EP0264315A1 - Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves - Google Patents

Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves Download PDF

Info

Publication number
EP0264315A1
EP0264315A1 EP87402086A EP87402086A EP0264315A1 EP 0264315 A1 EP0264315 A1 EP 0264315A1 EP 87402086 A EP87402086 A EP 87402086A EP 87402086 A EP87402086 A EP 87402086A EP 0264315 A1 EP0264315 A1 EP 0264315A1
Authority
EP
European Patent Office
Prior art keywords
dielectric
structure according
linear
essentially
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87402086A
Other languages
German (de)
French (fr)
Other versions
EP0264315B1 (en
Inventor
Ferdy Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0264315A1 publication Critical patent/EP0264315A1/en
Application granted granted Critical
Publication of EP0264315B1 publication Critical patent/EP0264315B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors

Definitions

  • SiC silicon carbide surge arresters
  • ZnO zinc oxide
  • n being the coefficient of non-linearity, describing "the slope" of non-linearity (typically varying from 3 to 10 for a resistance to SiC, and from 20 to 70 for resistance to ZnO) and k a constant defining the range of conductivity obtained.
  • the non-linear medium intervenes in
  • parasitic inductance parasitic capacitance
  • this dielectric acts normally, like conventional insulator. Only in the event of disturbing overvoltages appearing, this dielectric conducts and "short-circuits" these overvoltages (to ground, or to another conductor).
  • Such a structure therefore acts both as a distributed voltage limiter and as a distributed low-pass filter (insofar as the losses increase with frequency).
  • the practical interest of the invention lies in the concept of a suppression of distributed overvoltage, making it possible to distribute the dissipated power (overvoltages conducted to ground or to another conductor) and to eliminate the drawbacks of the components (dipoles) conventional nonlinear, such as unfavorable responses in fast transient conditions.
  • the dielectric used is represented by a non-linear composite, that is to say behaving essentially as an insulator at normal voltages (applied to the quadrupole (tripole), but becoming essentially conductive, when overvoltages appear at the terminals. quadrupole (tripole).
  • non-linear dielectrics used: it goes without saying that these examples are not limiting , where, in particular, the non-linear dielectrics described can be applied without distinction to the various embodiments, as the non-linear dielectric media can be compact, or made of thermoplastic or thermosetting composites. The examples chosen are typical; it goes without saying also that the principles used can be applied to all other structures with free or guided wave propagation.
  • FIG. 4 which describes a typical coaxial cable, according to the invention
  • 1 represents the central conductor, made of conductive material (metal or alloy), solid, stranded, or in layers.
  • This conductor can possibly be covered with a thin conductive layer, chemically compatible with the non-linear dielectric layer 2.
  • This last layer in fact, must be in direct contact of good quality, so as not to introduce parasitic conduction effects. (speaking on G).
  • a layer 3 can be provided for this purpose, consisting, for example, of a metallization of the dielectric 2 (Silvering , Indium deposition, Conductive polymer, Metallic thin foil, Colamine, etc.).
  • Layer 4 can be a conventional metal braid, a sheet of conductive wires, a metal tube, etc., intended to make the electrical connection.
  • Layer 5 represents a mechanical protection of the line element or the cable, such as a layer of plastic, polymer, armor, etc. It can also, or additionally represent a more or less conductive, more or less absorbent dielectric layer (according to the techniques described in French patent no. 78.333.35), or even be produced with a non-linear dielectric of the same kind as that of layer 2, to suppress currents / overvoltages of external common mode.
  • the medium 2 is produced, in a first example, by a flexible non-linear dielectric, produced according to known means, described in the references in the preambles.
  • a mixture of a sintered SiC powder, with high conductivity (NORTON 254 type, from Carborundum) by n or p doping, crushed to a grain size (multi-crystalline aggregates, comprising multiple active interfaces) in the range of 30 to 200 ⁇ , optionally selected in particle size distribution, is integrated, by mixing, in a flexible matrix material, such as plastic (PVC, etc.) or polymer (Silicone, EPDM etc.) with a SiC concentration by volume from 15% to 75%, equivalent to about 20 0/0 to 94% by weight, depending on the density of the matrix material.
  • NORTON 254 type from Carborundum
  • the mixture is then extruded / injected, and crosslinked, if necessary, around the central conductor.
  • a charge at 73% by weight of doped SiC, with a regular particle size distribution between 50 and 150 ⁇ is extruded under the diameter of 5 mm, around a central conductor of diameter 2 mm, and then the external electrode put in place.
  • a shunt current of 0.72 uA is raised under a voltage U of 100v, increasing to 2.68mA under a voltage U of 1000v. This corresponds to an average non-linearity coefficient of 3.57.
  • the dielectric of the cable is essentially insulating; while under 1000v (overvoltage) the dielectric is essentially conductive.
  • One of the characteristics of the invention consists in the distribution of the Joule effects, in the case of significant overvoltages, of appreciable duration: therefore, much higher powers can be allowed, compared with the conventional SiC and ZnO protection components. Particular effects may appear in the case of composite dielectrics, according to the invention.
  • a non-linear dielectric based on agglomerates of zinc oxide crystals as used in varistors (MOV's) (electronic components protection).
  • MOV's varistors
  • These agglomerates are obtained by crushing sintered parts, for example, and placed in a matrix material as described above, with a mass load of at least 30% of agglomerates, containing at least half of grains of dimensions greater than 100 ⁇ .
  • a low charge (a few%) of conductive graphite is added to promote the number of contacts between agglomerates.
  • the exponent of non-linearity obtained is approximately 5.1, with conductivities (coefficient k) of an order of magnitude greater.
  • a non-linear dielectric As a third example, adapted to currents of an order of magnitude still beyond (ie even lower operating voltages) a non-linear dielectric, using agglomerates of crystals of SiC and titanium carbide , with additions of very fine conductive particles, intended to perfect the contacts between agglomerates.
  • This composite is known commercially as CHOTRAP (Chomerics), already mentioned. It makes it possible to reach exponants of non-linearity n of the order of 7.
  • the relative permittivity of this composite is approximately 15 (100 Hz), decreasing to 13 (1 MHz), at low test voltage.
  • the current, for 1 m of cable described, is 3.7 A at a maximum voltage U of 120v (essentially conductive condition). Under the normal operating voltage of 24v, the current is 47 ⁇ A in insulating condition.
  • the dielectric constant in the event of overvoltage is multiplied by a coefficient of 50 to 100, and the same is true for intrinsic dielectric losses (not due to conduction).
  • Another important aspect of the invention is thus arrived at by the very large variation in the distributed capacity of the structure to completely change the propagation characteristic. Indeed, a line normally adapted (in the event of low voltage) becomes highly mismatched and most of the signal corresponding to the overvoltage is reflected at the input, a third effect which contributes to protection against overvoltage. Immediate applications of these phenomena, by analogy with the TR and ATR cells of radars, are possible. We also mention the fact that the very strong increase in dielectric losses (in the event of overvoltage) increases dielectric absorption, the fourth protective effect.
  • a non-linear dielectric medium will be indicated, with additional magnetic characteristics, as well as some typical examples of the constitution of such a composite, describing one of the important characteristics of the invention.
  • ferrites are a good choice, starting from high permeability, reduced conduction (in the compact state) and various other criteria defined in detail in French Patent No. 78.333.85.
  • Constituted by poorly conductive crystals characteristics at the base of the ferrites produced, they comprise crystalline interstices, with relatively conductive phases: in other words the classical ferrites are not suitable a priori for achieving non-linear effects.
  • ad hoc ferrites can be produced, in which the interstices are optimized for the application according to the invention: for this, it is first necessary to introduce a certain conductivity in the crystals themselves, so as to be able to obtain good conduction under a high electric field (where the Tunnel and / or Schottky effect eliminates the effect of the insulating gaps). It is then necessary to introduce, by weak additions of metals or metallic salts, which do not integrate into the magnetic structure of crystals (or domains), but which segregate in the form of compounds with little or no conductivity, in the interstices between crystals.
  • a second technique according to the invention consists in producing afterwards (after the sintering of the ferrite) such interstices by an ad hoc treatment of the ferrite, which is put into powder form.
  • the application of such essentially insulating thin layers in the form of a deposit in adhesion primer solution, of photopolymerization in the vapor phase of polymer, of chemical treatment of grains, including oxidation in air, etc., is known in itself, in processing techniques in the chemical industry.
  • z corresponds to typical impurities (O to some olo), intended to favor the formation of the deserted intergranular phases containing these oxides, (and others, such as the salts of Sb, Pr, Ba, Sr, Nd, Rb , Zr, Co, etc.) and more complex phases, also containing the basic constituents of ferrite (such as ZnO, for example).
  • these additives composed of oxides strongly basic conductors, with insulating acid oxides favor the formation of interstitial layers with little or no conductivity, and the known factors intervening on the size of the ferrite crystals (such as CaO, for example) make it possible to define, the number of Schottky junctions , ie the voltage where the nonlinear effects take place.
  • x corresponds to the amount of Mno, typically in the range of a mole percentage of 20 to 50% and y to the amount of Zno in the range of a mole percentage of 0 to 40%.
  • the sum of the percentages x + y + z can be different from the unit insofar as the composition of the ferrite is not stoechrometic, more particularly to meet the condition of good conductivity of the grains).
  • Excess iron Excess iron (appearing in the two valences) is also a factor favoring non-linear phenomena.
  • Such typical artificial ferrite exemplary thereafter contains a mole percentage of 40% MnO and 14% ZnO (25% and 10 0/0 by weight) with 2 mol% Ti0 2 and 0.6 mol% of Co, as additives, for the formation of the deserted interstitial layers.
  • Ferrite provides high permeability, with high magnetic losses, for use as an HF absorbent; its dielectric losses show a maximum in HF, characteristic of the Maxwell-Wagner effect, due to a conductive phase and a quasi-insulating phase.
  • This ferrite can be used in compact form, or in composite, according to the invention.
  • a composite produced, with 85% by weight of ferrite (crushed, with a distribution of linear particle size, between 50 and 200 ⁇ in size of agglomerates), and 15% by weight of polyvinyl chloride ( PVC), a conductivity close to that of the cited example of the SiC composite is obtained, with an exponent of non-linearity n 4 to 4.5 for 4 decades of current.
  • the electric cable leads in shunt 0.6 mA at 200v (essentially insulating condition) and 0.45 A at 1000v (essentially conductive condition).
  • An “artificial ferrite” of the second type uses, for example, an Mn-Zn ferrite powder of the conventional type, (without special interfacial layer).
  • This powder is surface treated in an aqueous or alcoholic solution of silane (such as for example vinyl-tri ( ⁇ -methoxy-etoxy-silane) ("A-172”), then dried with heat, and annealed to 150 "for 2 hours.
  • silane such as for example vinyl-tri ( ⁇ -methoxy-etoxy-silane) ("A-172”
  • A-172 vinyl-tri ( ⁇ -methoxy-etoxy-silane)
  • the number of active gaps (depleted areas) determines the overall voltage drop (for a given thickness of non-linear material), and the use of larger, more conductive grains, makes it possible to increase the non-linear current, for a given electric field.
  • a commercial product, H7C4 power ferrite (TDK), using additions of Si0 2 and CaO in the interstices, with an adequate heat treatment (in a controlled atmosphere) to have large crystals, is suitable for increasing the conductivity of an order of magnitude, compared to the example above.
  • ferrites large crystals, conductive crystals etc.
  • additions of agglomerates of SiC and / or ZnO with large grains, and fine metallic additions, possibly ferromagnetic (carbonyl iron , coprecipitated iron-nickel alloys, etc.) may be suitable.
  • Such magnetic structures are particularly suitable for the suppression of parasites, by clipping (in the time domain) and by HF absorption (in the frequency domain): they represent an ideal solution for interference suppression and immunization EMC where high overvoltages can appear (EMP, lightning strike, inductive cutoff on automobile network), with fast wave fronts (HEMP), with possible transients of very short duration (Corona, automobile ignition parasites , electrostatic discharges).
  • EMC interference suppression and immunization
  • FIG. 5 one of the multiple variants of electric cable that can be produced is described, with the principles described with the aid of FIG. 4. It is a multiconductor cable (typically a low electric power distribution cable). -tension), with two phases and earth, or with 3 phases.
  • a multiconductor cable typically a low electric power distribution cable.
  • the non-linear dielectric 2 intervenes, between phases, for a double thickness, that is to say a double voltage (voltage between phases), where it occurs in simple , with respect to the earth:
  • the metallic / metallized layer 3 defines the electric field, which determines the non-linear current due to the differential overvoltages.
  • a common mode protection can be provided by the external layer 5.
  • Figure 6 which describes a flat line, as it can be used in flat cables, hybrid circuits, propagation structures on printed circuits, or surface mounted components (SMD).
  • SMD surface mounted components
  • the conductors 1 and 3 define the electrodes of the line; the non-linear dielectric 2 can use any of the compact or composite materials according to the invention.
  • FIG. 7 representing an insulated cable, 1 corresponds to the bare central conductor, 2 to the "insulating" dielectric, 3 'and 3 "to the localized presence of a ground.
  • the dielectric 2 is made completely (or partially, in the radial direction of the cable) by a non-linear dielectric: any local high field gradient, will give rise to a weak conduction, and consequently, to a spreading field lines, avoiding breakdown.
  • a typical application case corresponds to that of the ignition cable of an automobile engine.
  • the conductor 1 can be straight (made of conductive or resistant metal, or of a more or less conductive composite, such as a carbon composite) or even be constituted by a helix around a core non-magnetic or magnetic absorbent, according to France patents no.78,333.85 and 86,000,617.
  • the thickness of the dielectric 2, in conventional insulation is limited in practice (for example, by standards, or by questions of cost price), the point of weakness of the insulation is located at the place 7 where the ignition cable is near or touches a metal part, such as an accelerator control cable, engine part, etc. : the fact of the embodiment according to the invention reduces the safety margin of the insulation.
  • a non-linear dielectric for the case of a very thin conductor 1 (straight or helical), the peak effect specific to this conductor can be "spread" by a non-linear dielectric according to the invention.
  • a conventional absorbent ignition wire on the market uses a helix with a diameter of 2.5 mm, made of metal wire with a diameter of 0.10 mm, with a pitch of about 30 turns per centimeter.
  • An internal layer (or the total layer) in non-linear dielectric, this time reduces the internal electrical stress.
  • Such ignition cables have electrical connections (attached to wire 1) at the ends, with insulating caps 6, made of rubber, plastic or polymer, to protect the connection with the spark plug or with the distributor.
  • non-linear function can be combined with the magnetic absorption effect (by the use of a non-linear magnetic compound / composite), giving the structure l absorbent low pass filter effect.
  • a typical combination consists in using a central core (for the helix) with nonlinear magnetic dielectric (protecting against the gradients of the fine wire of the helix), and an external "insulating" layer using one of the nonlinear composites little conductors described (magnetic or non-magnetic), suitable for the high voltages involved.
  • the nonlinear magnetic dielectric 2 In the right part of FIG. 8, the nonlinear magnetic dielectric 2 "plays the classic role of" equipotential sleeve "(references cited in the preamble), it will cover the stripped part (of the connection), with therefore a configuration similar to that of the previous example. As before, also, the non-linear magnetic dielectric can fill the entire cross section of the dielectric, where we therefore return to an embodiment according to the diagram in FIG. 1.
  • FIG. 9 the application of the principles of the invention to a free wave propagation structure is shown.
  • a plane em wave 8 is incident on the metal surface 3 of a mechanical structure, such as an airplane, vessel etc., this wave coming for example from a Radar beam and the surface 4 being an object to be detected, or else representing a lure.
  • an absorbent dielectric layer 2 is applied to the surface of the object 3, the characteristics of which are chosen to absorb the wave as well as possible (in its crossing of the layer 2) and to reflect this wave as little as possible, directly.
  • the embodiments of such dielectric layers are known, and generally use absorbent magnetic materials.
  • the dielectric layer 2 is made in part or completely of non-linear absorbent magnetic material, of ad-hoc characteristic impedance.
  • the reflectivity of the structure can be controlled between total absorption (disappearance of the object vis with respect to RADAR, this is at minimum RCS) and almost total reflection (maximum RCS), analogous to the mismatch effects for cables, described above.
  • FIG. 10 another application of the invention to a component for electronic circuits is shown, in which the concentration of the capacitive, absorption and non-linearity effects makes it possible to obtain useful practical filter components.
  • the conductor 1 can be made to include the terminal solder connections of the hot conductor, through. It can also be represented by an internal metallization of the passage in the dielectric 2, allowing the passage of a wire, a connection plug, etc.
  • the dielectric 2 is made of non-linear magnetic absorbent material, as described above ("artificial ferrite"). This gives the effect of a low-pass absorption filter, with shunt conduction protection, under the effect of an overvoltage.
  • a possible metallization 3 ensures contact with the ground electrode 4, forming the quadrupole / tri-pole.
  • the component according to the invention can be produced in a multiple form, that is to say where the parallel conductors 1 form a filter connector or else where metallized holes 1, as described, provide a filter base for integrated circuits, connectors, the connections of which then pass through the filter base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Insulating Materials (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Structures à propagation d'onde quadripôles/tripôles,telles que des lignes, câbles et composants électroniques, comportant un diélectrique non-linéaire à pertes, absorbant à la fois des surtensions (effet varistor dans le domaine temps) et des transitoires rapides (effet filtre passe-bas, dans le domaine fréquence). Application aux protections contre coup de foudre, impulsion électromagnétique nucléaire, décharges électrostatiques et RFI en général.Quadrupole / tripole wave propagation structures, such as lines, cables and electronic components, comprising a non-linear lossy dielectric, absorbing both overvoltages (varistor effect in the time domain) and fast transients (filter effect low pass, in the frequency domain). Application to protections against lightning strike, nuclear electromagnetic pulse, electrostatic discharges and RFI in general.

Description

Aujourd'hui les composants électroniques, ayant un comportement électrique non linéaire sont bien connus : Ainsi les parafoudres au Carbure de Silicium (SiC) et les résistances à l'oxyde de zinc (ZnO) sont couramment utilisés pour absorber des surtensions parasites, le long de lignes haute-tension, ou encore dans les circuits électriques basse-tension et les circuits électroniques.Today electronic components, having a nonlinear electrical behavior are well known: Thus silicon carbide surge arresters (SiC) and resistances to zinc oxide (ZnO) are commonly used to absorb parasitic overvoltages, along high-voltage lines, or in low-voltage electrical circuits and electronic circuits.

La caractéristique électrique d'un tel composant se décrit, approximativement, par une relation du type

Figure imgb0001
The electrical characteristic of such a component is described, approximately, by a relation of the type
Figure imgb0001

où 1 est le courant la traversant, sous une tension appliquée U, n étant le coefficient de non-linéarité, décrivant "la pente" de la non-linéarité (variant typiquement de 3 à 10 pour une résistance au SiC, et de 20 à 70 pour une résistance au ZnO) et k une constante définissant la gamme de conductivité obtenue.where 1 is the current flowing through it, under an applied voltage U, n being the coefficient of non-linearity, describing "the slope" of non-linearity (typically varying from 3 to 10 for a resistance to SiC, and from 20 to 70 for resistance to ZnO) and k a constant defining the range of conductivity obtained.

Il est important, en pratique, de pouvoir disposer de telles caractéristiques, non seulement avec des matériaux solides (SiC et ZnO frittés), mais aussi avec des matériaux composites, à base de plastiques, polymères etc. thermoplastiques et thermodurcissables, pour faciliter la réalisation par des techniques basse température (compression, injection, extrusion etc., laminage) de pièces au défilé et/ou en quantité, ou encore quand une flexibilité est nécessaire, telle que pour l'utilisation pour des fils et câbles électriques.It is important, in practice, to be able to have such characteristics, not only with solid materials (sintered SiC and ZnO), but also with composite materials, based on plastics, polymers etc. thermoplastics and thermosets, to facilitate the production by low temperature techniques (compression, injection, extrusion etc., rolling) of parts in the process and / or in quantity, or even when flexibility is necessary, such as for use for electric wires and cables.

De tels composites ont été décrits dans la littérature, avec le SiC (Brevets France no 1.260.453 et 1.363.222), avec le ZnO (Brevet France no 2.547.451) et avec différents autres oxydes métalliques (Brevet US no 1.246.829). Les coefficients de non-linéarité obtenus sont dans la gamme de 3 à 5. Plus récemment, la Société Chomerics a commercialisé un composite flexible à base de carbure de Silicium et de Titane ("CHOTRAP") avec un coefficient de non-linéarité de l'ordre de 7, sur une gamme de courants de 3 à 4 décades.Such composites have been described in the literature, with SiC (Brevets France no 1,260,453 and 1,363,222), with ZnO (French patent no 2,547,451) and with various other metal oxides (US patent no 1,246,829 ). The non-linearity coefficients obtained are in the range from 3 to 5. More recently, the Chomerics Company has marketed a flexible composite based on silicon carbide and titanium ("CHOTRAP") with a non-linearity coefficient of l 'order of 7, on a range of currents from 3 to 4 decades.

Les applications des composites décrits ont été essentiellements pour la réalisation de manchons pour terminaisons de câbles isolés moyenne et haute-tension : en effet, un faible courant créé par les equipotentielles du champ électrique, provoque une distribution de gradient de ce champ, plus favorable, évitant des claquages aux embouts. (Brevets France no 1.194.221, 1.260.453, 1.363.222 ; Demande de Brevet France no 2.423.036). Il s'agit essentiellement d'une couche "localisée" dans laquelle il n'y a pas d'effet de propagation, et conduisant en permanence un faible courant, pour définir les nouvelles équipotentielles équiréparties. Il est un but de ce brevet, de décrire des structures à propagation d'onde (en opposition avec un composant dipôle, non-linéaire), dans laquelle le milieu non-linéaire est incorporé tout le long du sens de propagation d'une onde électromagnétique (caractérisant la perturbation par surtension), commeThe applications of the composites described were essentially for the production of sleeves for medium and high-voltage insulated cable terminations: indeed, a low current created by the equipotentials of the electric field, causes a gradient distribution of this field, more favorable, avoiding snapping at the tips. (French Patents no 1,194,221, 1,260,453, 1,363,222; France Patent Application no 2,423,036). It is essentially a "localized" layer in which there is no propagation effect, and permanently conducting a weak current, to define the new equidistributed equipotentials. It is an object of this patent to describe wave propagation structures (in opposition to a non-linear dipole component), in which the non-linear medium is incorporated along the direction of propagation of a wave. electromagnetic (characterizing the disturbance by overvoltage), as

diélectrique.dielectric.

C'est à dire, le milieu non-linéaire intervient dansThat is to say, the non-linear medium intervenes in

les éléments électriques distribués de la structure.the distributed electrical elements of the structure.

Il est un autre but, de décrire une telle structure,It is another goal, to describe such a structure,

qui du fait de sa distribution ne présente pas d'effets parasites (inductance parasite, capacité parasite), caractérisant les composants à structure dipolaire.which due to its distribution does not present parasitic effects (parasitic inductance, parasitic capacitance), characterizing the components with dipolar structure.

Il est un autre but de décrire une telle structure,It is another goal to describe such a structure,

où le milieu non linéaire n'est pas sollicité quand la tension électrique appliquée est normale : en d'autres mots ce diélectrique agit normalement, comme isolant classique. Seulement en cas d'apparition de surtensions perturbatrices, ce diélectrique conduit et "court-circuite" ces surtensions (à la masse, ou vers un autre conducteur).where the nonlinear medium is not requested when the applied electric voltage is normal: in other words this dielectric acts normally, like conventional insulator. Only in the event of disturbing overvoltages appearing, this dielectric conducts and "short-circuits" these overvoltages (to ground, or to another conductor).

Il est un autre but de décrire une telle structure, dans laquelle la constante diélectrique, ainsi que les pertes diélectriques de ce diélectrique non-linéaire augmentent avec la surtension. Plus particulièrement la capacité (à pertes) distribuée croît de façon importante, introduisant un effet de filtre passe-bas (ligne RC), et un changement d'impédance caractéristique

Figure imgb0002
It is another object to describe such a structure, in which the dielectric constant, as well as the dielectric losses of this non-linear dielectric increase with the overvoltage. More particularly the distributed (lossy) capacity increases significantly, introducing a low-pass filter effect (RC line), and a characteristic impedance change
Figure imgb0002

de la structure, et les réflexions correspondantes des ondes électromagnétiques.of the structure, and the corresponding reflections of the electromagnetic waves.

Il est un autre but de décrire une telle structure, dans laquelle de tels effets non-linéaires, sont obtenus avec un composite diélectrique et magnétique, c'est à dire où l'on greffe sur les caractéristiques décrites ci-dessus, des effets magnétiques avec des pertes magnétiques, telles que décrites par exemple dans le brevet France no 78.33.385.It is another object to describe such a structure, in which such non-linear effects are obtained with a dielectric and magnetic composite, that is to say where magnetic effects are grafted onto the characteristics described above. with magnetic losses, as described for example in France patent no 78.33.385.

Il est un but final de décrire une telle structure, dans laquelle on combine les effets de suppression de surtensons (suppression dans le domaine temps) avec les effets de filtrage par absorption diélectrique et/ou magnétique et par réflexion (dans le domaine fréquence).It is an ultimate aim to describe such a structure, in which the effects of suppressing overvoltage (suppression in the time domain) are combined with the effects of filtering by dielectric and / or magnetic absorption and by reflection (in the frequency domain).

Une telle structure agit donc à la fois comme écrêteur de tension distribuée et comme filtre passe-bas distribué (dans la mesure où les pertes augmentent avec la fréquence).Such a structure therefore acts both as a distributed voltage limiter and as a distributed low-pass filter (insofar as the losses increase with frequency).

L'intérêt pratique de l'invention réside dans le concept d'une suppression de surtension distribuée, rendant possible la distribution de la puissance dissipée (surtensions conduites à la masse ou à un autre conducteur) et de supprimer les inconvénients des composants (dipôles) non-linéaires classiques, tels que les réponses défavorables en régime transitoire rapide.The practical interest of the invention lies in the concept of a suppression of distributed overvoltage, making it possible to distribute the dissipated power (overvoltages conducted to ground or to another conductor) and to eliminate the drawbacks of the components (dipoles) conventional nonlinear, such as unfavorable responses in fast transient conditions.

Finalement, la distribution des effets non-linéaires, dans des structures du type câbles, introduit le concept nouveau d'intégration de fonctions de protection dans les liaison électriques de puissance ou de transfert d'informations,c'est à dire dans les éléments où ces surtensions et transitoiresFinally, the distribution of non-linear effects, in cable-type structures, introduces the new concept of integrating protection functions in electrical power or information transfer links, that is to say in elements where these overvoltages and transients

sont engendrés et transmis.are generated and transmitted.

L'intérêt pour la protection des liaisons type distributions d'énergie ou distribution de signaux et d'informations, contre des coups de foudre, contre l'impulsion électromagnétique d'une explosion nucléaire (HEMP), contre les décharges électrostatiques, contre les surtensions engendrées dans un système (SEMP), réseau de distribution automobile, avec rupture de charges inductives, est évident. L'invention sera décrite en détail, utilisant un nombre d'exemples de réalisations, à l'aide d'un nombre de figures.Interest in the protection of energy distribution or signal and information distribution type connections, against lightning strikes, against the electromagnetic pulse of a nuclear explosion (HEMP), against electrostatic discharges, against overvoltages generated in a system (SEMP), automobile distribution network, with rupture of inductive loads, is obvious. The invention will be described in detail, using a number of exemplary embodiments, using a number of figures.

Ainsi la figure 1 représente le schéma bien connu d'une structure à propagation quadripôle (tripôle) classique, avec ses éléments distribués :

  • L représente l'inductance série distribuée, comportant la"self interne", due au conducteur et la "self externe", due à la présence éventuelle d'un milieu magnétique entourant le conducteur ;
  • R représente les pertes liées à cette inductance série L, telles que par exemple l'effet peau du conducteur, et, le cas échéant, les pertes magnétiques
    Figure imgb0003
  • C représente la capacité shunt due au diélectrique séparant le conducteur "chaud" de la masse (ou autre conducteur) ;
  • r représente la résistance équivalent série des pertes du diélectrique, où l' angle de pertes
    Figure imgb0004
Thus, FIG. 1 represents the well-known diagram of a conventional quadrupole (tripole) propagation structure, with its distributed elements:
  • L represents the distributed series inductor, comprising the "internal self", due to the conductor and the "external self", due to the possible presence of a magnetic medium surrounding the conductor;
  • R represents the losses linked to this series inductor L, such as for example the skin effect of the conductor, and, where appropriate, the magnetic losses
    Figure imgb0003
  • C represents the shunt capacity due to the dielectric separating the "hot" conductor from the mass (or other conductor);
  • r represents the equivalent series resistance of the dielectric losses, where the angle of losses
    Figure imgb0004

Selon l'invention,le diélectrique utilisé est représenté par un composite non-linéaire, c'est à dire se comportant essentiellement comme un isolant aux tensions normales (appliquées au quadripôle (tripôle), mais devenant essentiellement conducteur, quand des surtensions apparaissent aux bornes du quadripôle (tripôle).According to the invention, the dielectric used is represented by a non-linear composite, that is to say behaving essentially as an insulator at normal voltages (applied to the quadrupole (tripole), but becoming essentially conductive, when overvoltages appear at the terminals. quadrupole (tripole).

  • La figure 2 représente le schéma élémentaire distribué, de la structure selon l'invention, dans lequel une conductivité variable G(U) est introduite par la conduction croissante avec la tension U appliquée, et dans lequel C(U) et r(U) décrivent la permittivité et les pertes diélectriques croissant avec cette même tension U.FIG. 2 represents the elementary distributed diagram of the structure according to the invention, in which a variable conductivity G (U) is introduced by increasing conduction with the voltage U applied, and in which C (U) and r (U) describe the permittivity and the increasing dielectric losses with this same voltage U.
  • La figure 3 représente le schéma élémentaire distribué, d'une autre structure selon l'invention, dans lequel un isolant classique (c'est à dire indépendant de la tension) est intercal entre le diélectrique non-linéaire et la masse (ou autre conducteur), introduisant une capacité C', considérée sans perte.FIG. 3 represents the elementary distributed diagram of another structure according to the invention, in which a conventional insulator (that is to say independent of the voltage) is interposed between the non-linear dielectric and the ground (or other conductor ), introducing a capacity C ', considered without loss.
  • La figure 4 représente l'application des principes selon l'invention à une structure coaxiale (tel qu'un élément de ligne, un câble etc.), dans laquelle le diélectrique non-linéaire est placé entre le conducteur "chaud" et une gaine ou tresse externe.FIG. 4 represents the application of the principles according to the invention to a coaxial structure (such as a line element, a cable etc.), in which the non-linear dielectric is placed between the "hot" conductor and a sheath or external braid.
  • La figure 5 représente l'application des principes selon l'invention à un câble multiconducteurs, avec la protection contre surtensions de mode commun et de mode symétrique.FIG. 5 represents the application of the principles according to the invention to a multiconductor cable, with protection against overvoltages of common mode and of symmetrical mode.
  • La figure 6 représente l'application des principes selon l'invention à un élément de ligne plate ou un câble multiconducteurs en ruban.FIG. 6 represents the application of the principles according to the invention to a flat line element or a multicore ribbon cable.
  • La figure 7 représente l'application des principes, selon l'invention, à un câble moyenne ou haute-tension isolé, comportant une discontinuité dans une des électrodes.FIG. 7 represents the application of the principles, according to the invention, to an insulated medium or high-voltage cable, comprising a discontinuity in one of the electrodes.
  • La figure 8 représente l'application des principes selon l'invention à un câble moyenne ou haute-tension, avec la protection par répartition du gradient du champ électrique, combiné avec une fonction de filtre passe-bas.FIG. 8 represents the application of the principles according to the invention to a medium or high-voltage cable, with protection by distribution of the gradient of the electric field, combined with a low-pass filter function.
  • La figure 9 représente l'application des principes, selon l'invention, à un cas de propagation d'onde libre (onde plane, guidée ou non-guidée).FIG. 9 represents the application of the principles, according to the invention, to a case of free wave propagation (plane wave, guided or non-guided).
  • La figure 10 représente l'application des principes, selon l'invention, à une capacité quadripôle (tripôle).FIG. 10 represents the application of the principles, according to the invention, to a quadrupole (tripole) capacity.

Afin d'expliquer l'invention, la description détaillée de ces différentes formes d'implémentation va suivre, avec, au fur et à mesure, la description des diélectriques non-linéaires utilisés : il va de soi, que ces exemples ne sont pas limitatifs, où, en particulier, les diélectriques non-linéaires décrits peuvent s'appliquer indistinctement aux différentes réalisations, comme les milieux diélectriques non-linéaires peuvent être compacts, ou en composites thermoplastiques ou thermodurcissables. Les exemples choisis sont typiques ; il va de soi aussi que les principes utilisés peuvent être appliqués à toutes autres structures à propagation d'onde libre ou guidée.In order to explain the invention, the detailed description of these different forms of implementation will follow, with, progressively, the description of the non-linear dielectrics used: it goes without saying that these examples are not limiting , where, in particular, the non-linear dielectrics described can be applied without distinction to the various embodiments, as the non-linear dielectric media can be compact, or made of thermoplastic or thermosetting composites. The examples chosen are typical; it goes without saying also that the principles used can be applied to all other structures with free or guided wave propagation.

Dans la figure 4, qui décrit un câble coaxial typique, selon l'invention, 1 représente le conducteur central, réalisé en matériau conducteur (métal ou alliage), plein, en toron, ou en couches. Ce conducteur peut éventuellement être recouvert d'une couche mince conductrice, compatible chimiquement avec la couche diélectrique non-linéaire 2. Cette dernière couche, en effet, doit être en contact direct de bonne qualité, afin de na pas introduire des effets de conduction parasite (intervenant sur G).In FIG. 4, which describes a typical coaxial cable, according to the invention, 1 represents the central conductor, made of conductive material (metal or alloy), solid, stranded, or in layers. This conductor can possibly be covered with a thin conductive layer, chemically compatible with the non-linear dielectric layer 2. This last layer, in fact, must be in direct contact of good quality, so as not to introduce parasitic conduction effects. (speaking on G).

Pour les mêmes raisons, le conducteur externe 4 doit être compatible, et assurer un bon contact avec le diélectrique 2 : Dans la figure, une couche 3 peut être prévue à cet effet, consistant, par exemple, en une métallisation du diélectrique 2 (Argenture, dépôt d'Indium, Polymère conducteur, Feuille mince métallique rubannée, Colaminé, etc.).For the same reasons, the external conductor 4 must be compatible, and ensure good contact with the dielectric 2: In the figure, a layer 3 can be provided for this purpose, consisting, for example, of a metallization of the dielectric 2 (Silvering , Indium deposition, Conductive polymer, Metallic thin foil, Colamine, etc.).

La couche 4 peut être une tresse métallique classique, une nappe de fils conducteurs, un tube métallique, etc., destinée à réaliser la connexion électrique. La couche 5 représente une protection mécanique de l'élément de ligne ou du câble, telle qu'une couche de plastique, de polymère, une armure, etc. Elle peut aussi, ou additionnellement représenter une couche de diélectrique plus ou moins conductrice, plus ou moins absorbante (suivant les techniques décrites dans le brevet France no 78.333.35), ou encore être réalisé avec un diélectrique non-linéaire du même genre que celui de la couche 2, pour supprimer des courants/sur- tensions de mode commun externe.Layer 4 can be a conventional metal braid, a sheet of conductive wires, a metal tube, etc., intended to make the electrical connection. Layer 5 represents a mechanical protection of the line element or the cable, such as a layer of plastic, polymer, armor, etc. It can also, or additionally represent a more or less conductive, more or less absorbent dielectric layer (according to the techniques described in French patent no. 78.333.35), or even be produced with a non-linear dielectric of the same kind as that of layer 2, to suppress currents / overvoltages of external common mode.

Le milieu 2 est réalisé, dans un premier exemple, par un diélectrique non-linéaire flexible, réalisé suivant les moyens connus, décrits dans les références en préambules.The medium 2 is produced, in a first example, by a flexible non-linear dielectric, produced according to known means, described in the references in the preambles.

Par exemple, un mélange d'une poudre de SiC frittée, à haute conductivité (type NORTON 254, de Carborundum) par dopage n ou p, concassée à une grosseur de grains (aggrégats multicristallisés, comportant des interfaces actifs multiples) dans la gamme de 30 à 200 µ, sélectionnés éventuellement en distribution de granulométrie, est intégré, par mélange, dans un matériau matrice flexible, tel qu'un plastique (PVC, etc.) ou polymère (Silicone, EPDM etc.) avec une concentration SiC en volume de 15 % à 75 %, équivalent à environ 20 0/0 à 94 % en poids, selon la densité du matériau matrice.For example, a mixture of a sintered SiC powder, with high conductivity (NORTON 254 type, from Carborundum) by n or p doping, crushed to a grain size (multi-crystalline aggregates, comprising multiple active interfaces) in the range of 30 to 200 µ, optionally selected in particle size distribution, is integrated, by mixing, in a flexible matrix material, such as plastic (PVC, etc.) or polymer (Silicone, EPDM etc.) with a SiC concentration by volume from 15% to 75%, equivalent to about 20 0/0 to 94% by weight, depending on the density of the matrix material.

Le choix de la poudre exacte (dopage) et sa concentration dans le mélange sont directement liés à la tension de fonctionnement normale, pour une épaisseur de diélectrique donnée (tension pour laquelle le diélectrique est essentiellement isolant) et à ce qui est considéré "surtension" dans l'utilisation du câble (pour laquelle le diélectrique sera essentiellement conducteur par l'apparition d'effet Tunnel et/ou effet Schottky (2 diodes polarisées en sens inverse) "court-circuitant" la barrière de potention, due à l'interface isolant.The choice of the exact powder (doping) and its concentration in the mixture are directly linked to the normal operating voltage, for a given dielectric thickness (voltage for which the dielectric is essentially insulating) and to what is considered "overvoltage" in the use of the cable (for which the dielectric will be essentially conductive by the appearance of Tunnel effect and / or Schottky effect (2 diodes polarized in opposite direction) "short-circuiting" the barrier of potention, due to the interface insulating.

Le mélange est extrudé/injecté ensuite, et réticulé, le cas échéant, autour du conducteur central. Comme exemple numérique, on donnera ci-dessous les détails d'un tel mélange, permettant d'obtenir un coefficient de non-linéarité de 3 à 4, couvrant 3 à 4 décades de courant. Une charge à 73 % en poids de SiC dopé, avec une distribution de granulométrie régulière entre 50 et 150 µ, est extrudée sous le diamètre de 5 mm, autour d'un conducteur central de diamètre 2 mm, et ensuite l'électrode externe mise en place. Pour cette réalisation, pour une longueur de câble de 1 m, on relève sous une tension U de 100v un courant shunt de 0,72 uA, croissant à 2,68mA sous une tension U de 1000v. Ceci correspond à un coefficient de non-linéarité moyen de 3,57.The mixture is then extruded / injected, and crosslinked, if necessary, around the central conductor. As a numerical example, the details of such a mixture will be given below, making it possible to obtain a coefficient of non-linearity of 3 to 4, covering 3 to 4 decades of current. A charge at 73% by weight of doped SiC, with a regular particle size distribution between 50 and 150 μ, is extruded under the diameter of 5 mm, around a central conductor of diameter 2 mm, and then the external electrode put in place. For this embodiment, for a cable length of 1 m, a shunt current of 0.72 uA is raised under a voltage U of 100v, increasing to 2.68mA under a voltage U of 1000v. This corresponds to an average non-linearity coefficient of 3.57.

Pour la tension de 100v, on considère, dans ce contexte que le diélectrique du câble est essentiellement isolant ; tandis que sous 1000v (la surtension) le diélectrique est essentiellement conducteur. La permittivité relative ε de ce diélectrique (à faible tension) est de 12,2 (à 100 Hz), décroissant légèrement à fréquence croissante : s = 11,0 (à 1 MHz) et 9,1 (à 100 MHz). Son angle de pertes diélectriques (à faible tension) est de tgδe = 0,030 (à 1 kHz), 0,015 (à 10 kHz) croissant vers un maximum d'environ 0,021 (à 100 kHz), et descendant vers 0,011 (à 100 MHz), variations typiques pour un composite à phases intergranulaires.For the voltage of 100v, it is considered, in this context that the dielectric of the cable is essentially insulating; while under 1000v (overvoltage) the dielectric is essentially conductive. The relative permittivity ε of this dielectric (at low voltage) is 12.2 (at 100 Hz), decreasing slightly at increasing frequency: s = 11.0 (at 1 MHz) and 9.1 (at 100 MHz). Its dielectric loss angle (at low voltage) is tgδe = 0.030 (at 1 kHz), 0.015 (at 10 kHz) increasing towards a maximum of approximately 0.021 (at 100 kHz), and decreasing towards 0.011 (at 100 MHz) , typical variations for a composite with intergranular phases.

A tension croissante, la permittivité ainsi que les pertes diélectriques croissent. Ainsi la constante diélectrique et l'angle des pertes tgδe (dû à r(U)) sont plus que décuplés, les pertes diélectriques équivalentes à la conduction non-linéaire (due à G(U)) croissant évidemment beaucoup plus vite. On reviendra en détail, ci-dessous, à ces effets inattendus, et caractéristiques de l'invention.At increasing voltage, the permittivity as well as the dielectric losses increase. Thus the dielectric constant and the angle of losses tgδe (due to r (U)) are more than tenfold, the dielectric losses equivalent to non-linear conduction (due to G (U)) obviously increasing much faster. We will return in detail, below, to these unexpected effects and characteristics of the invention.

Une des caractéristiques de l'invention consiste en la distribution des effets Joule, dans le cas de surtensions importantes, de durée appréciables : de ce fait, des puissances beaucoup plus importantes peuvent être admises, comparées aux composants de protection SiC et ZnO classiques. Des effets particuliers peuvent apparaître dans le cas de diélectriques composites, selon l'invention.One of the characteristics of the invention consists in the distribution of the Joule effects, in the case of significant overvoltages, of appreciable duration: therefore, much higher powers can be allowed, compared with the conventional SiC and ZnO protection components. Particular effects may appear in the case of composite dielectrics, according to the invention.

Ainsi quand la puissance dissipée (par effet Joule) dans un tel diélectrique échauffe notablement le composite non-linéaire, celui-ci a tendance à se dilater, et les contacts entre particules ont tendance à diminuer, provoquant un effet additionel de résistance à coefficient de température positif (PTC).Cet effet, dans le cas d'une surtension de plus longue durée, provoque une autolimitation du courant, c'est à dire de protection automatique, au dépens évidemment de l'effet de suppression de surtension.So when the power dissipated (by Joule effect) in such a dielectric heats up the non-linear composite significantly, it tends to expand, and the contacts between particles tend to decrease, causing an additional effect of resistance with coefficient of positive temperature (PTC) .This effect, in the case of a longer overvoltage, causes self-limiting of the current, ie automatic protection, obviously at the expense of the suppressing effect of overvoltage.

Il est aussi évident, que si la réalisation mécanique de la matrice du composite non-linéaire ne permet pas cette dilatation (par exemple gaine externe 4,5 très rigide, diélectrique non-linéaire compact, ou encore composite à matrice thermodurcissable) l'effet PTC ne peut jouer, ou même, un effet de coefficient de température négatif (NTC) peut apparaître, par l'augmentation de pression sur les particules dans la matrice. (Effet qui existe aussi en cas d'apparition de pression d'autres origines).It is also obvious, that if the mechanical realization of the matrix of the non-linear composite does not allow this expansion (for example external sheath 4,5 very rigid, compact non-linear dielectric, or even composite with thermosetting matrix) the effect PTC cannot play, or even, a negative temperature coefficient (NTC) effect can appear, by the increase in pressure on the particles in the matrix. (Effect which also exists in the event of the appearance of pressure from other origins).

L'application d'une surtension à un tel type d'élément à propagation va évidemment faire apparaître la totalité de la surtension à l'entrée de la structure, forme d'onde dont l'amplitude se réduira (ainsi que la dissipation), au fur et à mesure de sa propagation le long. Afin de prévoir une meilleure répartition de la charge, ainsi que de la contrainte diélectrique, on peut augmenter l'épaisseur du diélectrique non-linéaire vers les bouts de la ligne, ou encore y appliquer un composite non linéaire moins conducteur.The application of an overvoltage to such a type of propagation element will obviously cause the entire overvoltage to appear at the input of the structure, a waveform whose amplitude will decrease (as well as the dissipation), as it spreads along. In order to provide for a better distribution of the load, as well as of the dielectric stress, it is possible to increase the thickness of the non-linear dielectric towards the ends of the line, or else to apply to it a less conductive non-linear composite.

Dans un deuxième exemple, appliqué à une structure analogue à celle de la figure 4, on considère un diélectrique non-linéaire à base d'agglomérats de cristaux d'oxyde de zinc, tels qu'utilisés dans les varistances (MOV's) (composants électroniques de protection). Ces agglomérats sont obtenus par concassage de pièces frittées, par exemple, et placés dans un matériau matrice tel que décrit plus haut, avec une charge massique d'au moins 30 % d'agglomérats, contenant au moins la moitié de grains de dimensions supérieures à 100 µ. Une faible charge (quelques %) de graphite conducteur est additionnée pour favoriser le nombre de contacts entre agglomérats.In a second example, applied to a structure similar to that of FIG. 4, we consider a non-linear dielectric based on agglomerates of zinc oxide crystals, as used in varistors (MOV's) (electronic components protection). These agglomerates are obtained by crushing sintered parts, for example, and placed in a matrix material as described above, with a mass load of at least 30% of agglomerates, containing at least half of grains of dimensions greater than 100 µ. A low charge (a few%) of conductive graphite is added to promote the number of contacts between agglomerates.

L'exponant de non-linéarité obtenu est de 5,1 environ, avec des conductivités (coefficient k) d'un ordre de grandeur supérieur.The exponent of non-linearity obtained is approximately 5.1, with conductivities (coefficient k) of an order of magnitude greater.

Ces deux exemples permettent de généraliser, en ce qui concerne le constituant de base, c'est à dire les agglomérats de cristaux conducteurs séparés par des interstices peu ou pas conducteurs (entre cristaux conducteurs), provoquant les effets non-linéaires.These two examples make it possible to generalize, with regard to the basic constituent, that is to say the agglomerates of conductive crystals separated by interstices which have little or no conductivity (between conductive crystals), causing the non-linear effects.

De nombreuses autres structures polycristallines (que celles citées) sont utilisables et ont été décrites dans la littérature scientifique et technique : On cite ici d'autres oxydes tels que l'alumine, la magnésie, l'oxyde de titane et de bismuth et., d'autres carbures, tels que celui du titane, du bismuth, du bore etc. ; les titanates de barium (utilisés dans les thermistances), les sulfures, tels que le sulfure de Zinc (utilisé dans les panneaux électroluminescents), les composés ferroélectriques (utilisés dans les capacités à couche d'arrêt), le Silicium polycristallin,etc. On peut également synthétiser de telles structures, comme on verra par la suite.Many other polycrystalline structures (than those cited) are usable and have been described in the scientific and technical literature: We cite here other oxides such as alumina, magnesia, titanium and bismuth oxide and., other carbides, such as that of titanium, bismuth, boron etc. ; barium titanates (used in thermistors), sulfides, such as Zinc sulfide (used in electroluminescent panels), ferroelectric compounds (used in barrier coatings), Polycrystalline silicon, etc. We can also synthesize such structures, as we will see below.

Comme troisième exemple, adapté à des courants d'un ordre de grandeur encore au-delà (c'est à dire de tensions de fonctionnement encore plus basses) un diélectrique non-linéaire, utilisant des agglomérats de cristaux de SiC et de Carbure de titane, avec des additions de particules conductrices très fines, destinées à parfaire les contacts entre agglomérats. Ce composite est connu commercialement sous le nom de CHOTRAP (Chomerics), déjà mentionné. Il permet d'atteindre des exponants de non-linéarité n de l'ordre de 7.As a third example, adapted to currents of an order of magnitude still beyond (ie even lower operating voltages) a non-linear dielectric, using agglomerates of crystals of SiC and titanium carbide , with additions of very fine conductive particles, intended to perfect the contacts between agglomerates. This composite is known commercially as CHOTRAP (Chomerics), already mentioned. It makes it possible to reach exponants of non-linearity n of the order of 7.

La permittivité relative de ce composite est de 15 environ (100 Hz), décroissant à 13 (1 MHz), sous faible tension d'essai.The relative permittivity of this composite is approximately 15 (100 Hz), decreasing to 13 (1 MHz), at low test voltage.

Le courant, pour 1 m de câble décrit, est de 3,7 A sous une tension U maximum de 120v (condition essentiellement conductrice). Sous la tension normale de fonctionnement de 24v, le courant est de 47 µA en condition isolante.The current, for 1 m of cable described, is 3.7 A at a maximum voltage U of 120v (essentially conductive condition). Under the normal operating voltage of 24v, the current is 47 µA in insulating condition.

La constante diélectrique en cas de surtention est multipliée par un coefficient de 50 à 100, et il en est de même pour les pertes diélectriques intrinsèques (non dues à la conduction).The dielectric constant in the event of overvoltage is multiplied by a coefficient of 50 to 100, and the same is true for intrinsic dielectric losses (not due to conduction).

On arrive ainsi, par la variation très importante de la capacité distribuée de la structure à changer complètement la caractéristique de propagation, autre aspect important de l'invention. En effet, une ligne adaptée normalement (en cas de faible tension) devient fortement désadaptée et l'essentiel du signal correspondant à la surtension est réfléchi à l'entrée, troisième effet qui contribue à une protection contre surtensions. Des applications immédiates de ces phénomènes, par analogie avec les cellules TR et ATR des radars, sont envisageables. On mentionne encore le fait que l'augmentation très forte des pertes diélectriques (en cas de surtension) fait accroître l'absoption diélectrique, quatrième effet de protection.Another important aspect of the invention is thus arrived at by the very large variation in the distributed capacity of the structure to completely change the propagation characteristic. Indeed, a line normally adapted (in the event of low voltage) becomes highly mismatched and most of the signal corresponding to the overvoltage is reflected at the input, a third effect which contributes to protection against overvoltage. Immediate applications of these phenomena, by analogy with the TR and ATR cells of radars, are possible. We also mention the fact that the very strong increase in dielectric losses (in the event of overvoltage) increases dielectric absorption, the fourth protective effect.

Finalement, selon l'invention, apparaissent les effets de protection/absorption suivants, en cas de surtension :

  • - un shuntage résistif (diélectrique essentiellement conducteur) ;
  • - une augmentation importante de l'angle de pertes diélectriques (absorbant l'onde em) ;
  • - une multiplication importante de la capacité distribuée (accumulant l'énergie sous forme de charge) ;
  • - une désadaptation du quadripôle (s'il était adapté avant).
Finally, according to the invention, the following protection / absorption effects appear, in the event of an overvoltage:
  • - resistive shunting (essentially conductive dielectric);
  • - a significant increase in the angle of dielectric losses (absorbing the em wave);
  • - a significant increase in distributed capacity (accumulating energy in the form of charge);
  • - a mismatch of the quadrupole (if it was adapted before).

Comme quatrième exemple, on va indiquer un milieu diélectrique non-linéaire, avec additionnellement des caractéristiques magnétiques, ainsi que quelques exemples types de constitution d'un tel composite, décrivant une des caractéristiques importante de l'invention.As a fourth example, a non-linear dielectric medium will be indicated, with additional magnetic characteristics, as well as some typical examples of the constitution of such a composite, describing one of the important characteristics of the invention.

Le fait du fonctionnement en hautes fréquences, le milieu doit être traversé par les champs em, c'est à dire son effet de peau doit être réduit : cette condition appelle à l'utilisation des poudres fines ferromagnétiques ou des matériaux ferrimagnétiques.The fact of operating at high frequencies, the medium must be crossed by em fields, that is to say its skin effect must be reduced: this condition calls for the use of fine ferromagnetic powders or ferrimagnetic materials.

Pour obtenir une absorption élevée aux fréquences HF, ces ferrites constituent un bon choix, en partant d'une perméabilité élevée, une conduction réduite (à l'etat compact) et divers autres critères définis en détail dans le Brevet France no 78.333.85. Constitués par des cristaux peu conducteurs (caractéristiques à la base des ferrites produits), ils comportent des interstices cristallins, avec des phases relativement conductrices : en d'autres mots les ferrites classiques ne conviennent pas a priori pour réaliser des effets non-linéaires.To obtain high absorption at HF frequencies, these ferrites are a good choice, starting from high permeability, reduced conduction (in the compact state) and various other criteria defined in detail in French Patent No. 78.333.85. Constituted by poorly conductive crystals (characteristics at the base of the ferrites produced), they comprise crystalline interstices, with relatively conductive phases: in other words the classical ferrites are not suitable a priori for achieving non-linear effects.

Néanmoins on peut réaliser des ferrites ad hoc, dans lesquels les interstices sont optimisés pour l'application selon l'invention : il faut pour cela, d'abord introduire une certaine conductivité dans les cristaux mêmes, de façon à pouvoir obtenir une bonne conduction sous un champ électrique élevé (où l'effet Tunnel et/ou Schottky éliminent l'effet des interstices isolants).Il faut ensuite introduire, par de faibles additions de métaux ou de sels métalliques, qui ne s'intègrent pas dans la structure magnétique des cristaux (ou domaines), mais qui se ségrègent sous forme de composés peu ou pas conducteurs, dans les interstices entre cristaux. On créé de la sorte des zones "désertes" (depletion layers), analogues à celles du SiC et ZnO non-linéaires, par la formation de phases intergranulaires désertées, avec les sels seuls de ces additions, ou en combinaison avec des composants des sels métalliques (Fe, Mn, Zn, Ni, Mg etc.) des ferrites.Nevertheless, ad hoc ferrites can be produced, in which the interstices are optimized for the application according to the invention: for this, it is first necessary to introduce a certain conductivity in the crystals themselves, so as to be able to obtain good conduction under a high electric field (where the Tunnel and / or Schottky effect eliminates the effect of the insulating gaps). It is then necessary to introduce, by weak additions of metals or metallic salts, which do not integrate into the magnetic structure of crystals (or domains), but which segregate in the form of compounds with little or no conductivity, in the interstices between crystals. In this way, "depletion layers", similar to those of non-linear SiC and ZnO, are created by the formation of deserted intergranular phases, with the salts alone of these additions, or in combination with salt components. metallic (Fe, Mn, Zn, Ni, Mg etc.) ferrites.

Une deuxième technique, selon l'invention consiste à réaliser après coup (après le frittage du ferrite) de tels interstices par un traitement ad hoc du ferrite, qui est mis en forme de poudre. L'application de telles couches minces essentiellement isolantes sous forme de dépôt en solution de primaire d'adhérence, de photo-polymérisation en phase vapeur de polymère, de traitement chimique des grains, dont l'oxydation à l'air etc, est connue en soi, dans les techniques du processing dans l'industrie chimique.A second technique according to the invention consists in producing afterwards (after the sintering of the ferrite) such interstices by an ad hoc treatment of the ferrite, which is put into powder form. The application of such essentially insulating thin layers in the form of a deposit in adhesion primer solution, of photopolymerization in the vapor phase of polymer, of chemical treatment of grains, including oxidation in air, etc., is known in itself, in processing techniques in the chemical industry.

Un "ferrite artificiel" du premier type, combinant des effets magnétiques, et une forte absorption HF, avec les effets de conduction non-linéaire, a été réalisé, selon l'invention. Il est du type Mn-Zn (voir brevet cité), avec la formule générale Fe2O3(MnOx ZnOy) + (SnO, Ti02, CaO, Bi203, CuO, etc.)z An "artificial ferrite" of the first type, combining magnetic effects, and high HF absorption, with the effects of non-linear conduction, was produced, according to the invention. It is of the Mn-Zn type (see cited patent), with the general formula Fe 2 O 3 (MnO x ZnOy) + (SnO, Ti0 2 , CaO, Bi 2 0 3 , CuO, etc.) z

dans laquelle z correspond à des impuretés typiques (O à quelques olo), destinées à favoriser la formation des phases intergranulaires désertées contenant ces oxydes, (et d'autres, tels que les sels de Sb, Pr, Ba, Sr, Nd, Rb, Zr, Co, etc.) et des phase plus complexes,contenant également les constituants de base du ferrite (tels que le ZnO, par exemple). D'une façon générale ces additifs, composés d'oxydes conducteurs fortement basiques, avec des oxydes acides isolants favorisent la formation des couches intersticielles peu ou pas conductrices, et les facteurs connus intervenant sur la grosseur des cristaux de ferrites (tel que le CaO, par exemple) permettent de définir, le nombre de jonctions Schottky, c'est à dire la tension où les effets non linéaires ont lieu.in which z corresponds to typical impurities (O to some olo), intended to favor the formation of the deserted intergranular phases containing these oxides, (and others, such as the salts of Sb, Pr, Ba, Sr, Nd, Rb , Zr, Co, etc.) and more complex phases, also containing the basic constituents of ferrite (such as ZnO, for example). Generally these additives, composed of oxides strongly basic conductors, with insulating acid oxides favor the formation of interstitial layers with little or no conductivity, and the known factors intervening on the size of the ferrite crystals (such as CaO, for example) make it possible to define, the number of Schottky junctions , ie the voltage where the nonlinear effects take place.

Dans cette formule générale x correspond à la quantité de Mno, typiquement dans la gamme d'un pourcentage en moles de 20 à 50 % et y à la quantité de Zno dans la gamme d'un pourcentage en moles de 0 à 40 %. (La somme des pourcentages x + y + z peut être différente de l'unité dans la mesure où la composition du ferrite n'est pas stoechrométique, plus particulièrement pour répondre à la condition de bonne conductivité des grains). L'excès de fer L'excès de fer (apparaissant dans les deux valences) est également un facteur favorisant les phénomènes non-linéaires.In this general formula x corresponds to the amount of Mno, typically in the range of a mole percentage of 20 to 50% and y to the amount of Zno in the range of a mole percentage of 0 to 40%. (The sum of the percentages x + y + z can be different from the unit insofar as the composition of the ferrite is not stoechrometic, more particularly to meet the condition of good conductivity of the grains). Excess iron Excess iron (appearing in the two valences) is also a factor favoring non-linear phenomena.

Un tel ferrite artificiel typique servant d'exemple par la suite, contient un pourcentage en moles de 40 % de MnO et de 14 % de ZnO (soit 25 % et 10 0/0 en poids), avec 2 % en moles de Ti02 et 0,6 % en moles de Co, comme additifs, pour la formation des couches intersticielles désertes. Le ferrite permet d'obtenir une perméabilité élevée, avec des pertes magnétiques élevées, pour l'utilisation en tant qu'absorbant HF ; ses pertes diélectriques montrent un maximum dans les HF, caractéristique de l'effet Maxwell-Wagner, dû à une phase conductrice et une phase quasi-isolante.Such typical artificial ferrite exemplary thereafter contains a mole percentage of 40% MnO and 14% ZnO (25% and 10 0/0 by weight) with 2 mol% Ti0 2 and 0.6 mol% of Co, as additives, for the formation of the deserted interstitial layers. Ferrite provides high permeability, with high magnetic losses, for use as an HF absorbent; its dielectric losses show a maximum in HF, characteristic of the Maxwell-Wagner effect, due to a conductive phase and a quasi-insulating phase.

Ce ferrite peut être utilisé sous forme compacte, ou en composite, selon l'invention. Comme exemple de cette dernière application, un composite réalisé, avec 85 % en poids de ferrite (concassé, avec une distribution de granulométrie linéaire, entre 50 et 200 µ de grosseur d'agglomérats), et 15 % en poids de Polychlorure de Vinyl (PVC), on obtient une conductivité proche de celle de l'exemple cité du composite au SiC, avec un exposant de non-linéarité n = 4 à 4,5 pour 4 décades de courant.This ferrite can be used in compact form, or in composite, according to the invention. As an example of this last application, a composite produced, with 85% by weight of ferrite (crushed, with a distribution of linear particle size, between 50 and 200 μ in size of agglomerates), and 15% by weight of polyvinyl chloride ( PVC), a conductivity close to that of the cited example of the SiC composite is obtained, with an exponent of non-linearity n = 4 to 4.5 for 4 decades of current.

Le câble électrique, avec les dimensions indiquées, pour 1 m de longueur, conduit en shunt 0,6 mA sous 200v (condition essentiellement isolante) et 0,45 A sous 1000v (condition essentiellement conductrice).The electric cable, with the dimensions indicated, for 1 m in length, leads in shunt 0.6 mA at 200v (essentially insulating condition) and 0.45 A at 1000v (essentially conductive condition).

Un"ferrite artificiel" du second type utilise par exemple, une poudre de ferrite de Mn-Zn du type classique, (sans couche interfaciale spéciale). Cette poudre est traitée en surface dans une solution aqueuse ou alcoolique de silane (telle que par exemple le Vinyl-tri (β-methoxy-etoxy-silane) ("A-172"), ensuite séchée à la chaleur, et recuite à 150" pendant 2 heures. Le matériau résultant est ensuite compacté sous presse ou moulu pour être intégré dans une matrice plastique ou polymère (composite).An "artificial ferrite" of the second type uses, for example, an Mn-Zn ferrite powder of the conventional type, (without special interfacial layer). This powder is surface treated in an aqueous or alcoholic solution of silane (such as for example vinyl-tri (β-methoxy-etoxy-silane) ("A-172"), then dried with heat, and annealed to 150 "for 2 hours. The resulting material is then compacted in a press or ground to be integrated into a plastic or polymer (composite) matrix.

Comme déjà mentionné, le nombre d'interstices actifs (zones déplétées) détermine la chute de tension globale (pour une épaisseur de matériau non-linéaire donnée), et l'utilisation de grains plus gros, et plus conducteurs, permet d'augmenter le courant non-linéaire, pour un champ électrique donné.As already mentioned, the number of active gaps (depleted areas) determines the overall voltage drop (for a given thickness of non-linear material), and the use of larger, more conductive grains, makes it possible to increase the non-linear current, for a given electric field.

Un produit commercial, le ferrite de puissance H7C4 (TDK), utilisant des additions de Si02 et CaO dans les interstices, avec un traitement thermique adequat (en atmosphère contrôlée) pour avoir de gros cristaux, convient pour augmenter la conductivité d'un ordre de grandeur, par rapport à l'exemple ci-dessus.A commercial product, H7C4 power ferrite (TDK), using additions of Si0 2 and CaO in the interstices, with an adequate heat treatment (in a controlled atmosphere) to have large crystals, is suitable for increasing the conductivity of an order of magnitude, compared to the example above.

Pour accroître encore la conductivité, finalement des mélanges utilisant ces types de ferrites (gros cristaux, cristaux conducteurs etc.) avec des additions d'agglomérats de SiC et/ou ZnO à gros grains, et des additions métalliques fines, éventuellement ferromagnétiques (fer carbonyl, alliages fer-nickel coprécipités, etc.) peuvent convenir.To further increase the conductivity, finally mixtures using these types of ferrites (large crystals, conductive crystals etc.) with additions of agglomerates of SiC and / or ZnO with large grains, and fine metallic additions, possibly ferromagnetic (carbonyl iron , coprecipitated iron-nickel alloys, etc.) may be suitable.

De tels "ferrites artificiels" (compacts ou en composites) permettent de rajouter aux quatre effets plus haut

  • - une caractéristique magnétique (augmentant L, par l'augmentation de la selfinductance externe) ;
  • - des pertes magnétiques, permettant la réalisation de structures à propagation absorbantes.
Such "artificial ferrites" (compact or composite) add to the four effects above
  • - a magnetic characteristic (increasing L, by increasing the external selfinductance);
  • - magnetic losses, allowing the realization of absorbent propagation structures.

De telles structures magnétiques, à conduction non-linéaires conviennent particulièrement pour la suppression de parasites,par écrêtage (dans le domaine temps) et par absorption HF (dans le domaine fréquence) : elles représentent une solution idéale pour l'antiparasitage et d'immunication EMC où des surtensions élevées peuvent apparaître (EMP, coup d'éclairs, coupure inductives sur réseau automobile), avec des fronts d'onde rapides (HEMP), avec d'éventuels transitoires de très courte durée (Corona, parasites d'allumage automobile, décharges électrostatiques).Such magnetic structures, with non-linear conduction are particularly suitable for the suppression of parasites, by clipping (in the time domain) and by HF absorption (in the frequency domain): they represent an ideal solution for interference suppression and immunization EMC where high overvoltages can appear (EMP, lightning strike, inductive cutoff on automobile network), with fast wave fronts (HEMP), with possible transients of very short duration (Corona, automobile ignition parasites , electrostatic discharges).

Dans la figure 5, on décrit une des multiples variantes de câble électrique réalisables, avec les principes décrits à l'aide de la figure 4. Il s'agit d'un câble multiconducteurs, (typiquement un câble de distribution d'énergie électrique basse-tension), avec deux phases et terres, ou avec 3 phases.In FIG. 5, one of the multiple variants of electric cable that can be produced is described, with the principles described with the aid of FIG. 4. It is a multiconductor cable (typically a low electric power distribution cable). -tension), with two phases and earth, or with 3 phases.

La signification des références chiffrées est la même que pour la figure 4 : le diélectrique non-linéaire 2 intervient, entre phases, pour une épaisseur double, c'est à dire une tension double (tension entre phases), là où elle intervient en simple, par rapport à la terre : La couche métallique/ métallisée 3 définit le champ électrique, qui lui détermine le courant non-linéaire, dû aux surtensions différentielles. Ici, encore, une protection de mode commun peut être prévue par la couche externe 5.The meaning of the numerical references is the same as for FIG. 4: the non-linear dielectric 2 intervenes, between phases, for a double thickness, that is to say a double voltage (voltage between phases), where it occurs in simple , with respect to the earth: The metallic / metallized layer 3 defines the electric field, which determines the non-linear current due to the differential overvoltages. Here again, a common mode protection can be provided by the external layer 5.

Dans la figure 6, qui décrit une ligne plate, telle qu'elle peut être utilisée dans les câbles plats, des circuits hybrides, des structures à propagation sur des circuits imprimés, ou encore des composants montés en surface (SMD).In Figure 6, which describes a flat line, as it can be used in flat cables, hybrid circuits, propagation structures on printed circuits, or surface mounted components (SMD).

Les conducteurs 1 et 3 définissent les électrodes de la ligne ; le diélectrique non-linéaire 2 peut utiliser un quelconque des matériaux compacts ou composites, selon l'invention.The conductors 1 and 3 define the electrodes of the line; the non-linear dielectric 2 can use any of the compact or composite materials according to the invention.

Il est évident, que les principes de l'invention sont applicables à d'autres structures encore, non décrites en détail, structures à propagation guidée et non guidée, utilisant des conducteurs en méandres, en hélice etc.It is obvious that the principles of the invention are applicable to still other structures, not described in detail, structures with guided and unguided propagation, using meandering, helical conductors, etc.

Deux exemples seront décrits encore, à l'aide de figures, dans ce sens.Two examples will still be described, using figures, in this sense.

Dans la figure 7, représentant un câble isolé, 1 correspond au conducteur central nu, 2 au diélectrique "isolant", 3' et 3" à la présence localisée d'une masse.In FIG. 7, representing an insulated cable, 1 corresponds to the bare central conductor, 2 to the "insulating" dielectric, 3 'and 3 "to the localized presence of a ground.

Le gradient de champ, pour la masse 3' peut être élevé, avec l'effet de pointe existant au point 7 : ce point constitue un endroit fragilisé, où le claquage du diélectrique 2 (isolant normal) peut avoir lieu, préférentiellement.The field gradient, for the mass 3 'can be high, with the peak effect existing at point 7: this point constitutes a weakened place, where the breakdown of the dielectric 2 (normal insulator) can preferably take place.

Selon l'invention, le diélectrique 2 est constitué totalement (ou partiellement, dans le sens radial du câble) par un diélectrique non-linéaire : tout gradient de champ élevé local, donnera lieu à une faible conduction, et en conséquence, à un étalement des lignes de champs, évitant le claquage.According to the invention, the dielectric 2 is made completely (or partially, in the radial direction of the cable) by a non-linear dielectric: any local high field gradient, will give rise to a weak conduction, and consequently, to a spreading field lines, avoiding breakdown.

Un cas typique d'application correspond à celle du câble d'allumage de moteur automobile. Dans ce cas, le conducteur 1, peut être droit (constitué de métal conducteur ou résistant, ou encore d'un composite plus ou moins conducteur, tel qu'un composite au carbone) ou encore être constitué par une hélice autour d'un noyau non magnétique ou magnétique absorbant, selon les brevets France no78.333.85 et 86.000.617.A typical application case corresponds to that of the ignition cable of an automobile engine. In this case, the conductor 1 can be straight (made of conductive or resistant metal, or of a more or less conductive composite, such as a carbon composite) or even be constituted by a helix around a core non-magnetic or magnetic absorbent, according to France patents no.78,333.85 and 86,000,617.

L'épaisseur du diélectrique 2, en isolant classique est limitée en pratique (par exemple, par des normes, ou encore par des questions de prix de revient), le point de fragilité de l'isolation se situe à l'endroit 7 où le câble d'allumage est proche de ou touche une pièce métallique, telle qu'un câble de commande d'accélérateur, une partie de moteur etc. : le fait de la réalisation, selon l'invention, permet de réduire la marge de sécurité de l'isolant.The thickness of the dielectric 2, in conventional insulation is limited in practice (for example, by standards, or by questions of cost price), the point of weakness of the insulation is located at the place 7 where the ignition cable is near or touches a metal part, such as an accelerator control cable, engine part, etc. : the fact of the embodiment according to the invention reduces the safety margin of the insulation.

De la même façon, pour le cas d'un conducteur 1 très fin (droit ou en hélice), l'effet de pointe propre à ce conducteur peut être "étalé" par un diélectrique non-linéaire suivant l'invention. Par exemple, un fil d'allumage absorbant classique, sur le marché, utilise une hélice de diamètre de 2,5 mm, réalisé en fil métallique de diamètre 0,10 mm, au pas d'environ 30 spires au centimètre. Une couche interne (ou la couche totale) en diélectrique non-linéaire, réduit cette fois-ci la contrainte électrique interne.In the same way, for the case of a very thin conductor 1 (straight or helical), the peak effect specific to this conductor can be "spread" by a non-linear dielectric according to the invention. For example, a conventional absorbent ignition wire on the market uses a helix with a diameter of 2.5 mm, made of metal wire with a diameter of 0.10 mm, with a pitch of about 30 turns per centimeter. An internal layer (or the total layer) in non-linear dielectric, this time reduces the internal electrical stress.

De tels câbles d'allumage comportent aux bouts des connexions électriques (rattachées au fil 1), avec par-dessus,des embouts isolants 6, en caoutchouc, plastique ou polymère, pour protéger la connexion avec la bougie ou avec le distributeur.Such ignition cables have electrical connections (attached to wire 1) at the ends, with insulating caps 6, made of rubber, plastic or polymer, to protect the connection with the spark plug or with the distributor.

En présence d'une masse localisée 3", les mêmes phénomènes se présentent, accrus du fait que l'embout 6 peut former un minuscule espace d'air avec l'isolant 2, provoquant un gradient de potentiel élevé additionnel, tout cela favorisant le claquage des isolants.In the presence of a localized mass 3 ", the same phenomena occur, increased by the fact that the end piece 6 can form a tiny air space with the insulator 2, causing an additional high potential gradient, all of this favoring the breakdown of insulators.

Dans ce dernier cas, avec une partie ou la totalité de l'embout 6, réalisé avec le diélectrique non-linéaire, suivant l'invention, on peut protéger contre les claquages, sans avoir besoin de matériaux isolants très performants, ou des réalisations/as- semblages délicats.In the latter case, with part or all of the end-piece 6, produced with the non-linear dielectric, according to the invention, it is possible to protect against breakdowns, without the need for very efficient insulating materials, or realizations / delicate assemblies.

Il est évident, comme démontré dans ces derniers exemples, que la fonction non-linéaire peut être combinée avec l'effet d'absorption magnétique (par l'utilisation d'un composé/composite non-linéaire magnétique), conférant à la structure l'effet de filtre passe-bas absorbant. Une combinaison typique consiste à utiliser une âme centrale (pour l'hélice) à diélectrique non-linéaire magnétique (protégeant contre les gradients du fil fin de l'hélice), et une couche "isolante" externe utilisant un des composites non-linéaires peu conducteurs décrits (magnétique ou non magnétique), convenant pour les tensions élevées en jeu.It is obvious, as demonstrated in these last examples, that the non-linear function can be combined with the magnetic absorption effect (by the use of a non-linear magnetic compound / composite), giving the structure l absorbent low pass filter effect. A typical combination consists in using a central core (for the helix) with nonlinear magnetic dielectric (protecting against the gradients of the fine wire of the helix), and an external "insulating" layer using one of the nonlinear composites little conductors described (magnetic or non-magnetic), suitable for the high voltages involved.

Dans la figure 8, on indique un autre exemple, pour montrer la possibilité de combiner de tels effets de protection contre discontinuités (avec leurs gradients de potentiels élevés locaux), avec un effet de filtre passe-bas à absorption : dans ce cas, également, seulement une partie du câble est couverte par le diélectrique non-linéaire magnétique absorbant, cas correspondant au schéma de la figure 2.Another example is shown in Figure 8, to show the possibility of combining such discontinuity protection effects (with their local high potential gradients), with a low-pass absorption filter effect: in this case, too , only part of the cable is covered by the absorbing non-linear magnetic dielectric, case corresponding to the diagram in Figure 2.

Dans la partie gauche de la figure 8, le dilectrique magnétique non linéaire 2" est superposé concentriquement à un diélectrique classique 2'. Dans cette partie "coaxiale", l'effet absorbant passe-bas est joint à celui de la non-linéarité, mais il est aussi évident, que ses effets non-linéaires ne peuvent intervenir que pour des variations de la tension-surtension. (Schéma de la figure 3).In the left part of FIG. 8, the nonlinear magnetic dilectric 2 "is superimposed concentrically with a conventional dielectric 2 '. In this" coaxial "part, the low-pass absorbing effect is joined to that of the non-linearity, but it is also obvious, that its non-linear effects can only intervene for variations in the voltage-overvoltage. (Diagram of Figure 3).

Dans la partie droite de la figure 8, le diélectrique non-linéaire magnétique 2" joue le rôle classique de "manchon équipotentiel" (références citées en préambule), il recouvrira la partie dénudée (de la connexion), avec donc une configuration analogue à celle de l'exemple précédent. Comme auparavant, également, le diélectrique non-linéaire magnétique peut remplir la totalité de la section du diélectrique, où l'on revient donc à une réalisation suivant le schéma de la figure 1.In the right part of FIG. 8, the nonlinear magnetic dielectric 2 "plays the classic role of" equipotential sleeve "(references cited in the preamble), it will cover the stripped part (of the connection), with therefore a configuration similar to that of the previous example. As before, also, the non-linear magnetic dielectric can fill the entire cross section of the dielectric, where we therefore return to an embodiment according to the diagram in FIG. 1.

Dans la figure 9, on montre l'application des principes de l'invention à une structure à propagation d'onde libre.In FIG. 9, the application of the principles of the invention to a free wave propagation structure is shown.

Une onde em plane 8 est incidente sur la surface métallique 3 d'une structure mécanique, tel qu'un avion, bâteau etc., cette onde provenant par exemple d'un faisceau Radar et la surface 4 étant un objet à détecter, ou encore représentant un leurre.A plane em wave 8 is incident on the metal surface 3 of a mechanical structure, such as an airplane, vessel etc., this wave coming for example from a Radar beam and the surface 4 being an object to be detected, or else representing a lure.

Dans les techniques connues RAM (matériaux absorbants Radar), on applique à la surface de l'objet 3, une couche diélectrique absorbante 2, dont les caractéristiques sont choisies pour absorber l'onde au mieux (dans sa traversée de la couche 2)et pour réfléchir cette onde le moins possible, directement. Les réalisations de telles couches diélectriques sont connues, et utilisent généralement des matériaux magnétiques absorbants.In the known techniques RAM (absorbent Radar materials), an absorbent dielectric layer 2 is applied to the surface of the object 3, the characteristics of which are chosen to absorb the wave as well as possible (in its crossing of the layer 2) and to reflect this wave as little as possible, directly. The embodiments of such dielectric layers are known, and generally use absorbent magnetic materials.

Selon l'invention, la couche diélectrique 2 est réalisée en partie ou totalement en matériau magnétique absorbant non-linéaire, d'impédance caractéristique ad-hoc.According to the invention, the dielectric layer 2 is made in part or completely of non-linear absorbent magnetic material, of ad-hoc characteristic impedance.

Sous l'incidence d'une puissance suffisante ou encore par l'application d'une tension (par une électrode 9, transparente pour les ondes), on peut commander la réflectivité de la structure entre une absorption totale (disparition de l'objet vis à vis du RADAR, c'est à RCS minimum) et la réflexion quasi-totale (RCS maximum), analogue aux effets de désadaptation pour les câbles, décrits plus haut.Under the incidence of sufficient power or by the application of a voltage (by an electrode 9, transparent for waves), the reflectivity of the structure can be controlled between total absorption (disappearance of the object vis with respect to RADAR, this is at minimum RCS) and almost total reflection (maximum RCS), analogous to the mismatch effects for cables, described above.

Dans la figure 10, finalement, on montre une autre application de l'invention à un composant pour circuits électroniques, dans lequel la concentration des effets capacitifs,d'absorption et de non-linéarité permettent d'obtenir des composants-filtres pratiques intéressants.Finally, in FIG. 10, another application of the invention to a component for electronic circuits is shown, in which the concentration of the capacitive, absorption and non-linearity effects makes it possible to obtain useful practical filter components.

Dans cette figure, le conducteur 1 peut être réalisé pour comporter les connexions de soudure terminales du conducteur chaud, de traversée. Il peut être représenté aussi, par une métallisation interne du passage dans le diélectrique 2, permettant le passage d'un fil, d'une fiche de connexion etc.In this figure, the conductor 1 can be made to include the terminal solder connections of the hot conductor, through. It can also be represented by an internal metallization of the passage in the dielectric 2, allowing the passage of a wire, a connection plug, etc.

Le diélectrique 2 est réalisé en matériau non-linéaire absorbant magnétique, tel que décrit plus haut ("ferrite artificiel"). On obtient ainsi l'effet de filtre passe-bas à absorption, avec la protection par conduction shunt, sous l'effet d'une surtension. Une métallisation 3 éventuelle assure le contact, avec l'électrode de masse 4, formant le quadripôle/tri- pôle.The dielectric 2 is made of non-linear magnetic absorbent material, as described above ("artificial ferrite"). This gives the effect of a low-pass absorption filter, with shunt conduction protection, under the effect of an overvoltage. A possible metallization 3 ensures contact with the ground electrode 4, forming the quadrupole / tri-pole.

De tels composants, sans l'effet du filtre capacitif et du filtre absorbant passe-bas, ont été décrits récemment dans la littérature, réalisés en ZnO compact (10th International Aerospace and Ground Conference on Lightning and Static Electricity ; Wolff and Earle : "A new form of transient suppres- sor", p. 293ff).Such components, without the effect of the capacitive filter and the low-pass absorbent filter, have been described recently in the literature, produced in compact ZnO (10th International Aerospace and Ground Conference on Lightning and Static Electricity; Wolff and Earle: "A new form of transient suppressor ", p. 293ff).

Evidemment, le composant, selon l'invention, peut être réalisé sous une forme multiple, c'est à dire où les conducteurs parallèles 1 forment un connecteur- filtre ou encore où des trous métallisées 1, comme décrits, réalisent une embase-filtre pour des circuits intégrés, connecteurs, dont les connexions traversent alors l'embase-filtre.Obviously, the component according to the invention can be produced in a multiple form, that is to say where the parallel conductors 1 form a filter connector or else where metallized holes 1, as described, provide a filter base for integrated circuits, connectors, the connections of which then pass through the filter base.

Claims (18)

1) Structure à propagation d'onde, - dans laquelle l'onde électromagnétique traverse un diélectrique, - dans laquelle ce diélectrique est distribué dans le sens de la propagation de l'onde - dans laquelle ce diélectrique a un comportement ohmique non-linéaire, dans le sens qu'il est essentiellement non conducteur aux tensions normales d'utilisation de cette structure, et qu'il devient essentiellement conducteur pour des surtensions électriques anormales, - dans laquelle ce diélectrique est un matériau polycristallin, comportant des couches minces intersticielles, provoquant un effet électrique du type tunnel ou Schottky, sous l'influence de la valeur élevée du champ électrique, provoquée par ces surtensions. 1) Wave propagation structure, - in which the electromagnetic wave passes through a dielectric, - in which this dielectric is distributed in the direction of wave propagation - in which this dielectric has a non-linear ohmic behavior, in the sense that it is essentially non-conductive at normal operating voltages of this structure, and that it becomes essentially conductive for abnormal electrical overvoltages, - in which this dielectric is a polycrystalline material, comprising interstitial thin layers, causing an electrical effect of the tunnel or Schottky type, under the influence of the high value of the electric field, caused by these overvoltages. 2) Structure selon 1) dans laquelle le matériau polycristallin est un corps solide, non magnétique, à cristaux relativement conducteurs, séparés par des couches intergranulaires minces, essentiellement isolantes, comme par exemple celles existantes dans le silicium cristallin, les oxydes métalliques tels que l'oxyde de Zinc (utilisé dans les varistances), l'oxyde d'aluminium, de magnésium, de titane, de Bismuth etc. ; le carbure de silicium (utilisé dans les parafoudres), de titane, de bore etc. ; le titanate de barium, de strontium (utilisés dans les thermostances) ; les composés ferroélectriques (à base de Barium et de Strontium etc., utilisés dans les capacités à couche d'arrêt) et les composés polythène-mica, sulfure de zinc (utilisés dans les panneaux électroluminescents, etc., ou encore, par exemple, des poudres essentiellement conductrices traitées en surface pour présenter de telles couches essentiellement isolantes.2) Structure according to 1) in which the polycrystalline material is a solid, non-magnetic body, with relatively conductive crystals, separated by thin intergranular layers, essentially insulating, such as for example those existing in crystalline silicon, metal oxides such as l 'Zinc oxide (used in varistors), aluminum oxide, magnesium, titanium, Bismuth etc. ; silicon carbide (used in surge arresters), titanium, boron etc. ; barium titanate, strontium (used in thermostances); ferroelectric compounds (based on Barium and Strontium etc., used in barrier coatings) and polythene-mica, zinc sulfide compounds (used in electroluminescent panels, etc., or, for example, essentially conductive powders treated at the surface to present such essentially insulating layers. 3) Structure selon 1) et 2), dans laquelle le matériau polycristallin est placé sous forme de grains (aggrégats multicristallins) à l'intérieur d'un matériau matrice isolant ou peu conducteur, rigide ou flexible, avec une concentration suffisante pour assurer un contact au moins partiel entre les différents grains dans ce composite, avec le cas échéant, de faibles additions de grains conducteurs, pour optimiser la conductivité.3) Structure according to 1) and 2), in which the polycrystalline material is placed in the form of grains (multi-crystalline aggregates) inside an insulating or poorly conductive matrix material, rigid or flexible, with a sufficient concentration to ensure a at least partial contact between the different grains in this composite, with, if necessary, small additions of conductive grains, to optimize the conductivity. 4) Structure selon 1) à 3) dans laquelle ce diélectrique à comportement non-linéaire a une constante diélectrique et un angle de pertes diélectriques qui croissent avec la tension appliquée et introduisent ainsi une capacité distribuée et une absorption diélectrique croissante.4) Structure according to 1) to 3) in which this dielectric with non-linear behavior has a dielectric constant and an angle of dielectric losses which increase with the applied voltage and thus introduce a distributed capacity and an increasing dielectric absorption. 5) Structure selon 1) à 4) dans laquelle toute surtension se propageant dans la structure est partiellement enlevée par conduction à la masse (action dans le domaine temps), partiellement storée et absorbée par l'augmentation de la capacité à la masse, et l'augmentation des pertes diélectriques (action dans le domaine fréquences),et partiellement réfléchie vers la source, par la désadaptation de la structure, due à cette augmentation de capacité distribuée.5) Structure according to 1) to 4) in which any overvoltage propagating in the structure is partially removed by conduction to ground (action in the time domain), partially stored and absorbed by the increase in capacity to ground, and the increase in dielectric losses (action in the frequency domain), and partially reflected towards the source, by the mismatch of the structure, due to this increase in distributed capacity. 6) Structure selon 1) à 5) dans laquelle ce diélectrique non-linéaire consiste en un matériau polycristallin solide diélectromagnétique, consistant en des agglomérats de cristaux magnétiques relativement conducteurs, comportant des couches minces intergranulaires essentieilement isolantes, comme par exemple celles de certaines céramiques ferrimagnétiques, comportant plus particulièrement des impuretés spécifiques favorisant la création de telles couches intergranulaires, avec des phases essentiellement isolantes, et, éventuellement de faibles additions, selon 2) pour optimiser la non-linéarité, ou encore par exemple des poudre ferrimagnétiques essentiellement conductrices traitées en surface pour présenter de telles couches essentiellement isolantes.6) Structure according to 1) to 5) in which this nonlinear dielectric consists of a dielectromagnetic solid polycrystalline material, consisting of agglomerates of relatively conductive magnetic crystals, comprising essentially intergranular thin layers essentially insulating, such as for example those of certain ferrimagnetic ceramics , more particularly comprising specific impurities favoring the creation of such intergranular layers, with essentially insulating phases, and, optionally small additions, according to 2) to optimize the non-linearity, or again for example essentially conductive ferrimagnetic powder treated on the surface to present such essentially insulating layers. 7) Structure selon 1), 3) à 6) dans laquelle le matériau polycristallin magnétique est placé sous forme de grains (aggrégats multicristallins) à l'intérieur d'un matériau matrice isolant ou peu conducteur, rigide ou flexible, avec une concentration suffisant pour assurer un contact au moins partiel entre les différents grains dans ce composite, avec le cas échéant, de faibles additions de grains conducteurs, pour optimiser la conductivité.7) Structure according to 1), 3) to 6) in which the magnetic polycrystalline material is placed in the form of grains (multi-crystalline aggregates) inside an insulating or poorly conductive matrix material, rigid or flexible, with sufficient concentration to ensure contact at least partially between the different grains in this composite, with, if necessary, small additions of conductive grains, to optimize the conductivity. 8) Structure selon 1). 6) et 7) dans laquelle ce diélectrique non-linéaire a une constante diélectrique et un angle de pertes diélectriques qui croissent avec la tension appliquée et introduisent ainsi une capacité distribuée et une absorption diélectrique croissante, ainsi qu'une perméabilité et un angle de pertes magnétiques indépendants de la tension, mais ces dernières croissant avec la fréquence.8) Structure according to 1). 6) and 7) in which this nonlinear dielectric has a dielectric constant and an angle of dielectric losses which increase with the applied voltage and thus introduce a distributed capacity and an increasing dielectric absorption, as well as a permeability and an angle of losses magnetic independent of the voltage, but the latter increasing with the frequency. 9) Structure selon 1), 6) à 8) dans laquelle toute surtension, se propageant, est partiellement enlevée par conduction à la masse, partiellement storée et absorbée par l'augmentation de la capacité à la masse et l'augmentation des pertes diélectriques, partiellement réfléchie vers la source, par la désadaptation de la struc ture due à cette augmentation de capacité distribuée, et partiellement absorbée par la perméabilité magnétique et les pertes magnétiques (effet de filtre passe-bas).9) Structure according to 1), 6) to 8) in which any propagating overvoltage is partially removed by conduction to ground, partially stored and absorbed by the increase in capacitance to ground and the increase in dielectric losses , partially reflected towards the source, by the mismatch of the structure due to this increase in distributed capacity, and partially absorbed by the magnetic permeability and the magnetic losses (low-pass filter effect). 10) Structure selon 1) à 9) dans laquelle toute propagation d'onde se trouve protégée, par la suppression, à la fois, des tensions parasites dépassant un certain seuil d'amplitude, ainsi que la suppression de formes d'onde rapides (transitoires), dépassant une certaine fréquence, dans leur spectre, et ceci indépendamment de leur amplitude.10) Structure according to 1) to 9) in which all wave propagation is protected, by the suppression, at the same time, of the parasitic voltages exceeding a certain amplitude threshold, as well as the suppression of fast waveforms ( transient), exceeding a certain frequency, in their spectrum, and this independently of their amplitude. 11) Structure selon 1) à 10) dans laquelle ce diélectrique non-linéaire, représente un coefficient de non-linéarité égal ou supérieur à 2, pour pouvoir représenter, selon les cas, une approximation ad-hoc du comportement essentiellement isolant pour des tensions de fonctionnement nominales, et un comportement essentiellement conducteur pour des surtensions gênantes.11) Structure according to 1) to 10) in which this non-linear dielectric represents a coefficient of non-linearity equal to or greater than 2, in order to be able to represent, depending on the case, an ad-hoc approximation of the essentially insulating behavior for voltages nominal operating conditions, and essentially conductive behavior for annoying overvoltages. 12) Structure selon 1) à 11) dans laquelle au moins une couche isolante classique (vide, air, plastique, polymère, céramique, etc.) est intercalée avec le diélectrique non-linéaire.12) Structure according to 1) to 11) in which at least one conventional insulating layer (vacuum, air, plastic, polymer, ceramic, etc.) is interposed with the non-linear dielectric. 13) Structure selon 1) à 12) représentée par une ligne, élément de ligne, ou câble électrique, de forme concentrique, plate, en hélice etc., avec au moins deux conducteurs, ou au moins un conducteur et une masse.13) Structure according to 1) to 12) represented by a line, line element, or electric cable, of concentric, flat, helical shape, etc., with at least two conductors, or at least one conductor and a mass. -' 14) Structure selon 1) à 12) dans laquelle le diélectrique non-linéaire est traversé par une onde à propagation libre (onde plane) ou onde guidée (guide d'onde) et que l'effet non-linéaire peut être commandé.- '14) Structure according to 1) to 12) wherein the non-linear dielectric is crossed by a free propagation wave (plane wave) or a guided wave (wave guide) and the non-linear effect can be controlled . 15) Structure selon 1) à 13) dans laquelle la ligne, élément de ligne ou câble électrique, comporte un isolant normal à l'intérieur et le diélectrique non-linéaire magnétique absorbant à l'extérieur, et dans lequel une certaine longueur de ce diélectrique est utilisé comme manchon de répartition du gradient de champs, aux terminaisons de cette structure.15) Structure according to 1) to 13) in which the line, line element or electric cable comprises a normal insulator inside and the non-linear magnetic dielectric absorbing outside, and in which a certain length of this dielectric is used as a sleeve for distributing the field gradient, at the ends of this structure. 16) Structure selon 1) à 15) dans laquelle le câble est un câble de faisceau d'allumage pour moteurs à explosion, avec des embouts isolants, dans lequel partie ou totalité de l'isolant du câble et/ou des embouts sont constitués par le diélectrique non-linéaire, réduisant ainsi les contraintes diélectriques aux endroits de contact ou de proximité d'une masse, ou encore entre spires du câble, dans le cas d'un conducteur en hélice.16) Structure according to 1) to 15) in which the cable is an ignition harness cable for internal combustion engines, with insulating caps, in which part or all of the cable insulation and / or the caps are constituted by non-linear dielectric, thus reducing the dielectric stresses at the points of contact or near a ground, or even between turns of the cable, in the case of a helical conductor. 17) Structure selon 1) à 16) dans laquelle la structure représente un composant électronique de protection inductif ou capacitif, quadripôle (tripôle), ou encore un ensemble combinant au moins une inductance et capacité, dont au moins l'une consiste en un composant quadripôle (tripôle), pour la réalisation de filtres plus complexes.17) Structure according to 1) to 16) in which the structure represents an electronic inductive or capacitive protection component, quadrupole (tripole), or even an assembly combining at least one inductance and capacitance, at least one of which consists of a component quadrupole (tripole), for making more complex filters. 18) Structure selon 1) à 17) dans laquelle le contrôle de la dilatation possible du diélectrique non-linéaire, sous la charge thermique d'une surtension, permet d'obtenir des effets de coefficients de température positifs, (avec un effet d'autoprotection), nuls, ou négatifs.18) Structure according to 1) to 17) in which the control of the possible expansion of the non-linear dielectric, under the thermal load of an overvoltage, makes it possible to obtain effects of positive temperature coefficients, (with an effect of self-protection), zero, or negative.
EP87402086A 1986-09-18 1987-09-18 Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves Expired - Lifetime EP0264315B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8613093A FR2604286B1 (en) 1986-09-18 1986-09-18 WAVE PROPAGATION STRUCTURES FOR SUPPRESSION OF OVERVOLTAGES AND ABSORPTION OF TRANSIENTS
FR8613093 1986-09-18

Publications (2)

Publication Number Publication Date
EP0264315A1 true EP0264315A1 (en) 1988-04-20
EP0264315B1 EP0264315B1 (en) 1993-12-01

Family

ID=9339084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87402086A Expired - Lifetime EP0264315B1 (en) 1986-09-18 1987-09-18 Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves

Country Status (4)

Country Link
US (1) US4841259A (en)
EP (1) EP0264315B1 (en)
DE (1) DE3788335D1 (en)
FR (1) FR2604286B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429908A2 (en) * 1989-11-17 1991-06-05 Deutsche Aerospace AG Voltage dependent resistor (varistor) for high-frequency/high-energy applications
EP0828345A1 (en) * 1996-09-09 1998-03-11 Alcatel Cable France Electrical conductor protected against electromagnetic disturbances exceeding a threshold

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172108A (en) * 1988-02-15 1992-12-15 Nec Corporation Multilevel image display method and system
US5500629A (en) * 1993-09-10 1996-03-19 Meyer Dennis R Noise suppressor
GB9424306D0 (en) * 1994-12-01 1995-01-18 Chelton Electrostatics Ltd A lightning diverter
US5742223A (en) * 1995-12-07 1998-04-21 Raychem Corporation Laminar non-linear device with magnetically aligned particles
US6559376B2 (en) * 1996-09-30 2003-05-06 Nology Engineering, Inc. Combustion initiation device and method for tuning a combustion initiation device
US5745324A (en) * 1996-11-20 1998-04-28 Greenspring Computers, Inc. Electrostatic discharge and excessive voltage protection circuit
DE19737759A1 (en) * 1997-08-29 1999-03-04 Alsthom Cge Alcatel Coaxial radio frequency cable
US5999398A (en) * 1998-06-24 1999-12-07 Avx Corporation Feed-through filter assembly having varistor and capacitor structure
US6469636B1 (en) * 1998-12-02 2002-10-22 Halliburton Energy Services, Inc. High-power well logging method and apparatus
DE60236524D1 (en) * 2001-09-14 2010-07-08 Koninkl Philips Electronics Nv DEVICE FOR SUPPRESSING ELECTROMAGNETIC COUPLING PHENOMENA
US6683256B2 (en) * 2002-03-27 2004-01-27 Ta-San Kao Structure of signal transmission line
KR20050014884A (en) * 2002-06-25 2005-02-07 타이코 일렉트로닉스 코포레이션 Integrated device providing overcurrent and overvoltage protection and common­mode filtering to data bus interface
AU2003246129A1 (en) * 2003-01-09 2004-08-10 Zhengkai Yin A electroluminescent wire and the method of manufacturing the same
US20040199069A1 (en) * 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
SE527008C2 (en) * 2003-11-07 2005-12-06 Abb Research Ltd Electric power transmission system
DE602005014213D1 (en) * 2005-05-23 2009-06-10 Chih-Yang Su Automotive grounding system with voltage stabilization and overvoltage protection circuitry
US20060271144A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7529591B2 (en) * 2005-05-27 2009-05-05 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7551966B2 (en) * 2005-05-27 2009-06-23 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271142A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US20060271139A1 (en) * 2005-05-27 2006-11-30 Biophan Technologies, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7801625B2 (en) * 2005-05-27 2010-09-21 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7539545B2 (en) * 2005-05-27 2009-05-26 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US7555350B2 (en) * 2005-05-27 2009-06-30 Medtronic, Inc. Electromagnetic interference immune pacing/defibrillation lead
US8121705B2 (en) * 2007-06-27 2012-02-21 Medtronic, Inc. MRI-safe defibrillator electrodes
US8564385B2 (en) * 2007-08-23 2013-10-22 Lockheed Martin Corporation Coaxial concentric nonlinear transmission line
US8086321B2 (en) * 2007-12-06 2011-12-27 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8571661B2 (en) 2008-10-02 2013-10-29 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
JP5389947B2 (en) 2009-02-19 2014-01-15 カーディアック ペースメイカーズ, インコーポレイテッド System for providing arrhythmia therapy in an MRI environment
AU2010328622B2 (en) 2009-12-08 2014-09-11 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
CN102354876A (en) * 2011-06-21 2012-02-15 太仓南极风能源设备有限公司 Anti-interference electric appliance socket
CN102982932B (en) * 2012-12-20 2016-12-07 武汉芯宝科技有限公司 The voltage variable with absorption moment electrical pulse energy hinders film envelope curve and manufacture method and purposes
JP6677865B2 (en) * 2014-08-12 2020-04-08 イマジニアリング株式会社 Ignition device
JP5933664B2 (en) * 2014-10-23 2016-06-15 三菱電機株式会社 Ignition coil device for internal combustion engine
US10791656B1 (en) * 2019-11-01 2020-09-29 Advanced Fusion Systems Llc Method and device for separating high level electromagnetic disturbances from microwave signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1143259B (en) * 1953-08-13 1963-02-07 Siemens Ag Electrical semiconductor resistance independent of the outside temperature
FR1330480A (en) * 1961-08-04 1963-06-21 Int Standard Electric Corp Lossless information transmission line

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388632A (en) * 1980-10-03 1983-06-14 Sprague Electric Company Signal limiting integrated circuit
US4344047A (en) * 1981-02-12 1982-08-10 The United States Of America As Represented By The Secretary Of The Army Millimeter-wave power limiter
US4495482A (en) * 1981-08-24 1985-01-22 General Electric Company Metal oxide varistor with controllable breakdown voltage and capacitance and method of making
FR2553583B1 (en) * 1983-10-14 1986-03-21 Thomson Csf HIGH POWER LIMITER WITH PIN DIODES FOR MILLIMETER WAVES AND METHOD FOR PRODUCING THE DIODES
FR2560442B1 (en) * 1984-02-24 1987-08-07 Thomson Csf SLOT LINE SWITCHING AND LIMITING DEVICE, OPERATING IN MICROWAVE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1143259B (en) * 1953-08-13 1963-02-07 Siemens Ag Electrical semiconductor resistance independent of the outside temperature
FR1330480A (en) * 1961-08-04 1963-06-21 Int Standard Electric Corp Lossless information transmission line

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS, vol. 48, no. 10, octobre 1977, pages 4372-4384, American Institute of Physics, New York, US; P.R. EMTAGE: "The physics of zinc oxide varistors" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429908A2 (en) * 1989-11-17 1991-06-05 Deutsche Aerospace AG Voltage dependent resistor (varistor) for high-frequency/high-energy applications
EP0429908A3 (en) * 1989-11-17 1991-10-16 Telefunken Systemtechnik Gmbh Voltage dependent resistor (varistor) for high-frequency/high-energy applications
EP0828345A1 (en) * 1996-09-09 1998-03-11 Alcatel Cable France Electrical conductor protected against electromagnetic disturbances exceeding a threshold
FR2753300A1 (en) * 1996-09-09 1998-03-13 Alcatel Cable ELECTRICAL CONDUCTOR PROTECTED AGAINST ELECTROMAGNETIC DISTURBANCES EXCEEDING A THRESHOLD
US6180877B1 (en) 1996-09-09 2001-01-30 Thomson-Csf Communications Electrical conductor protected against electromagnetic interference exceeding a threshold

Also Published As

Publication number Publication date
US4841259A (en) 1989-06-20
EP0264315B1 (en) 1993-12-01
FR2604286A1 (en) 1988-03-25
FR2604286B1 (en) 1988-11-10
DE3788335D1 (en) 1994-01-13

Similar Documents

Publication Publication Date Title
EP0264315B1 (en) Wave propagation structures for the suppression of over-voltages and the absorption of transitory waves
RU2168252C2 (en) Electrostatic voltage regulation compound
US4924340A (en) Circuit protection device
EP1128395B1 (en) High and extra-high voltage d.c. power cable
US4952173A (en) Circuit protection device
CA2211813A1 (en) Nanocrystalline-based varistors produced by intense mechanical milling
JPH08321420A (en) Noise suppression equipment
JPH11317113A (en) Electrostatic discharge protecting polymer composite material
CA1153828A (en) Thin film varistor
US20100157501A1 (en) ESD protection device and composite electronic component of the same
RU2560411C2 (en) Compositions with non-linear volt-ampere characteristics
JPH05140368A (en) Shielding material and shielded electric wire and cable product
EP0037339B1 (en) Electric-stress reduction electrodes for connecting sheathed power cables
JPS61258625A (en) Overvoltage protector
EP0196891B1 (en) Circuit protection device
EP0126984B1 (en) Electrical insulator having an insensitivity to pollution
JP2005302937A (en) Stacked electronic part and manufacturing method thereof
EP1280167B1 (en) Semiconductive screen for power cable
US4887182A (en) Circuit protection device
WO1990000826A1 (en) Circuit protection arrangement
US4860155A (en) Overvoltage protection device
FR2558661A1 (en) CONNECTOR ASSEMBLY
US4890182A (en) Circuit protection device
EP0667628B1 (en) Superconductive bobbin with general transition
Aleksić et al. Planar thick film varistors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19881020

17Q First examination report despatched

Effective date: 19910704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19931201

Ref country code: DE

Effective date: 19931201

Ref country code: GB

Effective date: 19931201

Ref country code: SE

Effective date: 19931201

Ref country code: NL

Effective date: 19931201

REF Corresponds to:

Ref document number: 3788335

Country of ref document: DE

Date of ref document: 19940113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940312

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19931201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940930

Ref country code: LI

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19941208

Year of fee payment: 8

BERE Be: lapsed

Owner name: MAYER FERDY

Effective date: 19940930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: LE BREVET CI-DESSUS EST TOMBE EN DECHEANCE, FAUTE DE PAIEMENT, DE LA 8E ANNUITE.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST