EP0263314B1 - Transducer arrangement - Google Patents

Transducer arrangement Download PDF

Info

Publication number
EP0263314B1
EP0263314B1 EP87113165A EP87113165A EP0263314B1 EP 0263314 B1 EP0263314 B1 EP 0263314B1 EP 87113165 A EP87113165 A EP 87113165A EP 87113165 A EP87113165 A EP 87113165A EP 0263314 B1 EP0263314 B1 EP 0263314B1
Authority
EP
European Patent Office
Prior art keywords
transducer
transducers
frequency band
frequency
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87113165A
Other languages
German (de)
French (fr)
Other versions
EP0263314A2 (en
EP0263314A3 (en
Inventor
Manfred Meyersieck
Manfred Siegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fried Krupp AG
Original Assignee
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fried Krupp AG filed Critical Fried Krupp AG
Publication of EP0263314A2 publication Critical patent/EP0263314A2/en
Publication of EP0263314A3 publication Critical patent/EP0263314A3/en
Application granted granted Critical
Publication of EP0263314B1 publication Critical patent/EP0263314B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/343Circuits therefor using frequency variation or different frequencies

Definitions

  • the invention relates to a transducer arrangement for the directed transmission and / or reception of sound waves of the type mentioned in the preamble of claim 1.
  • Sonar systems are used for reconnaissance or location tasks at sea or for presentations of combat situations or for coastal protection, with their transducer arrangements receiving waterborne sound over a wide frequency range.
  • Bearings to targets are obtained via directional characteristics, which are formed with the received signals of the transducer arrangement.
  • Target distances are determined in that directional sound is sent and received after reflection at the target, the transit time between sending and receiving indicating the distance to the target.
  • the directional characteristic has at least a constant opening angle in a wide frequency range.
  • a transducer arrangement is known in which the individual has an opening angle of the directional characteristic that is constant over the frequency range under consideration
  • Transducers of the transducer arrangement are connected downstream of low-pass filters whose cutoff frequencies rise towards the center of the transducer arrangement, so that the transducer arrangement is effective over the entire length at low frequencies and its effective length is shortened towards higher frequencies. It is thereby achieved that the ratio of the effective length of the transducer arrangement and the wavelength of the sound received, which determines the opening angle, is the same for all frequencies.
  • a directional characteristic pointing to the normal of the transducer arrangement, which is formed by summation of the received signals, has a constant opening angle over the entire frequency range.
  • the low-pass filters In order to be able to form a direction for pivoting the directional characteristics with the filtered signals, the low-pass filters must have the same phase and amplitude responses in spite of different cut-off frequencies. A corresponding filter implementation is extremely difficult. Another problem is that secondary lobes of such a transducer arrangement are also frequency-dependent, since the transducers are arranged equidistantly over the length of the transducer arrangement and the effective number of transducers decreases with increasing frequency.
  • the object is achieved according to the invention in a converter arrangement of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.
  • the same number of converters are combined to form a converter group for each frequency band and the converter groups are arranged nested one inside the other along the length of the converter arrangement.
  • the distances between adjacent transducers are not the same if neighboring transducers belong to different transducer groups.
  • the distance between transducers of the same transducer group is, however, of the same size and is selected depending on a minimum wavelength in the associated frequency band in accordance with the uppermost frequency of this frequency band.
  • the distances are greatest and, for example, half as large as the smallest wavelength resulting from the upper limit frequency of this frequency band.
  • the transducers in this transducer group are distributed equidistantly over the entire length of the transducer arrangement.
  • the transmit or receive signals of the transducers of this transducer group are processed to form the directional characteristic.
  • the same number of transducers is equidistant at a distance of half the wavelength corresponding to the highest frequency in this frequency band between the existing transducers, with a shorter one rather than the entire length of the transducer arrangement between the outermost transducers belonging to this transducer group Distance is. This shorter distance is equal to the number of transducers in the transducer group multiplied by their distance from one another.
  • the ratio between the minimum wavelength in this frequency band or the distance between the transducers of this transducer group and the distance of the most distant transducers is again the same as the ratio between the smallest wavelength in the lowest frequency band or the spacing of the transducers of the first-mentioned transducer group divided by the entire length of the transducer assembly.
  • the advantage of this dimensioning is that the dimensioning rule known for achieving a constant opening angle for the two frequency bands, namely a constant ratio of wavelength and effective antenna length, is guaranteed and, in addition, the same antenna assignment is achieved through the number and spacing of the transducers per transducer group is such that the opening angle and secondary lobe behavior of the entire transducer arrangement are the same for the directional characteristics comprising the two frequency bands.
  • the transducer group of transducers used to form the directional characteristic in the next higher frequency band are required, are arranged in the same way between the transducers already existing in length, with downstream filters matched to the corresponding frequency band ensuring that only signals from these transducers in the corresponding frequency band are used to form the directional characteristic.
  • the particular advantages of the transducer arrangement according to the invention consist not only in the fact that the directional characteristic has the same properties with respect to the opening angle and secondary lobe behavior in the entire frequency range, but also in the fact that the space requirement of such a transducer arrangement is determined solely by the lower limit frequency of the frequency range.
  • a directional characteristic is obtained for each converter group in a directional generator downstream of the filters with the same passband, for example by delay or phase compensation.
  • the outputs of all directional formers are connected to a summing stage in which the directional characteristics for each frequency band are superposed and a directional characteristic with a constant opening angle and secondary lobe behavior is formed for the entire frequency range.
  • the advantage of frequency-separated direction formation and subsequent superimposition is that the filters have the same properties with respect to the amplitude and phase response for each frequency band, so that compensation can be easily set in any direction angle in any direction generator.
  • the entire multitude of transducers on the transducer arrangement is reduced by the further development according to the invention.
  • Selected transducers of a higher frequency band would have to be provided at locations where transducers of a transducer group of a lower frequency band are already arranged, so that these transducers can be assigned to both transducer groups.
  • Signals of these selected transducers are frequency-divided according to the advantageous development according to claim 3 to form the directional characteristic.
  • transducer arrangement according to claim 4, only a single direction generator is required, since the transducers of the same transducer group are arranged symmetrically to the right and left of the central transducer.
  • the middle converter is assigned to all converter groups.
  • a particularly advantageous embodiment of the converter arrangement according to the invention is specified in claim 6.
  • the division into octaves doubles the frequency band and halves the distance between the transducers of the associated transducer groups.
  • Transducers assigned to the transducer group corresponding to the lowest octave in the frequency band belong thus also to transducer groups correspondingly higher octaves, since they are arranged in squares which correspond to even-numbered fractions of the maximum transducer distance, so that the multitude of transducers is further reduced over the entire length of the transducer arrangement.
  • Each transducer that belongs to several transducer groups is followed by filters, the pass band of which includes the corresponding octaves.
  • Claim 7 specifies an advantageous development of the transducer arrangement according to the invention, with which such an improvement can be separated for each frequency band in a simple manner and can thus be carried out individually.
  • the invention is based on exemplary embodiments shown in the drawing for a transducer arrangement for transmitting and / or receiving sound waves within a wide range Frequency range shown.
  • the assignment of the length L 1 with transducers determines the secondary lobe behavior of the transducer arrangement or its directional characteristic.
  • the distance between the transducers depends on the smallest wavelength to be evaluated and is at most as large as half the wavelength in order to obtain clear direction finding results.
  • the upper limit frequency of 1000 Hz in the lower frequency band F1 determines the maximum transducer distance d1 and thus the transducer assignment over the length L1.
  • Each of the four transducers 11, 12, 13, 14 of this transducer group is followed by a filter 111, 112, 113, 114 with bandpass behavior which is tuned to the frequency band F 1, followed by a directional generator 150.
  • the direction generator 150 ensures the time delay of the received signals from the converters at the output of the filters 111 to 114 in accordance with the desired directional characteristic.
  • a transmission signal is fed into the directional generator and shifted in time with respect to one another.
  • Outputs of the directional generator are followed by n filters 111 to 114, which are tuned to the lower frequency band F 1 and are connected to the n converters 11, 12, 13, 14.
  • the ratio / L according to G1. (2) is the same for both groups of transducers 11 to 14 and 21 to 24 and is
  • Each of these converters 21, 22, 23, 24 is followed by a filter 221, 222, 223, 224, which is tuned to the frequency band F2 and has bandpass behavior.
  • a directional generator 151 the directional characteristic for the frequency band F2 is formed.
  • Each of the transducers 31 to 34 is followed by a filter 311 to 314, which is tuned to the frequency band F3.
  • the filters 311 to 314 are followed by a direction generator 152.
  • the direction formers 150, 151, 152 are connected to a summing circuit 400.
  • the directional characteristic signal at the output of the summing circuit 400 has constant properties with respect to the opening angle ⁇ and secondary lobe behavior for different swivel angles over the frequency range from 500 to 8000 Hz.
  • the converter arrangement is simplified when the frequency range is divided into octaves.
  • 2 shows such a converter arrangement for a directional characteristic within a frequency range from 250 to 2000 Hz
  • ⁇ f1 250 to 500 Hz
  • ⁇ f2 500 to 1000 Hz
  • ⁇ f3 1000 to 2000 Hz, each comprising an octave.
  • ⁇ f1 250 to 500 Hz
  • ⁇ f2 500 to 1000 Hz
  • ⁇ f3 1000 to 2000 Hz
  • a predefined secondary lobe behavior is realized by appropriately assigning the transducer arrangement.
  • the maximum transducer distance d 1.5 m is selected as the transducer distance.
  • the number n 5 is determined from the length L and the transducer distance d.
  • Two transducers 1001 and 1002 are arranged at a distance d and two transducers 1003 and 1004 are spaced 2d symmetrically to a transducer 1000 placed in the center.
  • the transducers 1000 to 1004 form a transducer group and are connected to filters 1010 to 1014 which pass the lowest frequency band ⁇ f 1.
  • a converter 1005 is arranged between the middle converter 1000 and the converter 1001, and a converter 1006 is arranged between the converters 1000 and 1002, each of which relates to the center converter 1000 Have distance d / 2.
  • the centrally located transducer 1000 and the transducers 1001 and 1002 not only belong to the first transducer group, but also to this second transducer group, since they are arranged in multiples of the transducer distance d / 2 from the centrally located transducer 1000.
  • the five converters 1000, 1001, 1002, 1005, 1006 thus form the second converter group. They are each followed by filters 2010 to 2014, which are tuned to the frequency band ⁇ f2.
  • a transducer group of five transducers 1000, 1005, 1006, 1007, 1008 is also provided on the transducer arrangement, the distance d / 4 of which is a quarter of the maximum transducer distance d because the upper limit frequency of 2000 Hz of this frequency band ⁇ f3 four times as high as the upper limit frequency of 500 Hz of the lowest frequency band ⁇ f1.
  • the middle converter 1000 thus belongs to all groups.
  • a third filter 3010 which is tuned to the frequency band ⁇ f3.
  • the transducers 1005 and 1006 belong to two transducer groups.
  • the filters 1010 to 3014 contain evaluation circuits for Shading factors. Depending on the frequency band and the geometric position of the transducer, shading factors are stored in the evaluation circuits, with which the filtered received signals are multiplied before the direction is formed.
  • the direction formation is simplified insofar as individually selected transducers 1000, 1001, 1002, 1005, 1006 are assigned to several transducer groups and their received signals require the same time delays to form the directional characteristic.
  • Received signals from the selected converters 1000, 1001, 1002, 1005, 1006 are combined at the output of the filters 1010, 2010, 3010 or 1011, 2011 or 1012, 2012, ... in summing stages 4010, 4011, ..., 4014 , before they are further processed in a downstream direction generator 4400 for directional characteristics.
  • a circuit arrangement according to DE-PS 21 36 780, for example, can be used as the direction generator 4400.
  • the received signal of the converter 1000 is combined in the entire frequency range after a frequency-dependent evaluation.
  • Rated reception signals from the transducers 1001 and 1002, which belong to both the first and the second transducer group, are combined in the summing stages 4011 and 4012 for the two frequency bands ⁇ f1 and ⁇ f2.
  • the evaluated reception signals of the converters 1005 and 1006 for the frequency bands ⁇ f2 and ⁇ f3 are added.
  • the two outer transducers 1003 and 1004 only belong to the transducer group that is required for direction formation in the lowest frequency band ⁇ f 1.
  • the converters 1007 and 1008 belong to that Transducer group, their evaluated received signals are fed directly into the direction generator 4400.
  • a directional characteristic signal can be taken off at the output of the directional generator 4400 and has the same properties at different swivel angles over the entire frequency range.

Description

Die Erfindung betrifft eine Wandleranordnung zum gerichteten Senden und/oder Empfangen von Schallwellen der im Oberbegriff des Anspruchs 1 genannten Art.The invention relates to a transducer arrangement for the directed transmission and / or reception of sound waves of the type mentioned in the preamble of claim 1.

Bei Aufklärungs- oder Ortungsaufgaben auf See oder für Lagedarstellungen von Gefechtssituationen oder beim Küstenschutz werden Sonaranlagen eingesetzt, mit deren Wandleranordnungen Wasserschall über einen breiten Frequenzbereich empfangen wird. Peilungen zu Zielen werden über Richtcharakteristiken gewonnen, die mit den Empfangssignalen der Wandleranordnung gebildet werden. Zielentfernungen werden dadurch ermittelt, daß gerichtet Schall gesendet und nach Reflexion am Ziel empfangen wird, wobei die Laufzeit zwischen Senden und Empfangen die Entfernung zum Ziel angibt. Um vergleichbare Ortungsdaten von Zielen, die Schallenergie unterschiedlichen Frequenzinhalts abstrahlen, zu erhalten, ist es wünschenswert, daß die Richtcharakteristik in einem breiten Frequenzbereich zumindest einen konstanten Öffnungswinkel aufweist.Sonar systems are used for reconnaissance or location tasks at sea or for presentations of combat situations or for coastal protection, with their transducer arrangements receiving waterborne sound over a wide frequency range. Bearings to targets are obtained via directional characteristics, which are formed with the received signals of the transducer arrangement. Target distances are determined in that directional sound is sent and received after reflection at the target, the transit time between sending and receiving indicating the distance to the target. In order to obtain comparable location data from targets which emit sound energy of different frequency contents, it is desirable that the directional characteristic has at least a constant opening angle in a wide frequency range.

Aus der Zeitschrift "Acustica", 1961, Vol. 11, "Constant-Beamwidth Arrays für Wide Frequency Bands" von J. C. Morris und E. Hands ist eine Wandleranordnung bekannt, bei der zum Erzielen eines über den betrachteten Frequenzbereich konstanten Öffnungswinkels der Richtcharakteristik den einzelnen Wandlern der Wandleranordnung Tiefpaßfilter nachgeschaltet sind, deren Grenzfrequenzen zur Mitte der Wandleranordnung hin steigen, so daß bei niedrigen Frequenzen die Wandleranordnung über die gesamte Länge wirksam ist und sich ihre wirksame Länge zu höheren Frequenzen hin verkürzt. Dadurch wird erreicht, daß das den Öffnungswinkel bestimmende Verhältnis aus wirksamer Länge der Wandleranordnung und Wellenlänge des empfangenen Schalls für alle Frequenzen gleich ist. Eine in die Normale der Wandleranordnung weisende Richtcharakteristik, die durch Summation der Empfangssignale gebildet wird, weist über den gesamten Frequenzbereich einen konstanten Öffnungswinkel auf.From the magazine "Acustica", 1961, Vol. 11, "Constant-Beamwidth Arrays for Wide Frequency Bands" by JC Morris and E. Hands, a transducer arrangement is known in which the individual has an opening angle of the directional characteristic that is constant over the frequency range under consideration Transducers of the transducer arrangement are connected downstream of low-pass filters whose cutoff frequencies rise towards the center of the transducer arrangement, so that the transducer arrangement is effective over the entire length at low frequencies and its effective length is shortened towards higher frequencies. It is thereby achieved that the ratio of the effective length of the transducer arrangement and the wavelength of the sound received, which determines the opening angle, is the same for all frequencies. A directional characteristic pointing to the normal of the transducer arrangement, which is formed by summation of the received signals, has a constant opening angle over the entire frequency range.

Um eine Richtungsbildung zum Schwenken der Richtcharakteristiken mit den gefilterten Signalen durchführen zu können, müssen die Tiefpaßfilter trotz unterschiedlicher Grenzfrequenz gleiche Phasen- und Amplitudengänge aufweisen. Eine entsprechende Filterrealisierung ist jedoch außerordentlich schwierig. Ein weiteres Problem besteht darin, daß sich Nebenzipfel einer solchen Wandleranordnung ebenfalls frequenzabhängig ausbilden, da die Wandler äquidistant über der Länge der Wandleranordnung angeordnet sind und die wirksame Anzahl an Wandlern mit wachsender Frequenz sinkt.In order to be able to form a direction for pivoting the directional characteristics with the filtered signals, the low-pass filters must have the same phase and amplitude responses in spite of different cut-off frequencies. A corresponding filter implementation is extremely difficult. Another problem is that secondary lobes of such a transducer arrangement are also frequency-dependent, since the transducers are arranged equidistantly over the length of the transducer arrangement and the effective number of transducers decreases with increasing frequency.

Es ist Aufgabe der vorliegenden Erfindung, eine Wandleranordnung der im Oberbegriff des Anspruchs 1 genannten Art zu schaffen, mit der Richtcharakteristiken mit konstantem Nebenzipfelverhalten über einem breiten Frequenzbereich gebildet werden können, deren Öffnungswinkel frequenzunabhängig sind.It is an object of the present invention to provide a converter arrangement of the type mentioned in the preamble of claim 1, with which directional characteristics with constant secondary lobe behavior can be formed over a wide frequency range, the opening angles of which are frequency-independent.

Die Aufgabe ist bei einer Wandleranordnung der im Oberbegriff des Anspruchs 1 angegebenen Gattung erfindungsgemäß durch die Merkmale im Kennzeichenteil des Anspruchs 1 gelöst.The object is achieved according to the invention in a converter arrangement of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.

Bei der erfindungsgemäßen Wandleranordnung werden zum Bilden der Richtcharakteristik innerhalb eines Frequenzbereichs, der in Frequenzbänder aufgeteilt ist, für jedes Frequenzband gleich viele Wandler zu einer Wandlergruppe zusammengefaßt und die Wandlergruppen ineinander verschachtelt auf der Länge der Wandleranordnung angeordnet. Die Abstände benachbarter Wandler sind nicht gleich, wenn benachbarte Wandler unterschiedlichen Wandlergruppen angehören. Der Abstand zwischen Wandlern der gleichen Wandlergruppe ist aber gleich groß und abhängig von einer minimalen Wellenlänge im zugehörigen Frequenzband entsprechend der obersten Frequenz dieses Frequenzbandes gewählt.In the converter arrangement according to the invention, in order to form the directional characteristic within a frequency range which is divided into frequency bands, the same number of converters are combined to form a converter group for each frequency band and the converter groups are arranged nested one inside the other along the length of the converter arrangement. The distances between adjacent transducers are not the same if neighboring transducers belong to different transducer groups. The distance between transducers of the same transducer group is, however, of the same size and is selected depending on a minimum wavelength in the associated frequency band in accordance with the uppermost frequency of this frequency band.

Für die Wandler der dem untersten Frequenzband zugeordneten Wandlergruppe sind die Abstände am größten und beispielsweise halb so groß wie die aus der oberen Grenzfrequenz dieses Frequenzbandes resultierende, kleinste Wellenlänge. Die Wandler dieser Wandlergruppe sind äquidistant über die gesamte Länge der Wandleranordnung verteilt. Über gleiche Filter, beziehungsweise Bandpässe, die das unterste Frequenzband durchlassen, werden die Sende- oder Empfangssignale der Wandler dieser Wandlergruppe zum Bilden der Richtcharakteristik verarbeitet. Für das angrenzende, nächsthöhere Frequenzband ist die gleiche Anzahl Wandler äquidistant im Abstand der halben Wellenlänge entsprechend der in diesem Frequenzband höchsten Frequenz zwischen den schon vorhandenen Wandler untergebracht, wobei zwischen den äußersten zu dieser Wandlergruppe gehörenden Wandlern nicht die gesamte Länge der Wandleranordnung, sondern eine kürzere Distanz liegt. Diese kürzere Distanz ist gleich der Anzahl der Wandler der Wandlergruppe multipliziert mit ihrem Abstand untereinander. Das Verhältnis zwischen der minimalen Wellenlänge in diesem Frequenzband bzw. dem Abstand der Wandler dieser Wandlergruppe untereinander und der Distanz der am weitesten voneinander entfernt liegenden Wandler ist aber wieder gleich dem Verhältnis zwischen der kleinsten Wellenlänge im untersten Frequenzband bzw. dem Abstand der Wandler der erstgenannten Wandlergruppe geteilt durch die gesamte Länge der Wandleranordnung. Der Vorteil bei dieser Dimensionierung besteht darin, daß die zur Erzielung eines konstanten Öffnungswinkels für die beiden Frequenzbänder bekannte Dimensionierungsvorschrift, nämlich konstantes Verhältnis aus Wellenlänge und wirksamer Antennenlänge, gewährleistet ist und darüber hinaus eine gleiche Antennenbelegung durch die Anzahl und die Abstände der Wandler je Wandlergruppe realisiert ist, so daß Öffnungswinkel und Nebenzipfelverhalten der gesamten Wandleranordnung für die die beiden Frequenzbänder umfassende Richtcharakteristiken gleich sind.For the transducers of the transducer group assigned to the lowest frequency band, the distances are greatest and, for example, half as large as the smallest wavelength resulting from the upper limit frequency of this frequency band. The transducers in this transducer group are distributed equidistantly over the entire length of the transducer arrangement. Using the same filter or bandpass, which pass the lowest frequency band, the transmit or receive signals of the transducers of this transducer group are processed to form the directional characteristic. For the adjacent, next higher frequency band, the same number of transducers is equidistant at a distance of half the wavelength corresponding to the highest frequency in this frequency band between the existing transducers, with a shorter one rather than the entire length of the transducer arrangement between the outermost transducers belonging to this transducer group Distance is. This shorter distance is equal to the number of transducers in the transducer group multiplied by their distance from one another. However, the ratio between the minimum wavelength in this frequency band or the distance between the transducers of this transducer group and the distance of the most distant transducers is again the same as the ratio between the smallest wavelength in the lowest frequency band or the spacing of the transducers of the first-mentioned transducer group divided by the entire length of the transducer assembly. The advantage of this dimensioning is that the dimensioning rule known for achieving a constant opening angle for the two frequency bands, namely a constant ratio of wavelength and effective antenna length, is guaranteed and, in addition, the same antenna assignment is achieved through the number and spacing of the transducers per transducer group is such that the opening angle and secondary lobe behavior of the entire transducer arrangement are the same for the directional characteristics comprising the two frequency bands.

Die Wandlergruppe von Wandlern, die zum Bilden der Richtcharakteristik im jeweils nächsthöheren Frequenzband benötigt werden, werden in gleicher Weise zwischen den auf der Länge schon vorhandenen Wandlern angeordnet, wobei nachgeordnete, auf das entsprechende Frequenzband abgestimmte Filter dafür sorgen, daß nur Signale dieser Wandler im entsprechenden Frequenzband zum Bilden der Richtcharakteristik verwendet werden.The transducer group of transducers used to form the directional characteristic in the next higher frequency band are required, are arranged in the same way between the transducers already existing in length, with downstream filters matched to the corresponding frequency band ensuring that only signals from these transducers in the corresponding frequency band are used to form the directional characteristic.

Die besonderen Vorteile der erfindungsgemäßen Wandleranordnung bestehen nicht nur darin, daß die Richtcharakteristik im gesamten Frequenzbereich gleiche Eigenschaften bezüglich Öffnungswinkel und Nebenzipfelverhalten aufweist, sondern auch darin, daß der Platzbedarf einer solchen Wandleranordnung einzig und allein durch die untere Grenzfrequenz des Frequenzbereichs bestimmt wird.The particular advantages of the transducer arrangement according to the invention consist not only in the fact that the directional characteristic has the same properties with respect to the opening angle and secondary lobe behavior in the entire frequency range, but also in the fact that the space requirement of such a transducer arrangement is determined solely by the lower limit frequency of the frequency range.

Je Wandlergruppe wird in einem den Filtern mit gleichem Durchlaßbereich nachgeschalteten Richtungsbildner eine Richtcharakteristik beispielsweise durch Laufzeit- oder Phasenkompensation gewonnen. Die Ausgänge sämtlicher Richtungsbildner sind mit einer Summierstufe verbunden, in der die Richtcharakteristiken für jedes Frequenzband superponiert werden und eine Richtcharakteristik mit konstantem Öffnungswinkel und Nebenzipfelverhalten für den gesamten Frequenzbereich gebildet wird. Der Vorteil der frequenzmäßig getrennten Richtungsbildung und anschließenden Überlagerung besteht darin, daß die Filter je Frequenzband bezüglich Amplituden- und Phasengang gleiche Eigenschaften aufweisen, so daß in jedem Richtungsbildner eine Kompensation auch in beliebige Schwenkwinkel problemlos einstellbar ist.A directional characteristic is obtained for each converter group in a directional generator downstream of the filters with the same passband, for example by delay or phase compensation. The outputs of all directional formers are connected to a summing stage in which the directional characteristics for each frequency band are superposed and a directional characteristic with a constant opening angle and secondary lobe behavior is formed for the entire frequency range. The advantage of frequency-separated direction formation and subsequent superimposition is that the filters have the same properties with respect to the amplitude and phase response for each frequency band, so that compensation can be easily set in any direction angle in any direction generator.

Bei einer Aufteilung des Frequenzbereiches in Frequenzbänder, die Vielfache zueinander sind, wird die gesamte Vielzahl an Wandlern auf der Wandleranordnung durch die erfindungsgemäße Weiterbildung nach Anspruch 2 reduziert. Ausgewählte Wandler eines höheren Frequenzbandes müßten an Orten vorgesehen werden, an denen bereits Wandler einer Wandlergruppe eines tieferen Frequenzbandes angeordnet sind, so daß diese Wandler beiden Wandlergruppen zugeordnet werden können. Signale dieser ausgewählten Wandler werden gemäß der vorteilhaften Weiterbildung nach Anspruch 3 zum Bilden der Richtcharakteristik frequenzmäßig aufgeteilt.If the frequency range is divided into frequency bands that are multiples of one another, the entire multitude of transducers on the transducer arrangement is reduced by the further development according to the invention. Selected transducers of a higher frequency band would have to be provided at locations where transducers of a transducer group of a lower frequency band are already arranged, so that these transducers can be assigned to both transducer groups. Signals of these selected transducers are frequency-divided according to the advantageous development according to claim 3 to form the directional characteristic.

Bei der vorteilhaften Weiterbildung der Wandleranordnung nach Anspruch 4 wird nur ein einziger Richtungsbildner benötigt, da die Wandler derselben Wandlergruppe rechts und links symmetrisch zum mittleren Wandler angeordnet sind. Der mittlere Wandler ist allen Wandlergruppen zugeordnet.In the advantageous further development of the transducer arrangement according to claim 4, only a single direction generator is required, since the transducers of the same transducer group are arranged symmetrically to the right and left of the central transducer. The middle converter is assigned to all converter groups.

Die Bemessung der unterschiedlichen Abstände der Wandler für jede Wandlergruppe nach Anspruch 5, bei der beispielsweise der Bruchteil ein Viertel der kleinsten Wellenlänge des zugehörigen Frequenzbandes beträgt, sorgt für absolut gleichartig geometrische Verhältnisse.The dimensioning of the different distances of the transducers for each transducer group according to claim 5, in which, for example, the fraction is a quarter of the smallest wavelength of the associated frequency band, ensures absolutely identical geometric relationships.

Eine besonders vorteilhafte Ausführungsform der erfindungsgemäßen Wandleranordnung ist in Anspruch 6 angegeben. Die Aufteilung in Oktaven bringt jeweils eine Verdopplung des Frequenzbandes und eine Halbierung des Abstandes der Wandler der zugehörigen Wandlergruppen mit sich. Wandler, die zu der Wandlergruppe entsprechend der untersten Oktave im Frequenzband zugeordnet sind, gehören damit auch zu Wandlergruppen entsprechend höherer Oktaven, da sie auf Plätzen angeordnet sind, die geradzahligen Bruchteilen des maximalen Wandlerabstandes entsprechen, so daß sich die Vielzahl an Wandlern über die gesamte Länge der Wandleranordnung noch weiter reduziert. Jedem Wandler, der mehreren Wandlergruppen angehört, werden Filter nachgeordnet, deren Durchlaßbereich die entsprechenden Oktaven umfassen. Besonders vorteilhaft ist es für eine weitere Signalverarbeitung, den Wandlern einzelne Filter, die jeweils auf eine Oktave abgestimmt sind, nachzuschalten und den Filtern eines Wandlers eine Summierstufe nachzuordnen. Auch bei einer Wandleranordnung gemäß Anspruch 6 wird nur ein einziger Richtungsbildner zum Erstellen der Richtcharakteristik für den gesamten Frequenzbereich benötigt, der entsprechend voreingestellter Laufzeitkompensation Richtcharakteristiksignale für unterschiedliche Schwenkwinkel mit gleichen Eigenschaften liefert.A particularly advantageous embodiment of the converter arrangement according to the invention is specified in claim 6. The division into octaves doubles the frequency band and halves the distance between the transducers of the associated transducer groups. Transducers assigned to the transducer group corresponding to the lowest octave in the frequency band belong thus also to transducer groups correspondingly higher octaves, since they are arranged in squares which correspond to even-numbered fractions of the maximum transducer distance, so that the multitude of transducers is further reduced over the entire length of the transducer arrangement. Each transducer that belongs to several transducer groups is followed by filters, the pass band of which includes the corresponding octaves. It is particularly advantageous for further signal processing to connect individual filters, each tuned to an octave, to the converters and to assign a summing stage to the filters of a converter. Even in the case of a converter arrangement according to claim 6, only a single direction generator is required to create the directional characteristic for the entire frequency range, which delivers directional characteristic signals for different swivel angles with the same properties in accordance with preset transit time compensation.

Zur Verbesserung der Nebenzipfeldämpfung von Richtcharakteristiken ist es üblich, Sende- oder Empfangssignale der Wandler entsprechend der Lage des Wandlers auf der Wandleranordnung mit sog. Shading-Faktoren zu bewerten.In order to improve the secondary zip field attenuation of directional characteristics, it is customary to evaluate transmit or receive signals of the transducers with so-called shading factors in accordance with the position of the transducer on the transducer arrangement.

Anspruch 7 gibt eine vorteilhafte Weiterbildung der erfindungsgemäßen Wandleranordnung an, mit der eine solche Verbesserung in einfacher Weise für jedes Frequenzband getrennt und somit individuell durchführbar ist.Claim 7 specifies an advantageous development of the transducer arrangement according to the invention, with which such an improvement can be separated for each frequency band in a simple manner and can thus be carried out individually.

Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen für eine Wandleranordnung zum Senden und/oder Empfangen von Schallwellen innerhalb eines breiten Frequenzbereichs dargestellt.The invention is based on exemplary embodiments shown in the drawing for a transducer arrangement for transmitting and / or receiving sound waves within a wide range Frequency range shown.

Es zeigen:

Fig. 1
eine schematische Darstellung einer Wandleranordnung bei einer Aufteilung des Frequenzbereichs in Frequenzbänder unterschiedlichen Frequenzumfangs,
Fig. 2
eine schematische Darstellung einer Wandleranordnung bei einer Aufteilung des Frequenzbereichs in Oktaven und nachgeschalteter Richtungsbildung.
Show it:
Fig. 1
1 shows a schematic representation of a transducer arrangement when the frequency range is divided into frequency bands of different frequency ranges,
Fig. 2
a schematic representation of a transducer arrangement with a division of the frequency range into octaves and subsequent direction formation.

Fig. 1 zeigt eine Wandleranordnung zum Senden und/oder Empfangen von Schallenergie, deren Richtcharakteristik in einem Frequenzbereich von beispielsweise 500 bis 8000 Hz einen konstanten Öffnungswinkel ß und gleiches Nebenzipfelverhalten aufweist. Der Öffnungswinkel ß wird durch die untere Grenzfrequenz fu = 500 Hz und die Länge L₁ der Wandleranordnung bestimmt, wie in dem vorher zitierten Aufsatz von Morris und Hands beschrieben.

Figure imgb0001
1 shows a transducer arrangement for transmitting and / or receiving sound energy, the directional characteristic of which has a constant opening angle β and the same secondary lobe behavior in a frequency range from 500 to 8000 Hz, for example. The opening angle ß is determined by the lower limit frequency f u = 500 Hz and the length L₁ of the transducer arrangement, as described in the previously cited article by Morris and Hands.
Figure imgb0001

Setzt man für die untere Grenzfrequenz fu =

Figure imgb0002

wobei λ u die zugehörige Wellenlänge und c die Ausbreitungsgeschwindigkeit der Schallenergie ist, so erhält man den Öffnungswinkel β zu:
Figure imgb0003
If one sets for the lower limit frequency f u =
Figure imgb0002

where λ u is the associated wavelength and c is the propagation speed of the sound energy, the opening angle β is obtained as follows:
Figure imgb0003

Die Länge L₁ der Wandleranordnung wird entsprechend dem gewünschten Öffnungswinkel β abhängig von der unteren Grenzfrequenz dimensioniert. Aus Gl. (2) sieht man, daß der Öffnungswinkel β konstant bleibt, wenn das Verhältnis λu/L₁ konstant bleibt. Über den Frequenzbereich von 500 bis 8000 Hz und bei einer Ausbreitungsgeschwindigkeit c = 1500 m/s nimmt die zugehörige Wellenlänge λ aber um mehr als das Zehnfache ab.The length L₁ of the transducer arrangement is dimensioned according to the desired opening angle β depending on the lower limit frequency. From Eq. (2) it can be seen that the opening angle β remains constant if the ratio λ u / L₁ remains constant. However, the associated wavelength λ decreases by more than ten times over the frequency range from 500 to 8000 Hz and with a propagation speed c = 1500 m / s.

Die Belegung der Länge L₁ mit Wandlern bestimmt das Nebenzipfelverhalten der Wandleranordnung bzw. deren Richtcharakteristik. Der Abstand zwischen den Wandlern richtet sich nach der kleinsten auszuwertenden Wellenlänge und ist höchstens so groß wie die halbe Wellenlänge, um eindeutige Peilergebnisse zu erhalten.The assignment of the length L 1 with transducers determines the secondary lobe behavior of the transducer arrangement or its directional characteristic. The distance between the transducers depends on the smallest wavelength to be evaluated and is at most as large as half the wavelength in order to obtain clear direction finding results.

Für die Wandleranordnung nach Fig. 1 wird der Frequenzbereich in drei Frequenzbänder aufgeteilt, F₁ = 500 bis 1000 Hz,F₂ = 1000 bis 5000 Hz, F₃ = 5000 bis 8000 Hz. Die obere Grenzfrequenz von 1000 Hz im unteren Frequenzband F₁ bestimmt den maximalen Wandlerabstand d₁ und damit die Wandlerbelegung über die Länge L₁.

Figure imgb0004
1, the frequency range is divided into three frequency bands, F₁ = 500 to 1000 Hz, F₂ = 1000 to 5000 Hz, F₃ = 5000 to 8000 Hz. The upper limit frequency of 1000 Hz in the lower frequency band F₁ determines the maximum transducer distance d₁ and thus the transducer assignment over the length L₁.
Figure imgb0004

Für L₁ = 2,25 m beträgt die Anzahl an Wandlern n = 4. Wandler 11, 12, 13, 14 sind in Fig. 1 im Abstand d₁ = 0,75 m über die Länge L₁ = 2,25 m angeordnet und bilden eine Wandlergruppe. In der Praxis wird man eine wesentlich größere Länge L₁ mit einer wesentlich größeren Anzahl n an Wandlern belegen, die in Fig. 1 gezeigte Wandleranordnung ist nur beispielhaft zu verstehen.For L₁ = 2.25 m, the number of transducers is n = 4. Transducers 11, 12, 13, 14 are arranged in Fig. 1 at a distance d₁ = 0.75 m over the length L₁ = 2.25 m and form one Converter group. In practice you will occupy a much greater length L 1 with a much larger number n of transducers, the transducer arrangement shown in Fig. 1 is only to be understood as an example.

Jedem der vier Wandler 11, 12, 13, 14 dieser Wandlergruppe ist ein auf das Frequenzband F₁ abgestimmtes Filter 111, 112, 113, 114 mit Bandpaßverhalten nachgeschaltet, dem sich ein Richtungsbildner 150 anschließt. Im Empfangsfall sorgt der Richtungsbildner 150 für die zeitliche Verzögerung der Empfangssignale der Wandler am Ausgang der Filter 111 bis 114 entsprechend der gewünschten Richtcharakteristik.Each of the four transducers 11, 12, 13, 14 of this transducer group is followed by a filter 111, 112, 113, 114 with bandpass behavior which is tuned to the frequency band F 1, followed by a directional generator 150. In the case of reception, the direction generator 150 ensures the time delay of the received signals from the converters at the output of the filters 111 to 114 in accordance with the desired directional characteristic.

Im hier nicht dargestellten Sendefall wird in den Richtungsbildner ein Sendesignal eingespeist und zeitlich gegeneinander verschoben. Ausgängen des Richtungsbildners sind n Filter 111 bis 114 nachgeschaltet, die auf das untere Frequenzband F₁ abgestimmt sind und mit den n Wandlern 11, 12, 13, 14 verbunden sind.In the case of transmission not shown here, a transmission signal is fed into the directional generator and shifted in time with respect to one another. Outputs of the directional generator are followed by n filters 111 to 114, which are tuned to the lower frequency band F 1 and are connected to the n converters 11, 12, 13, 14.

Zwischen den Wandlern 11, 12, 13, 14 sind symmetrisch zur Mitte der Wandleranordnung vier weitere Wandler 21, 22, 23, 24 angeordnet, deren Abstände d₂ abhängig von der oberen Grenzfrequenz 5000 Hz des Frequenzbandes F₂ gewählt sind. Ihr Abstand zueinander beträgt d₂ = λ₂/2 = 0,15 m, die gesamte Länge L₂ der Gruppe von Wandlern 21, 22, 23, 24 beträgt L₂ = 0,45 m. Das Verhältnis /L entsprechend G1. (2) ist für beide Gruppen von Wandlern 11 bis 14 bzw. 21 bis 24 gleich und beträgt

Figure imgb0005
Between the transducers 11, 12, 13, 14, four further transducers 21, 22, 23, 24 are arranged symmetrically to the center of the transducer arrangement, the distances d₂ of which are chosen depending on the upper limit frequency 5000 Hz of the frequency band F₂. Their distance from each other is d₂ = λ₂ / 2 = 0.15 m, the total length L₂ of the group of transducers 21, 22, 23, 24 is L₂ = 0.45 m. The ratio / L according to G1. (2) is the same for both groups of transducers 11 to 14 and 21 to 24 and is
Figure imgb0005

Jedem dieser Wandler 21, 22, 23, 24 ist ein Filter 221, 222, 223, 224 nachgeschaltet, das auf das Frequenzband F₂ abgestimmt ist und Bandpaßverhalten aufweist. In einem Richtungsbildner 151 wird die Richtcharakteristik für das Frequenzband F₂ gebildet.Each of these converters 21, 22, 23, 24 is followed by a filter 221, 222, 223, 224, which is tuned to the frequency band F₂ and has bandpass behavior. In a directional generator 151, the directional characteristic for the frequency band F₂ is formed.

Eine dritte Wandlergruppe mit Wandlern 31, 32, 33, 34 wird zur Richtungsbildung im oberen Frequenzband F₃ = 5000 bis 8000 Hz verwendet. Ihr Abstand d₃ bestimmt sich aus der oberen Grenzfrequenz von 8000 Hz zu d₃ = 0,09 m. Jedem der Wandler 31 bis 34 ist ein Filter 311 bis 314 nachgeschaltet, das auf das Frequenzband F₃ abgestimmt ist. Den Filtern 311 bis 314 schließt sich ein Richtungsbildner 152 an.A third transducer group with transducers 31, 32, 33, 34 is used to form the direction in the upper frequency band F₃ = 5000 to 8000 Hz. Your distance d₃ is determined from the upper limit frequency of 8000 Hz to d₃ = 0.09 m. Each of the transducers 31 to 34 is followed by a filter 311 to 314, which is tuned to the frequency band F₃. The filters 311 to 314 are followed by a direction generator 152.

Die Richtungsbildner 150, 151, 152 sind mit einer Summierschaltung 400 verbunden. Im Empfangsfall weist nun das Richtcharakteristiksignal am Ausgang der Summierschaltung 400 über dem Frequenzbereich von 500 bis 8000 Hz für unterschiedliche Schwenkwinkel konstante Eigenschaften bezüglich Öffnungswinkel β und Nebenzipfelverhalten auf.The direction formers 150, 151, 152 are connected to a summing circuit 400. When it is received, the directional characteristic signal at the output of the summing circuit 400 has constant properties with respect to the opening angle β and secondary lobe behavior for different swivel angles over the frequency range from 500 to 8000 Hz.

Die Wandleranordnung vereinfacht sich bei einer Aufteilung des Frequenzbereichs in Oktaven. Fig. 2 zeigt eine solche Wandleranordnung für eine Richtcharakteristik innerhalb eines Frequenzbereichs von 250 bis 2000 Hz. Dieser Frequenzbereich wird in drei Frequenzbänder Δf₁ = 250 bis 500 Hz, Δf₂ = 500 bis 1000 Hz und Δf₃ = 1000 bis 2000 Hz aufgeteilt, die jeweils eine Oktave umfassen. Abhängig vom Öffnungswinkel β wird gemäß G1. 2 die Länge L der Wandleranordnung für das untere Frequenzband Δf₁ bestimmt. Wenn die Länge L aus konstruktiven Gründen nicht frei vorgebbar ist, kann durch Festlegung der unteren Grenzfrequenz des Frequenzbereichs ein bestimmter Öffnungswinkel β eingestellt werden. Entsprechend der höchsten Frequenz von 500 Hz im untersten Frequenzband Δf₁ wird der maximale Wandlerabstand zu

Figure imgb0006

berechnet. Ein vorgegebenes Nebenzipfelverhalten wird durch entsprechende Belegung der Wandleranordnung realisiert. Hier ist als Wandlerabstand der maximale Wandlerabstand d = 1,5 m gewählt. Aus der Länge L und dem Wandlerabstand d wird die Anzahl n = 5 bestimmt. Symmetrisch zu einem mittig plazierten Wandler 1000 sind jeweils zwei Wandler 1001 und 1002 im Abstand d und zwei Wandler 1003 und 1004 im Abstand 2d angeordnet. Die Wandler 1000 bis 1004 bilden eine Wandlergruppe und sind mit Filtern 1010 bis 1014 verbunden, die das unterste Frequenzband Δf₁ durchlassen.The converter arrangement is simplified when the frequency range is divided into octaves. 2 shows such a converter arrangement for a directional characteristic within a frequency range from 250 to 2000 Hz Frequency range is divided into three frequency bands Δf₁ = 250 to 500 Hz, Δf₂ = 500 to 1000 Hz and Δf₃ = 1000 to 2000 Hz, each comprising an octave. Depending on the opening angle β, according to G1. 2 determines the length L of the transducer arrangement for the lower frequency band Δf₁. If the length L cannot be freely specified for design reasons, a specific opening angle β can be set by specifying the lower limit frequency of the frequency range. According to the highest frequency of 500 Hz in the lowest frequency band Δf₁, the maximum transducer distance is too
Figure imgb0006

calculated. A predefined secondary lobe behavior is realized by appropriately assigning the transducer arrangement. Here, the maximum transducer distance d = 1.5 m is selected as the transducer distance. The number n = 5 is determined from the length L and the transducer distance d. Two transducers 1001 and 1002 are arranged at a distance d and two transducers 1003 and 1004 are spaced 2d symmetrically to a transducer 1000 placed in the center. The transducers 1000 to 1004 form a transducer group and are connected to filters 1010 to 1014 which pass the lowest frequency band Δf 1.

Durch die Aufteilung des Frequenzbereichs in Oktaven beträgt der Abstand der Wandler der zweiten Wandlergruppe, die zum Bilden der Richtcharakteristik für das Frequenzband Δf₂ benötigt wird, gerade gleich d/2 = 0,75 m. Zwischen dem mittleren Wandler 1000 und dem Wandler 1001 ist ein Wandler 1005 und zwischen dem Wandler 1000 und 1002 ein Wandler 1006 angeordnet, die jeweils zum mittigen Wandler 1000 den Abstand d/2 aufweisen. Der mittig angeordnete Wandler 1000 und die Wandler 1001 und 1002 gehören nicht nur zur ersten Wandlergruppe, sondern auch zu dieser zweiten Wandlergruppe, da sie in Vielfachen des Wandlerabstandes d/2 zum mittig angeordneten Wandler 1000 angeordnet sind. Die fünf Wandler 1000, 1001, 1002, 1005, 1006 bilden somit die zweite Wandlergruppe. Ihnen sind jeweils Filter 2010 bis 2014 nachgeschaltet, die auf das Frequenzband Δf₂ abgestimmt sind.By dividing the frequency range into octaves, the distance between the transducers of the second transducer group, which is required to form the directional characteristic for the frequency band Δf₂, is just equal to d / 2 = 0.75 m. A converter 1005 is arranged between the middle converter 1000 and the converter 1001, and a converter 1006 is arranged between the converters 1000 and 1002, each of which relates to the center converter 1000 Have distance d / 2. The centrally located transducer 1000 and the transducers 1001 and 1002 not only belong to the first transducer group, but also to this second transducer group, since they are arranged in multiples of the transducer distance d / 2 from the centrally located transducer 1000. The five converters 1000, 1001, 1002, 1005, 1006 thus form the second converter group. They are each followed by filters 2010 to 2014, which are tuned to the frequency band Δf₂.

Für das Frequenzband Δf₃ wird ebenfalls eine Wandlergruppe von fünf Wandlern 1000, 1005, 1006, 1007, 1008 auf der Wandleranordnung vorgesehen, deren Abstand d/4 jeweils ein Viertel des maximalen Wandlerabstands d beträgt, weil die obere Grenzfrequenz von 2000 Hz dieses Frequenzbandes Δf₃ viermal so hoch wie die obere Grenzfrequenz von 500 Hz des untersten Frequenzbandes Δf₁ ist. Der mittlere Wandler 1000 gehört somit zu sämtlichen Gruppen. Ihm ist neben den Filtern 1010 und 2010 ein drittes Filter 3010, das auf das Frequenzband Δf₃ abgestimmt ist, nachgeschaltet. Die Wandler 1005 und 1006 gehören zu zwei Wandlergruppen. Ihnen sind jeweils zwei Filter 2013, 2014 und 3013, 3014 für das mittlere Frequenzband Δf₂ und das oberste Frequenzband Δf₃ als Durchlaßbereich nachgeordnet, während den Wandlern 1007 und 1008 jeweils nur ein auf das oberste Frequenzband Δf₃ abgestimmtes Filter 3011 und 3012 nachgeschaltet ist. Die unterschiedlichen Abstände der Wandler der drei Wandlergruppen bilden eine geometrische Reihe, da sie d, d/2, d/4 betragen.For the frequency band Δf₃, a transducer group of five transducers 1000, 1005, 1006, 1007, 1008 is also provided on the transducer arrangement, the distance d / 4 of which is a quarter of the maximum transducer distance d because the upper limit frequency of 2000 Hz of this frequency band Δf₃ four times as high as the upper limit frequency of 500 Hz of the lowest frequency band Δf₁. The middle converter 1000 thus belongs to all groups. In addition to the filters 1010 and 2010, it is followed by a third filter 3010, which is tuned to the frequency band Δf₃. The transducers 1005 and 1006 belong to two transducer groups. You are each two filters 2013, 2014 and 3013, 3014 for the middle frequency band Δf₂ and the uppermost frequency band Δf₃ downstream as a pass band, while the converters 1007 and 1008 each have only one tuned to the top frequency band Δf₃ filter 3011 and 3012. The different distances between the transducers of the three transducer groups form a geometric series since they are d, d / 2, d / 4.

Zur weiteren Verbesserung der Richtcharakteristik enthalten die Filter 1010 bis 3014 Bewertungsschaltungen für Shading-Faktoren. Abhängig vom Frequenzband und der geometrischen Lage des Wandlers sind in den Bewertungsschaltungen Shading-Faktoren eingespeichert, mit denen die gefilterten Empfangssignale vor der Richtungsbildung multipliziert werden.To further improve the directional characteristic, the filters 1010 to 3014 contain evaluation circuits for Shading factors. Depending on the frequency band and the geometric position of the transducer, shading factors are stored in the evaluation circuits, with which the filtered received signals are multiplied before the direction is formed.

Durch die besonderen geometrischen Verhältnisse der Wandleranordnung gemäß Fig. 2 vereinfacht sich die Richtungsbildung insofern, als einzelne ausgewählte Wandler 1000, 1001, 1002, 1005, 1006 mehreren Wandlergruppen zugeordnet sind und ihre Empfangssignale zum Bilden der Richtcharakteristik gleiche zeitliche Verzögerungen benötigen. Empfangssignale der ausgewählten Wandler 1000, 1001, 1002, 1005, 1006 werden am Ausgang der Filter 1010, 2010, 3010 bzw. 1011, 2011 bzw. 1012, 2012, ... jeweils in Summierstufen 4010, 4011, ..., 4014 zusammengefaßt, bevor sie in einem nachgeschalteten Richtungsbildner 4400 zur Richtcharakteristik weiterverarbeitet werden. Als Richtungsbildner 4400 ist beispielsweise eine Schaltungsanordnung gemäß DE-PS 21 36 780 verwendbar.Due to the special geometric relationships of the transducer arrangement according to FIG. 2, the direction formation is simplified insofar as individually selected transducers 1000, 1001, 1002, 1005, 1006 are assigned to several transducer groups and their received signals require the same time delays to form the directional characteristic. Received signals from the selected converters 1000, 1001, 1002, 1005, 1006 are combined at the output of the filters 1010, 2010, 3010 or 1011, 2011 or 1012, 2012, ... in summing stages 4010, 4011, ..., 4014 , before they are further processed in a downstream direction generator 4400 for directional characteristics. A circuit arrangement according to DE-PS 21 36 780, for example, can be used as the direction generator 4400.

In der Summierstufe 4010 wird das Empfangssignal des Wandlers 1000 im gesamten Frequenzbereich nach einer frequenzabhängigen Bewertung zusammengefaßt. Bewertete Empfangssignale der Wandler 1001 und 1002, die sowohl zur ersten, wie auch zur zweiten Wandlergruppe gehören, werden in den Summierstufen 4011 und 4012 für die beiden Frequenzbänder Δf₁ und Δf₂ zusammengefaßt. In den Summierstufen 4013 und 4014 werden die bewerteten Empfangssignale der Wandler 1005 und 1006 für die Frequenzbänder Δf₂ und Δf₃ addiert. Die beiden äußeren Wandler 1003 und 1004 gehören nur zur Wandlergruppe, die zur Richtungsbildung im untersten Frequenzband Δf₁ benötigt wird. Die Wandler 1007 und 1008 gehören zu der dem Wandlergruppe, ihre bewerteten Empfangssignale werden unmittelbar in den Richtungsbildner 4400 eingespeist. Am Ausgang des Richtungsbildner 4400 ist ein Richtcharakteristiksignal abnehmbar, das bei unterschiedlichen Schwenkwinkeln über dem gesamten Frequenzbereich gleiche Eigenschaften aufweist.In the summing stage 4010, the received signal of the converter 1000 is combined in the entire frequency range after a frequency-dependent evaluation. Rated reception signals from the transducers 1001 and 1002, which belong to both the first and the second transducer group, are combined in the summing stages 4011 and 4012 for the two frequency bands Δf₁ and Δf₂. In the summing stages 4013 and 4014, the evaluated reception signals of the converters 1005 and 1006 for the frequency bands Δf₂ and Δf₃ are added. The two outer transducers 1003 and 1004 only belong to the transducer group that is required for direction formation in the lowest frequency band Δf 1. The converters 1007 and 1008 belong to that Transducer group, their evaluated received signals are fed directly into the direction generator 4400. A directional characteristic signal can be taken off at the output of the directional generator 4400 and has the same properties at different swivel angles over the entire frequency range.

Claims (7)

  1. A transducer arrangement for the directional transmission and/or reception of sound waves within a wide range of frequency, having a plurality of transducers lined up over a length and filters which are connected to the transducers and whose output signals are combined to form a directional characteristic, characterized in that of the plurality each transducer group is formed by the same number (n) of transducers (11 to 14; 21 to 24; 31 to 34; 1000 to 1004; 1000, 1001, 1002, 1005, 1006; 1000, 1005, 1006, 1007, 1008); a frequency band (F₁, F₂, F₃; Δf₁, Δf₂, Δf₃) within the range of frequency is associated with each transducer group, the frequency bands (F₁, F₂, F₃; Δf₁, Δf₂, Δf₃) adjoining one another and covering the range of frequency; the transducers (11 to 14; 1000 to 1004) are disposed equidistantly within a transducer group at a distance equal to or smaller than half the smallest wave length contained in the particular frequency band (F₁; Δf₁); the number (n) of the transducers 11 to 14, 21 to 24, 31 to 34; 1000 to 1008) associated with a transducer group is determined by the length (L₁; L) and the maximum transducer distance (d₁; d) in the transducer group associated with the lowest frequency band F₁; Δf₁); and the filters (111 to 114, 211 to 214, 311 to 314; 1010 to 1014, 2010 to 2014, 3010 to 3014), which are connected to transducers (11 to 14, 21 to 24, 31 to 34; 1000 to 1004, 1000, 1001, 1002, 1005, 1006, 1000, 1005, 1006, 1007, 1008) of the same transducer group, are tuned to the frequency band (F₁, F₂, F₃; Δf₁, Δf₂, Δf₃) associated with said transducer group.
  2. A transducer arrangement according to claim 1, characterized in that selected transducers (1000, 1001, 1002, 1005, 1006) belong to a number of transducer groups whose associated frequency bands (Δf₁, Δf₂, Δf₃) are multiples of one another.
  3. A transducer arrangement according to claim 2, characterized in that a number of filters (1010, 2010, 3010; 1011, 2011, 1012, 2012; 2013, 3013, 2014, 3014) tuned to the associated frequency bands (Δf₁, Δf₂, Δf₃; Δf₁, Δf₂; Δf₂, Δf₃) are connected to each selected transducer (1000; 1001, 1002; 1005, 1006) corresponding with its association with a transducer group.
  4. A transducer arrangement according to one of claims 1 to 3, characterized in that the transducers (1001 to 1004; 1001, 1002, 1005, 1006; 1005 to 1008) of each transducer group are symmetrical in relation to a centrally disposed transducer (1000), and the centrally disposed transducer (1000) is associated with all the transducer groups.
  5. A transducer arrangement according to one of claims 1 to 4, characterized in that the different distances in the transducer group each have the same fraction of the smallest wave length in the associated frequency band (F₁ to F₃; Δf₁ to Δf₃).
  6. A transducer arrangement according to one of claims 1 to 5, characterized in that an octave is associated as the frequency band (Δf₁, Δf₂, Δf₃) with each transducer group; the distances (d) of the transducers (1000 to 1004) of the transducer group associated with the lowest octave (Δf₁) are the largest; and the distances (d/2; d/4) in each of the transducer groups associated with the next higher octave (Δf₂; Δf₃) are half as large as in the transducer group which is associated with the subjacent octave (Δf₁; Δf₂).
  7. A transducer arrangement according to one of claims 1 to 6, characterized in that each filter (111 to 114, 211 to 214, 311 to 314; 1010 to 1014, 2010 to 2014, 3010 to 3014) comprises an evaluation circuit for shading factors corresponding to the position of the transducer (11 to 14, 21 to 24, 31 to 34; 1000 to 1008) inside the transducer group.
EP87113165A 1986-10-06 1987-09-09 Transducer arrangement Expired - Lifetime EP0263314B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3633991 1986-10-06
DE19863633991 DE3633991A1 (en) 1986-10-06 1986-10-06 CONVERTER ARRANGEMENT

Publications (3)

Publication Number Publication Date
EP0263314A2 EP0263314A2 (en) 1988-04-13
EP0263314A3 EP0263314A3 (en) 1988-07-27
EP0263314B1 true EP0263314B1 (en) 1991-12-18

Family

ID=6311151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87113165A Expired - Lifetime EP0263314B1 (en) 1986-10-06 1987-09-09 Transducer arrangement

Country Status (2)

Country Link
EP (1) EP0263314B1 (en)
DE (2) DE3633991A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422234C1 (en) * 1994-06-24 1995-08-24 Stn Atlas Elektronik Gmbh Trailing antenna reception circuit allowing for hydrophone failure
US6526147B1 (en) 1998-11-12 2003-02-25 Gn Netcom A/S Microphone array with high directivity
DE102010056119B4 (en) * 2010-12-23 2015-02-05 Atlas Elektronik Gmbh Acoustic underwater antenna, submarine with such an antenna and method for locating, locating and / or classifying a target by means of such an antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241610A (en) * 1979-02-05 1980-12-30 Varian Associates, Inc. Ultrasonic imaging system utilizing dynamic and pseudo-dynamic focusing
JPS57203434A (en) * 1981-06-08 1982-12-13 Tokyo Shibaura Electric Co Ultrasonic diagnostic apparatus
US4569231A (en) * 1984-07-09 1986-02-11 General Electric Company Multiple frequency annular transducer array and system

Also Published As

Publication number Publication date
DE3633991A1 (en) 1988-04-14
EP0263314A2 (en) 1988-04-13
DE3775322D1 (en) 1992-01-30
EP0263314A3 (en) 1988-07-27

Similar Documents

Publication Publication Date Title
DE3110532C2 (en)
EP0829922A2 (en) Phase controlled antenna
DE2524649C3 (en) Television IF filter based on the surface wave principle
DE3025871C2 (en) Surface acoustic wave device
DE2739688C2 (en)
DE2323541C3 (en) Precision alignment arrangement of acoustic antennas with a circular cross-section
DE3151028C2 (en)
EP0263314B1 (en) Transducer arrangement
DE4013214C2 (en) Acoustic surface wave filter
DE4411233C1 (en) Frequency channel multiplexer or demultiplexer
DE2029836C3 (en) Filter arrangement for a coherent pulse Doppler radar device with variable pulse repetition frequency
DE2316166C3 (en) Community antenna system with alarm devices for the individual participants
DE3538436C2 (en) Broadband interferometer sonar device with compressed radiation
EP0100997B1 (en) Electronic device using reflected acoustical waves
DE3347455C2 (en)
DE2314642A1 (en) FILTER FOR ACOUSTIC WAVES
EP0220360B1 (en) Expander system for pulse signals
DE1963422C3 (en) Branching or synthesizing device for multi-frequency telecommunications systems
DE2525358C3 (en) RUle funnel emitter
EP0433492B1 (en) Ultrasonic device for the virtual reduction of the array partition of a connectable transducer array
DE69724689T2 (en) Acoustic surface wave filter
EP0501224B1 (en) Waveguide slot antenna
DE19837743B4 (en) Acoustic surface wave filter
DE3435583C2 (en)
DE1766059A1 (en) Distribution system for microwave devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL SE

17P Request for examination filed

Effective date: 19880628

17Q First examination report despatched

Effective date: 19901221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911218

Ref country code: NL

Effective date: 19911218

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3775322

Country of ref document: DE

Date of ref document: 19920130

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CN

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950918

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960909

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST