion of the vanadium was 87.2%, the relative wear resistance of the steel produced compared to the same steel alloyed with ferrovanadium increased by 14% while the alloying cost was reduced by 120%.

Beispiel 3Example 3

In einem Industrie-Lichtbogenofen mit basischem Futter wurde in Umschmelzverfahren kohlenstoffhaltiger Stahl, der Chrom und Vanadin enthält, geschmolzen. Im Beschickungsgut verwendete man 75% Abfälle eines kohlenstoffhaltigen Stahls, der Chrom enthält, und 25% eines kohlenstoffhaltigen Halbproduktes, das 2,7% Kohlenstoff, 0,04% Phosphor, 0,020% Schwefel und 0,05% Vanadin enthält. In das Beschickungsgut führte man ebenfalls 5% Kalk und 2,5% Schamottbruch ein. Nach dem Herunterschmelzen des Beschickungsgutes setzte man der Oberfläche des Metalls, das in Masse% 0,51 C; 0,02 P; 0,018 S und 0,02 V enthält, bei einer Temperatur von 1570°C portionsweise einen legierenden Stoff zu, der die Form von Granulat. mit einer Korngröße von 30 mm hat. In dem legierenden Stoff wies die Metallkomponente in Masse% auf: Kohlenstoff- 2,9, Vanadin - 0,04, Chrom - 0,02, Mangan - 0,02, Eisen - Rest, und die Schlackenkomponente, genommen in einer Menge von 85%, bezogen auf das Gewicht des Granulats, wies in Masse% auf: Siliziumoxid - 24; Vanadinoxid - 18; Manganoxid - 6; Titanoxid - 6; Chromoxid - 3 ; Calciumoxid - 24 und Eisenoxid - Rest. Den legierenden Stoff nimmt man in einer Menge, die auf die Beschickung des Vanadins, bezogen auf den Durchschnittsgehalt (0,12%) an Vanadin im fertigen Stahl, berechnet wird. Nach dem "Überkochen" wurde die Schlacke während 10 bis 15 Minuten mit gemahlenem Ferrosilizium bearbeitet.In an industrial arc furnace with a basic lining, carbon-containing steel containing chromium and vanadium was melted using the remelting process. 75% of waste of a carbon steel containing chromium and 25% of a carbonaceous semi-product containing 2.7% carbon, 0.04% phosphorus, 0.020% sulfur and 0.05% vanadium were used in the feed contains. 5% lime and 2.5% fireclay were also introduced into the load. After the feed had melted down, the surface of the metal, which had a mass of 0.51 C; 0.02 P; 0.018 S and 0.02 V contains, at a temperature of 1570 ° C in portions, an alloying substance which is in the form of granules. with a grain size of 30 mm. In the alloy, the metal component had a mass%: carbon 2.9, vanadium 0.04, chromium 0.02, manganese 0.02, iron balance, and the slag component taken in an amount of 85 %, based on the weight of the granules, had in mass%: silicon oxide - 24; Vanadium oxide - 18; Manganese oxide - 6; Titanium oxide - 6; Chromium oxide - 3; Calcium oxide - 24 and iron oxide residue. The alloying substance is taken in an amount which is calculated on the loading of the vanadium, based on the average content (0.12%) of vanadium in the finished steel. After boiling over, the slag was processed for 10 to 15 minutes with ground ferrosilicon.

Der Grad des Ausziehens des Vanadins betrug 87%, die relative Verschleißfestigkeit des hergestellten Stahl erhöhte sich im Vergleich zu dem mit Ferrovanadin legierten Stahl um 16% bei Senkung der Kosten zum Legieren um 80%.The degree of extraction of the vanadium was 87%, the relative wear resistance of the steel produced increased by 16% compared to the steel alloyed with ferrovanadium, while the alloying costs were reduced by 80%.

Beispiel 4Example 4

In einem Induktionsofen mit sauerem Futter wurde das bis zu 0,5% mit Vanadin legierte walzgußeisen geschmolzen. Im Beschickungsgut wurde Stahlroheisen (60%) und walzgußeisenbruch (40%) verwendet. Das Metall wurde auf eine Temperatur von 1500 bis 1520°C erhitzt, wonach man der Gußeisenoberfläche den legierenden Stoff in Form von Granulat mit einer Korngröße von 10 bis 15 mm portionsweise, berechnet auf den Durchschnittsgehalt an Vanadin (0,45%), zusetzte. Die Metallkomponente des legierenden Stoffes enthielt in Masse%: Koh- lenstoff- 3,1, Vanadin - 0,03, Chrom - Spuren, Mangan - Spuren, Eisen Rest, - -und die Schlackenkomponente des legierenden Stoffes, die in einer Menge von 90%, bezogen auf das Gewicht des Granulats genommen wurde, wies in Masse% auf: Siliziumoxid - 18; Vanadinoxid - 18; Manganoxid - 6; Titanoxid - 6; Chromoxid - 3; Calciumoxid - 30; Eisenoxid - Rest.The cast iron, which was alloyed with up to 0.5% vanadium, was melted in an induction furnace with acidic feed. Cast iron (60%) and rolled iron (40%) were used in the feed. The metal was heated to a temperature of 1500 to 1520 ° C., after which the alloying material was added to the cast iron surface in the form of granules with a grain size of 10 to 15 mm in portions, calculated on the average content of vanadium (0.45%). The metal component of the alloying material contained in mass%: coal l enstoff- 3.1, vanadium - 0.03, chromium - traces, manganese - traces, iron radical, - -and the slag component of the alloy, which was taken in an amount of 90%, based on the weight of the granules, had in mass%: silicon oxide - 18; Vanadium oxide - 18; Manganese oxide - 6; Titanium oxide - 6; Chromium oxide - 3; Calcium oxide - 30; Iron oxide - rest.

Nach der Desoxydation der Schlacke mit dem Ferrosilizium-Pulver und nach 10 Minuten Haltezeit wurde das Metall abgestochen. Der Grad des Ausziehens des Vanadins betrug 86, 2%; die relative Verschleißfestigkeit der Walzen, die mit Vanadin des genannten Stoffes legiert wurden, erhöhte sich um 20% im Vergleich zu den Walzen, die mit Vanadin legiert wurden, und die Kosten zum Legieren mit Vanadin wurden um 80% herabgesetzt.After the slag was deoxidized with the ferrosilicon powder and after a holding time of 10 minutes, the metal was tapped. The degree of vanadium exhaustion was 86.2%; the relative wear resistance of the rolls alloyed with vanadium of the aforesaid material increased by 20% compared to the rolls alloyed with vanadium, and the cost of alloying with vanadium was reduced by 80%.

Beispiel 5Example 5

In einem Lichtbogenofen wurde eine Legierung geschmolzen, die 35 bis 45% Vanadin und 5 bis 25% Silizium aufwies. In das Beschickungsgut wurde neben dem Vanadinpentoxid, Kalk, b'errosilizium und Aluminium auch der genannte legierende Stoff in einer Menge von 20% (bezogen auf den Vanadingehält im Beschickungsgut) eingeführt. Der Stoff wurde der Herdfläche des Ofens vor Beschickung des übrigen Einsatzgutes zugeführt. Der Stoff hatte die Form von Granalien mit einer Korngröße von 30 mm. Die Metallkomponente des legierenden Stoffes enthielt in Masse%: Kohlenstoff - 3,5, Vanadin - 0,05, Chrom und Mangan - Spuren, Eisen - Rest, und die Schlackenkomponente, die in einer Menge von 50%, bezogene auf das Gewicht des Granulats genommen wurde, enthielt in Masse%: Siliziumoxid - 14; Vanadinoxid - 20; Manganoxid - 6; Titanoxid - 4; Chromoxid - 3; Magnesiumoxid - 20; calciumoxid - 22; Eisenoxid - Rest.An alloy was melted in an electric arc furnace, which comprised 35 to 45% vanadium and 5 to 25% silicon. In addition to the vanadium pentoxide, lime, broserilicon and aluminum, the alloying substance mentioned was also introduced into the loading goods in an amount of 20% (based on the vanadium content in the loading goods). The fabric was fed to the hearth of the furnace before loading the remaining feed. The fabric was in the form of granules with a grain size of 30 mm. The metal component of the alloy contained% by mass: carbon - 3.5, vanadium - 0.05, chromium and manganese traces, iron residue, and the slag component, in an amount of 50%, based on the weight of the granules % by mass contained: silicon oxide - 14; Vanadium oxide - 20; Manganese oxide - 6; Titanium oxide - 4; Chromium oxide - 3; Magnesium oxide - 20; calcium oxide - 22; Iron oxide - rest.

Der Grad des Ausziehens des Vanadins durch das Metall aus dem Stoff betrug 94,9%. Die Kosten zum Legieren mit Vanadin wurden um 40% im Vergleich zum Schmelzen der Legierung lediglich mit der Verwendung von Vanadinpentoxid herabgesetzt.The degree of extraction of the vanadium through the metal from the fabric was 94.9%. The cost of alloying with vanadium was reduced by 40% compared to melting the alloy only with the use of vanadium pentoxide.

Industrielle AnwendbarkeitIndustrial applicability

Die vorliegende Erfindung kann in der pyrometal- lurgischer Produktion zum Legieren von Gußeisen, Stahl beziehungsweise von Legierungen mit Vanadin sowie zur Herstellung von vanadinhaltigen Produkten eingesetzt werden.The present invention can be used in pyrometallurgical production for alloying cast iron, steel or alloys with vanadium as well as for producing products containing vanadium.

Claims (3)

1. Stoff zum Legieren eines Metalls mit Vanadin, der die Form von Granalien hat, die eine Metallkomponente enthalten, dadurch gekennzeichnet, daß die Metallkomponente mit einem Überzug aus einer Schlackenkomponente folgender Zusammensetzung in Masae% überzogen ist:
Figure imgb0006
wobei das Verhältnis zwischen der Metallkomponente und der Schlackenkomponente in Masse% beträgt:
Figure imgb0007
1. Material for alloying a metal with vanadium, which has the form of granules which contain a metal component, characterized in that the metal component is coated with a coating of a slag component of the following composition in mass%:
Figure imgb0006
the ratio between the metal component and the slag component in mass% is:
Figure imgb0007
2. Stoff nach Anspruch 1, dadurch gekennzeichnet , daß die Metallkomponente folgende Zusammensetzung in Masse% aufweist:
Figure imgb0008
worin das metall sich aus Vanadin, Mangan und Chrom zusammensetzt.
2. Material according to claim 1, characterized in that the metal component has the following composition in mass%:
Figure imgb0008
where the metal is composed of vanadium, manganese and chrome.
3. Stoff nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Granalien eine Korngröße von 0,5 bis 30,0 mm aufweisen.3. Material according to claim 1 and 2, characterized in that the granules have a grain size of 0.5 to 30.0 mm.
EP19860904463 1986-04-18 1986-04-18 Material for alloying a metal with vanadium. Withdrawn EP0268679A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1986/000030 WO1987006272A1 (en) 1986-04-18 1986-04-18 Material for alloying a metal with vanadium

Publications (2)

Publication Number Publication Date
EP0268679A1 true EP0268679A1 (en) 1988-06-01
EP0268679A4 EP0268679A4 (en) 1989-09-19

Family

ID=21616986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860904463 Withdrawn EP0268679A4 (en) 1986-04-18 1986-04-18 Material for alloying a metal with vanadium.

Country Status (4)

Country Link
EP (1) EP0268679A4 (en)
JP (1) JPS63502995A (en)
FI (1) FI875570A0 (en)
WO (1) WO1987006272A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694573A1 (en) * 1992-08-05 1994-02-11 Intevep Sa Process for the production of an agglomerated vanadium containing agglomerate according to that obtained and method of using this agglomerate for the manufacture of alloy steels.
WO2009131428A1 (en) * 2008-04-22 2009-10-29 Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Национальный Центр По Комплексной Переработке Минерального Сырья Республики Казахстан" Министерства Индустрии И Торговли Республики Казахстан Alloy "kazakhstanski" for reducing and doping steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1471448A (en) * 1966-03-10 1967-03-03 Vanadium Corp Of America Manufacturing process of vanadium carbide briquettes
DE2509650A1 (en) * 1975-03-05 1976-09-16 Tsnii Tschernoj Metallurg Im I Production of ferrovanadium - by reduction of molten vanadium oxides using silicon (ferro)
DE2810458A1 (en) * 1978-03-10 1979-09-20 N Proizv Ob Tulatschermet Production of ferrovanadium alloys - from slags with reduced vanadium loss

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1046297A1 (en) * 1982-06-04 1983-10-07 Научно-производственное объединение "Тулачермет" Complex modifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1471448A (en) * 1966-03-10 1967-03-03 Vanadium Corp Of America Manufacturing process of vanadium carbide briquettes
DE2509650A1 (en) * 1975-03-05 1976-09-16 Tsnii Tschernoj Metallurg Im I Production of ferrovanadium - by reduction of molten vanadium oxides using silicon (ferro)
DE2810458A1 (en) * 1978-03-10 1979-09-20 N Proizv Ob Tulatschermet Production of ferrovanadium alloys - from slags with reduced vanadium loss

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO8706272A1 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2694573A1 (en) * 1992-08-05 1994-02-11 Intevep Sa Process for the production of an agglomerated vanadium containing agglomerate according to that obtained and method of using this agglomerate for the manufacture of alloy steels.
WO2009131428A1 (en) * 2008-04-22 2009-10-29 Республиканское Государственное Предприятие На Праве Хозяйственного Ведения "Национальный Центр По Комплексной Переработке Минерального Сырья Республики Казахстан" Министерства Индустрии И Торговли Республики Казахстан Alloy "kazakhstanski" for reducing and doping steel
CN101999006B (en) * 2008-04-22 2013-04-24 哈萨克斯坦共和国矿产原料复杂加工国家中心 Alloy 'kazakhstanskiy' for reducing and doping steel
AU2008355159B2 (en) * 2008-04-22 2013-08-01 National Centre Of Complex Processing Of Mineral Raw Materials Of Republic Of Kazakhstan Rse Alloy "Kazakhstanski" for reducing and doping steel
US8795587B2 (en) 2008-04-22 2014-08-05 RSE the National Center on Complex Processing of Mineral Raw Material of the Republic Kazakhstan ‘Kazakhstanskiy’ alloy for steel deoxidation and alloying

Also Published As

Publication number Publication date
FI875570A (en) 1987-12-17
EP0268679A4 (en) 1989-09-19
FI875570A0 (en) 1987-12-17
WO1987006272A1 (en) 1987-10-22
JPS63502995A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
EP0268679A1 (en) Material for alloying a metal with vanadium
EP0041940B1 (en) Method of treating metallic additives used in metallurgy, especially sponge iron
DE3215419A1 (en) METHOD FOR TREATING POWDER-SHAPED METAL OXYDES AS A ALLOY ADDITIVE TO MELTING STEEL
DE465489C (en) Process for the production of iron or steel alloys
AT149667B (en) Process for the production of cast iron and malleable cast iron using briquetted ferro alloys.
DE624233C (en) Process for the production of cast iron and malleable cast iron using briquetted ferroalloys
DE898449C (en) Process for the production of chromium-alloyed steels in the basic Siemens-Martin furnace
DE10052352B4 (en) Use of a reducing agent in MgO sintered masses
EP1624079B1 (en) Process for winning iron from waste material containing iron oxides and briquette for carrying out this process
DE2126335B2 (en) Process with deoxidation for the production of easily machinable carbon steels
DE4123004C2 (en)
DE3502542C2 (en)
DE671943C (en) Process for obtaining iron in addition to accompanying metals that are more difficult to reducible than iron, e.g. Chrome, titanium, vanadium
DE2207502C3 (en) Additive in briquette form for cupola batches
DE2223974C3 (en) Process and melting furnace for the production of a deoxidation and steel refinement coating
AT261348B (en) Electrode for arc welding and melting of high-strength cast iron and gray cast iron
DE2137343A1 (en) Heat-resistant cast iron alloy - contg aluminium, cerium, copper and silicon and prepn by aluminium pre-alloy addn
RU2139939C1 (en) Sponge iron
AT53221B (en) Process for the production of iron and other alloys.
DE1758213C3 (en) Process for the production of a niobium-iron alloy
DE2308888C3 (en) Method of making sponge iron
DE2509650A1 (en) Production of ferrovanadium - by reduction of molten vanadium oxides using silicon (ferro)
RU2042716C1 (en) Burden charge and steel smelting burden
AT103062B (en) Process for the production of an iron alloy or steel that remains bright.
DE408705C (en) Process for the production of alloys, in particular alloyed steels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19871222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 19890919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19910208

R18W Application withdrawn (corrected)

Effective date: 19910208

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NUTFULLIN, GANBAR NUTFULLOVICH

Inventor name: GUBAIDULLIN, IREK NASYROVICH

Inventor name: FILIPPENKOV, ANATOLY ANATOLIEVICH

Inventor name: RYABOV, IVAN TIMOFEEVICH

Inventor name: SCHEKALEV, JURY STEPANOVICH

Inventor name: SMIRNOV, LEONID ANDREEVICH

Inventor name: ZELENOV, VYACHESLAV NIKOLAEVICH