EP0261296B1 - Apparatus for laser-enhanced metal electroplating - Google Patents

Apparatus for laser-enhanced metal electroplating Download PDF

Info

Publication number
EP0261296B1
EP0261296B1 EP86870135A EP86870135A EP0261296B1 EP 0261296 B1 EP0261296 B1 EP 0261296B1 EP 86870135 A EP86870135 A EP 86870135A EP 86870135 A EP86870135 A EP 86870135A EP 0261296 B1 EP0261296 B1 EP 0261296B1
Authority
EP
European Patent Office
Prior art keywords
capillary
electrolyte
capillary duct
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86870135A
Other languages
German (de)
French (fr)
Other versions
EP0261296A1 (en
Inventor
Alain Biernaux
Lucien Diego Laude
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAUDE, LUCIEN DIEGO
Original Assignee
Laude Lucien Diego
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laude Lucien Diego filed Critical Laude Lucien Diego
Priority to EP86870135A priority Critical patent/EP0261296B1/en
Priority to DE8686870135T priority patent/DE3686161D1/en
Priority to US07/137,330 priority patent/US4826583A/en
Publication of EP0261296A1 publication Critical patent/EP0261296A1/en
Application granted granted Critical
Publication of EP0261296B1 publication Critical patent/EP0261296B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/024Electroplating of selected surface areas using locally applied electromagnetic radiation, e.g. lasers

Definitions

  • the invention relates to an automated and flexible apparatus allowing very high definition electroplating of metals. It includes a capillary conduit into which the electrolyte is injected and at the center of which is an optical fiber which channels the laser beam.
  • a laser-assisted electrolysis system accompanied by a jet is already known today.
  • an electrolytic liquid is compressed in a tank.
  • An opening in the wall of the latter allows the liquid to escape in the form of a jet.
  • the laser beam crosses the solution and follows the path traveled by the electrolyte.
  • the assembly, electrolytic jet and laser beam meets a stopping surface on which the metal atoms are deposited.
  • the stop surface can move in three directions in space (x, y, z).
  • the movement is carried out using synchronous stepping motors, for example, the speed of which can be varied along the three axes (x, y, z) and controlled by computer.
  • the present invention aims to remedy these drawbacks.
  • the invention as characterized in the claims, solves the problem of creating an apparatus enabling metallic deposits of excellent quality to be produced quickly and precisely in places that are difficult to access and multiple.
  • the apparatus for the punctual deposition of metals on solid substrates using laser radiation with or without an external electrical source is characterized by the use of laser radiation channeled at the heart of an optical fiber. that we center in a flexible capillary duct; in it circulates the electrolyte containing in dissolution the metal to be deposited, which is thus projected on the substrate at the exit of the capillary conduit in the zone irradiated by the laser radiation.
  • a second capillary containing the previous capillary and its optical fiber collects by suction the liquid containing the non-deposited metal ions.
  • the laser radiation is split into several rays which are channeled at the heart of several optical fibers, each of them being centered in a flexible capillary conduit in which the electrolytic solution circulates which is thus a) projected onto the substrate at the outlet of the capillary in the area irradiated by laser radiation and b) recovered by the second capillary enveloping the assembly formed by the injection capillary and the fiber contained therein.
  • the laser radiation is delivered by a continuous laser, for example, of the Argon Ar+ or Krypton Kr+ type, depending on the type of material to be deposited.
  • the power delivered is between 102 W / cm2 and 106 W / cm2 at the point where the deposition takes place.
  • the optical fiber channeling the laser beam is of a known type operating in single mode or multimode.
  • the useful part of the optical fiber also called the core of the optical fiber, channels the laser beam.
  • the diameter of the fiber core is chosen according to the desired confinement (from 1 ⁇ m to 500 ⁇ m).
  • several separate deposits can be made simultaneously with the same laser source. To this end, the original laser beam is split according to a procedure described in US Pat. No.
  • flexible capillary conduit is understood a pipe made of inert material, for example Teflon®, of external diameter for example 1000 ⁇ m and of internal diameter for example 500 ⁇ m, into which an optical fiber of external diameter for example 125 ⁇ m is introduced.
  • Teflon® Teflon®
  • the choice of a flexible capillary results from the need to conduct the electrolytic solution preferentially to an area of the target under a jet; zone possibly difficult to access or out of direct view of the radiation source, hence the flexibility of the apparatus.
  • the electrolyte circulating in the flexible capillary conduit contains the metal to be deposited in solution.
  • the electrolyte chosen is, for example, of the cyanide and sulfate type respectively. Any other type of electrolyte existing on the market can be chosen without departing from the scope of the present invention.
  • the choice of electrolyte depends on the nature of the metallic film that one wishes to manufacture.
  • the target or the propellant device comprising the chamber containing the liquid and the flexible capillary containing the optical fiber can be manipulated by computer.
  • the automation of the system by computer includes: a) control of the electrolyte (ion concentration, acidity and temperature) by continuous sampling, b) automatic tracing of the deposit by programmed displacement of the target opposite the jet or jet relative to the target (if it is too large in volume), c) control of the stability of the radiation source by photoelectric diode.
  • This automation makes it possible to produce homogeneous deposits, of constant thickness and of pre-established geometry.
  • a reducing substance is added to it, for example (the hypophosphite of Na: NaH2PO2) which brings electrons to the ion system. according to reactions (a) and (b).
  • the reducing substance then plays the same role as the external source of current in the process with electric voltage described above.
  • suction capillary, injection capillary and optical fiber fulfills the same functions as the previous system (with current source), that is to say an apparatus which produces metallic deposits of excellent quality, quickly and precisely in places that are difficult to access and multiple.
  • the advantages obtained thanks to this invention consist in the combined use of the very great flexibility of the electrolytic propulsion system obtained by the use of a capillary conduit and of the very great maneuverability of the optical system thanks to the channeling of the laser beam in an optical fiber.
  • the inertia of the previous system is thus avoided.
  • the box containing the electrolyte and the laser beam is here extremely handy. It also allows you to write miniaturized and diversified metal tracks without any other addition. In places that are difficult to access, its geometry makes it possible to miniaturize it and to mount it jointly with other identical boxes on the same chassis.
  • the electrolyte source and the radiation source being combined at the very end of the capillary, the deposition function can be performed in any place difficult to access, thanks to the flexibility of the capillary / fiber assembly. .
  • Figures 1 and 5 show the general diagram of the apparatus according to the present invention.
  • Figures 2, 3 and 6 respectively represent the electrolytic cell, the positioning of the fiber in the injection capillary, the suction capillary.
  • Figure 4 shows how the switchgear can be integrated into a multi-fiber system.
  • a beam of light (1) supplied by a laser (2) is concentrated using an optical device (3) controlled in the three directions by a manipulator (4) controlled by a computer (5).
  • the concentrated beam is channeled via an optical fiber (6) inside the electrolysis cell (7).
  • the electrolytic liquid (8), containing the metals to be deposited, is brought via a first pump (9) into the electrolysis cell (7).
  • the electrolysis cell (7) is made up of 3 parts.
  • a first part comprises a chamber (10) with constant volume which makes it possible to obtain a constant flow of liquid.
  • a first circular electrode (11) ensures electrical contact in the liquid and creates the ions necessary for the proper functioning of the electrolysis.
  • the second part consists of an electrolytic propulsion cone (12) used for shaping the jet.
  • this cone (12) two models of capillary duct can be fixed: a) simple capillary injection duct (13), b) a double capillary duct (33) which comprises an injection duct (13) and its fiber (6) itself contained in a second capillary suction conduit (32). Different sections (14) of capillary conduit (13) are available. It depends on the desired containment of the repository.
  • the third part (15) ensures on the one hand the fixing of the optical fiber (6) to the electrolysis cell and on the other hand, it makes it possible to compress an O-ring (16) which maintains the perfect sealing of the whole system.
  • the jet (17), comprising the electrolytic liquid (8) and the laser beam (1), is stopped by the surface (18) on which the metal to be electrolysed is deposited.
  • This surface (18) serves as a second electrode for closing the electrical circuit.
  • the electric voltage supplied to the two electrodes (11) and (18) is delivered by a power supply (19).
  • the formation of metal tracks on the stop surface (18) is ensured by the displacement; either of this same surface (18) relative to the jet (17); either by that of the electrolysis cell (7) relative to the surface (18).
  • the displacement xy is obtained by a manipulator xyz (4) computer controlled (5).
  • the laminar flow at the outlet of the flexible capillary conduit (13) is obtained by the positioning (20) of the optical fiber (6) relative to the end of the flexible capillary conduit (13).
  • the area (21) of the jet (17) in which the flow remains laminar until the impact on the target (18) is controlled by a manipulator (4) along the z axis.
  • the electrolyte (8) or (29) is recovered according to two distinct diagrams ( Figure 1 and Figure 5). Both depend on the geometry of the target (18) on which we want to deposit metals.
  • the liquid (22) containing the non-deposited metal ions is collected in a tank (23).
  • a second pump (24) returns the liquid (22) to the origin.
  • the liquid (22) containing the non-deposited metal ions is recovered by suction via a second capillary conduit (32), in contact with the surface of the target (18), Figure 6, and coating the conduit (13) containing the optical fiber (16).
  • the suction is carried out by the pump (24).
  • a valve system (25) and (26) makes it possible to switch the containers (27) and (28). While in one (27) are the metal ions, the second container (28) contains a cleaning solution (29). This cleaning solution (29) subsequently makes it possible to deposit, using the same apparatus, other metals without risk of contamination.
  • a light beam (1) supplied by a single laser (2) can be channeled in several fibers (30). It is thus possible to make several identical or different deposits (in quality and / or in shape) simultaneously with the same laser source (2) by having several electrolysis stations (31) similar to that described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laser Beam Processing (AREA)

Description

L'invention concerne un appareillage automatisable et flexible permettant le dépôt électrolytique à très haute définition de métaux. Il comprend un conduit capillaire dans lequel l'électrolyte est injecté et au centre duquel se trouve une fibre optique qui canalise le faisceau laser.The invention relates to an automated and flexible apparatus allowing very high definition electroplating of metals. It includes a capillary conduit into which the electrolyte is injected and at the center of which is an optical fiber which channels the laser beam.

Les procédés classiques de déposition électrolytique sont limités en vitesse ( <1000 Å/sec) (<100 nm/sec) et en confinement (> mm²). Il est indispensable aujourd'hui de déposer vite (> µm/sec) et sur de très petites surface (quelques 10³ µm² par exemple) pour réaliser l'interconnection de cicuits intégrés.
Vitesse et confinement peuvent être éventuellement améliorés en pratiquant de manière simultanée l'électrolyse assistée par laser d'une part et l'électrolyse sous jet d'autre part.
Conventional electrolytic deposition processes are limited in speed (<1000 Å / sec) (<100 nm / sec) and in confinement (> mm²). Today, it is essential to deposit quickly (> µm / sec) and on very small surfaces (some 10³ µm² for example) to interconnect integrated cicuits.
Speed and confinement can possibly be improved by simultaneously practicing laser assisted electrolysis on the one hand and jet electrolysis on the other hand.

On connaît déjà aujourd'hui un système d'électrolyse assistée par laser accompagné d'un jet.
Dans ce système, un liquide électrolytique est comprimé dans un réservoir. Une ouverture pratiquée dans la paroi de ce dernier permet au liquide de s'échapper sous forme d'un jet. Dans l'axe de ce jet,le faisceau laser traverse la solution et suit le chemin parcouru par l'électrolyte.
A laser-assisted electrolysis system accompanied by a jet is already known today.
In this system, an electrolytic liquid is compressed in a tank. An opening in the wall of the latter allows the liquid to escape in the form of a jet. In the axis of this jet, the laser beam crosses the solution and follows the path traveled by the electrolyte.

L'ensemble, jet électrolytique et faisceau laser rencontre une surface d'arrêt sur laquelle se déposent les atomes métalliques.
La surface d'arrêt peut se déplacer dans les trois directions de l'espace (x,y,z).
Le déplacement s'effectue à l'aide de moteurs pas à pas synchrones, par exemple, dont la vitesse peut être variée suivant les trois axes (x,y,z) et commandé par ordinateur.
The assembly, electrolytic jet and laser beam meets a stopping surface on which the metal atoms are deposited.
The stop surface can move in three directions in space (x, y, z).
The movement is carried out using synchronous stepping motors, for example, the speed of which can be varied along the three axes (x, y, z) and controlled by computer.

Un tel système présente plusieurs inconvénients.

  • a) La qualité du dépôt (homogénéité de structure, adhérence au substrat, profil) dépend de la géometrie relative jet/faisceau laser. Le dépôt est polycristallin, très adhérent avec un profil fiable quand la canalisation du rayonnement est bien assurée dans l'écoulement.
    Ceci n'est le cas que lorsque ce dernier est laminaire. Or, il est impossible de contrôler cette caractéristique avec fiabilité en pratiquant une ouverture ponctuelle dans le réservoir contenant l'électrolyte.
    En général, l'écoulement est turbulent et l'impact du faisceau sur la cible s'en trouve perturbé. Il s'ensuit une instabilité dans les paramètres du dépôt : positionnement, linéarité dans le cas d'un traçage, constitution du matériau déposé et un manque de fiabilité dans le procédé. Ceci est d'autant plus critique dans le cas de dépôt ponctuel à très fort confinement ou de tracés linéaires de faible section en circuit fermé (exemple : fermeture d'une piste sur elle-même).
  • b) Le rayonnement étant partiellement absorbé par le bain électrolytique, l'indice optique de celui-ci se trouve modifié dans la zone traversée (qui est alors chauffée) par rapport au reste du liquide.
    En effect, liquide froid et liquide chaud ont des densités atomiques différentes (et par conséquent des indices differents) ce qui est en partie compensé par des mouvements convectifs entre les parties chaudes et froides du liquide. Ces mouvements provoquent la diffusion du rayonnement laser et, par la suite, réduisent la densité d'énergie optique à l'impact du faisceau sur la cible.
  • c) Le système manque de fléxibité, il est en effet impossible de déposer des métaux dans des endroits hors de vue directe de la source de rayonnement.
  • d) Il est également impossible de réaliser plusieurs dépôts distincts simultanément avec la même source laser.
Such a system has several drawbacks.
  • a) The quality of the deposit (homogeneity of structure, adhesion to the substrate, profile) depends on the relative geometry of the jet / laser beam. The deposit is polycrystalline, very adherent with a reliable profile when the channeling of radiation is well ensured in the flow.
    This is only the case when the latter is laminar. However, it is impossible to control this characteristic with reliability by making a punctual opening in the reservoir containing the electrolyte.
    In general, the flow is turbulent and the impact of the beam on the target is disturbed. This results in instability in the parameters of the deposit: positioning, linearity in the case of tracing, constitution of the deposited material and a lack of reliability in the process. This is all the more critical in the case of punctual deposition with very high confinement or of linear traces of small section in closed circuit (example: closure of a track on itself).
  • b) The radiation being partially absorbed by the electrolytic bath, the optical index of the latter is modified in the zone crossed (which is then heated) compared to the rest of the liquid.
    In fact, cold liquid and hot liquid have different atomic densities (and therefore different indices) which is partly compensated by convective movements between the hot and cold parts of the liquid. These movements cause the scattering of laser radiation and, subsequently, reduce the density of optical energy upon impact of the beam on the target.
  • c) The system lacks flexibility, it is indeed impossible to deposit metals in places out of direct sight of the radiation source.
  • d) It is also impossible to make several separate deposits simultaneously with the same laser source.

La présente invention a pour but de remédier à ces inconvénients. L'invention, telle qu'elle est caractérisée dans les revendications résout le problème consistant à créer un appareillage permettant de réaliser des dépôts métalliques d'excellente qualité de manière rapide et précise dans des endroits difficiles d'accès et de manière multiple.
Suivant la présente invention, l'appareillage pour le dépôt ponctuel de métaux sur des substrats solides à l'aide de rayonnement laser avec ou sans source extérieure électrique est caractérisé par l'utilisation d'un rayonnement laser canalisé au coeur d'une fibre optique que l'on centre dans un conduit capillaire souple; dans celui-ci circule l'électrolute contenant en dissolution le métal à déposer, qui est ainsi projeté sur le substrat à la sortie du conduit capillaire dans la zone irradiée par le rayonnement laser.
Un second capillaire contenant le précédent capillaire et sa fibre optique recueille par aspiration le liquide contenant les ions métalliques non déposés. De par ce procédé, seule la zone irradiée est soumise à l'action du bain électrolytique et il n'y a pas d'écoulement de liquide en dehors du point d'impact du jet.
Suivant une variante de l'invention, le rayonnement laser est scindé en plusieurs rayons qui sont canalisés au coeur de plusieurs fibres optiques, chacune d'elles étant centrée dans un conduit capillaire souple dans lequel circule la solution électrolytique qui est ainsi a) projetée sur le substrat à la sorite du capillaire dans la zone irradiée par le rayonnement laser et b) récupérée par le second capillaire envoloppant l'ensemble formé par le capillaire d'injection et la fibre y contenu.
Le rayonnement laser est délivré par un laser continu, par exemple, de type Argon Ar⁺ ou Krypton Kr⁺, suivant le type de matériau à déposer. La puissance délivrée se situe entre 10² W/cm² et 10⁶ W/cm² au point où s'effectue le dépôt La fibre optique canalisant le faisceau laser est d'un type connu fonctionnant en monomode ou en multimode. La partie utile de la fibre optique, appelée aussi coeur de la fibre optique, canalise le faisceau laser . Le diamètre du coeur de la fibre est choisi en fonction du confinement voulu (de 1 µm à 500 µm). D'autre part, plusieurs dépôts distincts peuvent être réalisés simultanément avec la même source laser. A cette fin, le faisceau laser d'origine est scindé suivant une procédure décrite dans le brevet US 4.469.551, en plusieurs faisceaux, chacun est canalisé par une fibre jusqu'à la zone de travail.
Par conduit capillaire souple, on comprend une canalisation en matériau inerte, par exemple en Téflon®, de diamètre extérieure par exemple 1000µm et de diamètre interieure par exemple 500µm, dans laquelle est introduite une fibre optique de diamètre extérieure par exemple 125µm. Le choix d'un capillaire souple résulte de la nécessité de conduire la solution électrolytique préférentiellement sur une zone de la cible sous une jet; zone éventuellement difficile d'accès ou hors de vue directe de la source de rayonnement, d'où la souplesse de l'appareillage.
L'électrolyte circulant dans le conduit capillaire souple contient en solution le métal à déposer. Parmi les métaux susceptibles d'être déposés sur un substrat solide, citons à titre d'exemple Au, Cu, Ni, Pd, Ag, Cr, Zn,... . Dans le cas de par exemple Au, Cu,.., l 'électrolyte choisi est par exemple du type respectivement cyanure et sulfate. Tout autre type d'électrolyte existant sur le marché peut être choisi sans sortir du cadre de la présente invention. Le choix de l'électrolyte dépend de la nature du film métallique que l'on souhaite fabriquer.
Suivant une variante de l'appareillage, la cible ou le dispositif propulseur comprenant la chambre contenant le liquide et le capillaire souple contenant la fibre optique peut être manipulé par ordinateur. L'automatisation du système par ordinateur comprend : a) le contrôle de l'électrolyte (concentration des ions, acidité et température) par prélèvement continu, b)le tracé automatique du dépôt par déplacement programmé de la cible en regard du jet ou du jet par rapport a la cible (si celle-ci est de volume trop important), c) le contrôle de la stabilité de la source de rayonnemnt par diode photoélectrique. Cette automatisation permet de réaliser des dépôts homogènes, d'épaisseur constante et de géometrie pré-établie.
Selon une autre variante de l'invention et sans changer les éléments de l'appareillage décrit précedemment, il est possible de déposer des métaux à partir d'une solution électrolytique sans source extérieure de courant (méthode "electroless"). Suivant l'état des connaissances établies dans ce domaine, les dépôts peuvent se développer suivant deux modes chimiques distincts.
The present invention aims to remedy these drawbacks. The invention, as characterized in the claims, solves the problem of creating an apparatus enabling metallic deposits of excellent quality to be produced quickly and precisely in places that are difficult to access and multiple.
According to the present invention, the apparatus for the punctual deposition of metals on solid substrates using laser radiation with or without an external electrical source is characterized by the use of laser radiation channeled at the heart of an optical fiber. that we center in a flexible capillary duct; in it circulates the electrolyte containing in dissolution the metal to be deposited, which is thus projected on the substrate at the exit of the capillary conduit in the zone irradiated by the laser radiation.
A second capillary containing the previous capillary and its optical fiber collects by suction the liquid containing the non-deposited metal ions. By this method, only the irradiated area is subjected to the action of the electrolytic bath and there is no flow of liquid outside the point of impact of the jet.
According to a variant of the invention, the laser radiation is split into several rays which are channeled at the heart of several optical fibers, each of them being centered in a flexible capillary conduit in which the electrolytic solution circulates which is thus a) projected onto the substrate at the outlet of the capillary in the area irradiated by laser radiation and b) recovered by the second capillary enveloping the assembly formed by the injection capillary and the fiber contained therein.
The laser radiation is delivered by a continuous laser, for example, of the Argon Ar⁺ or Krypton Kr⁺ type, depending on the type of material to be deposited. The power delivered is between 10² W / cm² and 10⁶ W / cm² at the point where the deposition takes place The optical fiber channeling the laser beam is of a known type operating in single mode or multimode. The useful part of the optical fiber, also called the core of the optical fiber, channels the laser beam. The diameter of the fiber core is chosen according to the desired confinement (from 1 µm to 500 µm). On the other hand, several separate deposits can be made simultaneously with the same laser source. To this end, the original laser beam is split according to a procedure described in US Pat. No. 4,469,551, into several beams, each is channeled by a fiber to the working area.
By flexible capillary conduit is understood a pipe made of inert material, for example Teflon®, of external diameter for example 1000 μm and of internal diameter for example 500 μm, into which an optical fiber of external diameter for example 125 μm is introduced. The choice of a flexible capillary results from the need to conduct the electrolytic solution preferentially to an area of the target under a jet; zone possibly difficult to access or out of direct view of the radiation source, hence the flexibility of the apparatus.
The electrolyte circulating in the flexible capillary conduit contains the metal to be deposited in solution. Among the metals capable of being deposited on a solid substrate, let us cite as an example Au, Cu, Ni, Pd, Ag, Cr, Zn, .... In the case of, for example, Au, Cu, etc., the electrolyte chosen is, for example, of the cyanide and sulfate type respectively. Any other type of electrolyte existing on the market can be chosen without departing from the scope of the present invention. The choice of electrolyte depends on the nature of the metallic film that one wishes to manufacture.
According to a variant of the apparatus, the target or the propellant device comprising the chamber containing the liquid and the flexible capillary containing the optical fiber can be manipulated by computer. The automation of the system by computer includes: a) control of the electrolyte (ion concentration, acidity and temperature) by continuous sampling, b) automatic tracing of the deposit by programmed displacement of the target opposite the jet or jet relative to the target (if it is too large in volume), c) control of the stability of the radiation source by photoelectric diode. This automation makes it possible to produce homogeneous deposits, of constant thickness and of pre-established geometry.
According to another variant of the invention and without changing the elements of the apparatus described above, it is possible to deposit metals from an electrolytic solution without an external source of current ("electroless" method). Depending on the state of knowledge established in this area, deposits can develop in two distinct chemical modes.

a) Dépôt par immersion a) Deposit by immersion

Par projection, à travers un conduit capillaire, d'un électrolyte contenant des ions métalliques plus nobles par exemple : le sulfate de cuivre (CuSO₄), sur un substrat métallique moins noble par exemple le fer (Fe) il se produit une réaction d'échange (par exemple) :



        Cu⁺⁺ + Fe → Fe⁺⁺ + Cu



entraînant le dépôt du metal initialement dans la solution sur le substrat solide.
By projection, through a capillary conduit, of an electrolyte containing more noble metallic ions for example: copper sulphate (CuSO₄), on a less noble metallic substrate for example iron (Fe) a reaction of exchange (for example):



Cu⁺⁺ + Fe → Fe⁺⁺ + Cu



resulting in the deposition of the metal initially in the solution on the solid substrate.

b) Dépôt catalytique b) Catalytic deposition

Conjointement à la solution contenant les ions métalliques par exemple des ions Nickel (Ni⁺⁺) à déposer, on ajoute dans celle-ci une substance réductrice par exemple (l'hypophosphite de Na : NaH₂PO₂) qui apporte des électrons au système d'ions suivant les réactions (a) et (b). La substance réductrice joue alors le même rôle que la source extérieure de courant dans le procédé avec tension électrique décrit précédemment.

Figure imgb0001
In conjunction with the solution containing the metal ions, for example Nickel (Ni⁺⁺) ions to be deposited, a reducing substance is added to it, for example (the hypophosphite of Na: NaH₂PO₂) which brings electrons to the ion system. according to reactions (a) and (b). The reducing substance then plays the same role as the external source of current in the process with electric voltage described above.
Figure imgb0001

Dans le cas d'un substrat de type non catalytique, citons à titre d'exemples (les plastiques, les céramiques), il faut préalablement activer la surface par des substances comme par exemple le PdCl₂ et le SnCl₂ . Dans les deux modes cités plus haut, le système proposé comprenant capillaire d'aspiration, capillaire d'injection et fibre optique, remplit les mêmes fonctions que le système précédent (avec source de courant), c'est-à-dire un appareillage qui réalise des dépôts métalliques d'excellent qualité, de manière rapide et précise dans des endroits difficiles d'accès et de manière multiple.In the case of a non-catalytic type substrate, let us cite as examples (plastics, ceramics), it the surface must first be activated by substances such as PdCl₂ and SnCl₂ for example. In the two modes mentioned above, the proposed system comprising suction capillary, injection capillary and optical fiber fulfills the same functions as the previous system (with current source), that is to say an apparatus which produces metallic deposits of excellent quality, quickly and precisely in places that are difficult to access and multiple.

Les avantages obtenus grâce à cette invention consistent en l'utilisation conjuguée de la très grande flexibité du système de propulstion électrolytique obtenue par l'utilisation d'un conduit capillaire et de la très grande maniabilité du système optique grâce à la canalisation du faisceau laser dans une fibre optique. L'inertie du précédent système est ainsi évitée. En effet, le boîtier contenant l'électrolyte et le faisceau laser est ici extrêment maniable.
Il permet de plus et sans autre adjonction d'écrire des pistes métalliques miniaturisées et diversifiées. Dans des endroits difficiles d'accès, sa géométrie permet de la miniaturiser et de le monter conjointement avec d'autres boîtiers indentiques sur un même chassis.
Enfin, la source d'électrolyte et la source de rayonnement étant conjuguées à l'extrémité-même du capillaire, la fonction de dépôt peut-être réalisée en tout endroit difficile d'accès, grâce à la flexibilité de l'ensemble capillaire/fibre.
The advantages obtained thanks to this invention consist in the combined use of the very great flexibility of the electrolytic propulsion system obtained by the use of a capillary conduit and of the very great maneuverability of the optical system thanks to the channeling of the laser beam in an optical fiber. The inertia of the previous system is thus avoided. Indeed, the box containing the electrolyte and the laser beam is here extremely handy.
It also allows you to write miniaturized and diversified metal tracks without any other addition. In places that are difficult to access, its geometry makes it possible to miniaturize it and to mount it jointly with other identical boxes on the same chassis.
Finally, the electrolyte source and the radiation source being combined at the very end of the capillary, the deposition function can be performed in any place difficult to access, thanks to the flexibility of the capillary / fiber assembly. .

L'invention est exposée ci-après plus en détail à l'aide des figures 1,2,3,4,5,6.
Les figures 1 et 5 représentent le schéma général de l'appareillage conformément à la présente invention.
Les figures 2, 3 et 6 représentent respectivement la cellule électrolytique, le positionnemnt de la fibre dans le capillaire d'injection, le capillaire d'aspiration.
La figure 4 montre comment l'appareillage peut s'intégrer dans un système à multifibres.
Un faisceau de lumière (1) fournit par un laser (2) est concentré à l'aide d'un dispositif optique (3) piloté dans les trois directions par un manipulateur (4) commandé par un ordinateur (5). Le faisceau concentré est canalisé par l'intermédiaire d'une fibre optique (6) à l'intérieur de la cellule d'électrolyse (7). Le liquide électrolytique (8), contenant les métaux à déposer est amené par l'intermédiaire d'une première pompe (9) dans la cellule d'électrolyse (7).
La cellule d'électrolyse (7) est composée de 3 parties.
Une première partie comprend une chambre (10) à volume constant qui permet d'obtenir, un débit constant de liquide. D'autre part, une première électrode circulaire (11) assure le contact électrique dans le liquide et crée les ions nécessaires au bon fonctionnement de l'électrolyse.
La second partie consiste en un cône de propulsion électrolytique (12) servant pour la mise en forme du jet.
Sur ce cône (12) deux modèles de conduit capillaire peuvent venir se fixer: a) conduit capillaire d'injection (13) simple, b) un double conduit capillaire (33) qui comprend un conduit d'injection (13) et sa fibre (6) lui même contenu dans un second conduit capillaire d'aspiration (32).
Différentes sections (14) de conduit capillaire (13) sont disponibles. Cela dépend du confinement voulu du dépôt.
La troisième partie (15) assure d'une part la fixation de la fibre optique (6) à la cellule d'électrolyse et d'autre part, elle permet de comprimer un joint torique (16) qui maintient la parfaite étanchéité de l'ensemble du système.
Le jet (17), comprenant le liquide électrolytique (8) et le faisceau laser (1),est arrêté par la surface (18) sur laquelle se dépose le métal à électrolyser. Cette surface (18) sert de seconde électrode pour refermer le circuit électrique. La tension électrique fournie aux deux électrodes (11) et (18) est délivrée par une alimentation (19).
La formation de pistes métalliques sur la surface d'arrêt (18) est assurée par le déplacement; soit de cette même surface (18) par rapport au jet (17); soit par celui de la cellule d'électrolyse (7) par rapport à la surface (18). Le déplacement x-y est obtenu par un manipulateur x-y-z (4) commandé par ordinateur (5). L'écoulement laminaire à la sortie du conduit capillaire souple (13) est obtenu par le positionnement (20) de la fibre optique (6) par rapport à l'extrémité du conduit capillaire souple (13). De même, le domaine (21) du jet (17) dans lequel l'écoulement reste laminaire jusqu'à l'impact sur la cible (18) est contrôlé par un manipulateur (4) suivant l'axe z. Après impact sur la cible (18) l'électrolyte (8) ou (29) est récupéré selon deux schémas distincts (Figure 1 et Figure 5). L'un et l'autre dépendent de la géométrie de la cible (18) sur laquelle on veut déposer des métaux. Dans un premier cas (Figure 1), le liquide (22) contenant les ions métalliques non-déposés est recueilli dans un bac (23). Une seconde pompe (24) assure le retour du liquide (22) à l'origine.
Dans une seconde situation, Figure 5, le liquide (22) contenant les ions métalliques non-déposés est récupéré par aspiration par l'intermédiaire d'un second conduit capillaire (32), en contact avec la surface de la cible (18), Figure 6, et enrobant le conduit (13) contenant la fibre optique (16). L'aspiration s'effectuant par la pompe (24). Un système de vannes (25) et (26) permet de commuter les récipients (27) et (28). Alors que dans l'un (27), se trouvent les ions métalliques, le second récipient (28) contient une solution de nettoyage (29). Cette solution de nettoyage (29) permet par la suite de déposer à l'aide du même appareillage d'autres métaux sans risque de contamination.
The invention is set out below in more detail with the aid of Figures 1,2,3,4,5,6.
Figures 1 and 5 show the general diagram of the apparatus according to the present invention.
Figures 2, 3 and 6 respectively represent the electrolytic cell, the positioning of the fiber in the injection capillary, the suction capillary.
Figure 4 shows how the switchgear can be integrated into a multi-fiber system.
A beam of light (1) supplied by a laser (2) is concentrated using an optical device (3) controlled in the three directions by a manipulator (4) controlled by a computer (5). The concentrated beam is channeled via an optical fiber (6) inside the electrolysis cell (7). The electrolytic liquid (8), containing the metals to be deposited, is brought via a first pump (9) into the electrolysis cell (7).
The electrolysis cell (7) is made up of 3 parts.
A first part comprises a chamber (10) with constant volume which makes it possible to obtain a constant flow of liquid. On the other hand, a first circular electrode (11) ensures electrical contact in the liquid and creates the ions necessary for the proper functioning of the electrolysis.
The second part consists of an electrolytic propulsion cone (12) used for shaping the jet.
On this cone (12) two models of capillary duct can be fixed: a) simple capillary injection duct (13), b) a double capillary duct (33) which comprises an injection duct (13) and its fiber (6) itself contained in a second capillary suction conduit (32).
Different sections (14) of capillary conduit (13) are available. It depends on the desired containment of the repository.
The third part (15) ensures on the one hand the fixing of the optical fiber (6) to the electrolysis cell and on the other hand, it makes it possible to compress an O-ring (16) which maintains the perfect sealing of the whole system.
The jet (17), comprising the electrolytic liquid (8) and the laser beam (1), is stopped by the surface (18) on which the metal to be electrolysed is deposited. This surface (18) serves as a second electrode for closing the electrical circuit. The electric voltage supplied to the two electrodes (11) and (18) is delivered by a power supply (19).
The formation of metal tracks on the stop surface (18) is ensured by the displacement; either of this same surface (18) relative to the jet (17); either by that of the electrolysis cell (7) relative to the surface (18). The displacement xy is obtained by a manipulator xyz (4) computer controlled (5). The laminar flow at the outlet of the flexible capillary conduit (13) is obtained by the positioning (20) of the optical fiber (6) relative to the end of the flexible capillary conduit (13). Similarly, the area (21) of the jet (17) in which the flow remains laminar until the impact on the target (18) is controlled by a manipulator (4) along the z axis. After impact on the target (18) the electrolyte (8) or (29) is recovered according to two distinct diagrams (Figure 1 and Figure 5). Both depend on the geometry of the target (18) on which we want to deposit metals. In a first case (Figure 1), the liquid (22) containing the non-deposited metal ions is collected in a tank (23). A second pump (24) returns the liquid (22) to the origin.
In a second situation, FIG. 5, the liquid (22) containing the non-deposited metal ions is recovered by suction via a second capillary conduit (32), in contact with the surface of the target (18), Figure 6, and coating the conduit (13) containing the optical fiber (16). The suction is carried out by the pump (24). A valve system (25) and (26) makes it possible to switch the containers (27) and (28). While in one (27) are the metal ions, the second container (28) contains a cleaning solution (29). This cleaning solution (29) subsequently makes it possible to deposit, using the same apparatus, other metals without risk of contamination.

Grâce à un réseau multifibre (30) semblable à celui développé par L.D. Laude dans son brevet US 4469551, un faisceau de lumière (1) fourni par un seul laser (2) peut être canalisé dans plusieurs fibres (30). Il est ainsi possible de réaliser plusieurs dépôts identiques ou différents (en qualité et/ou en forme) simultanément avec la même source laser (2) en disposant plusieurs postes d'électrolyse (31) semblables à celui décrit précédemment.Thanks to a multifiber network (30) similar to that developed by L.D. Laude in its patent US 4469551, a light beam (1) supplied by a single laser (2) can be channeled in several fibers (30). It is thus possible to make several identical or different deposits (in quality and / or in shape) simultaneously with the same laser source (2) by having several electrolysis stations (31) similar to that described above.

Claims (4)

  1. An apparatus for pin-point electroplating a metal on solid substrates by means of laser radiation (2) with or without an external electric source (19), and characterized by the use of an optical fibre (6) arranged to channel a laser beam (2), said fibre (6) being centered inside a flexible capillary duct (13), in which an electrolytic solution containing the metal to be deposited is propelled and, then, projected at the exit of the capillary (13) onto the area of the solid surface (18) which is irradiated by the laser beam (2).
  2. An apparatus as claimed in claim 1, in which, after impacting on the substrate (18), the electrolyte (8) (or (29)) is at first recovered through a second capillary duct (32), in contact with the substrate (18) and surrounding the first capillary duct (13) which contains the optical fibre (6), the said second capillary duct (32) sucking up the electrolyte (8) (or (29)) after it has been projected toward and has impacted on the substrate, and the said electrolyte (8) (or (29)) being recycled.
  3. An apparatus as claimed in claims 1 and 2 in which the laser beam (2) is subdivided into several beams, each being channeled in an optical fibre (30), said fibre (30) being centered inside a flexible capillary duct (13) in which the electrolytic solution is circulated and, then, projected at the exit of the capillary duct (13) onto the area of the substrate (18) which is irradiated by each laser beam, the electrolyte (8) )or (29)) being recovered by a sucking capillary duct (32).
  4. An apparatus as claimed in claims 1,2 and 3, in which the target (18) or the propelling device comprising a vessel (10) which contains a liquid (8), the first flexible capillary duct (13) which contains the optical fibre (6), and,if necessary, the second sucking capillary duct (32), can be controled by a computer (5).
EP86870135A 1986-09-25 1986-09-25 Apparatus for laser-enhanced metal electroplating Expired - Lifetime EP0261296B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP86870135A EP0261296B1 (en) 1986-09-25 1986-09-25 Apparatus for laser-enhanced metal electroplating
DE8686870135T DE3686161D1 (en) 1986-09-25 1986-09-25 DEVICE FOR LASER SUPPORTED, ELECTROLYTIC METAL DEPOSITION.
US07/137,330 US4826583A (en) 1986-09-25 1987-12-23 Apparatus for pinpoint laser-assisted electroplating of metals on solid substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86870135A EP0261296B1 (en) 1986-09-25 1986-09-25 Apparatus for laser-enhanced metal electroplating

Publications (2)

Publication Number Publication Date
EP0261296A1 EP0261296A1 (en) 1988-03-30
EP0261296B1 true EP0261296B1 (en) 1992-07-22

Family

ID=8196548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86870135A Expired - Lifetime EP0261296B1 (en) 1986-09-25 1986-09-25 Apparatus for laser-enhanced metal electroplating

Country Status (3)

Country Link
US (1) US4826583A (en)
EP (1) EP0261296B1 (en)
DE (1) DE3686161D1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292418A (en) * 1991-03-08 1994-03-08 Mitsubishi Denki Kabushiki Kaisha Local laser plating apparatus
WO1993017321A1 (en) * 1992-02-25 1993-09-02 Unisearch Limited Electrothermal atomic absorption and preconcentration device
JP2896726B2 (en) * 1992-03-30 1999-05-31 セイコーインスツルメンツ株式会社 Micro processing equipment
US7938079B2 (en) * 1998-09-30 2011-05-10 Optomec Design Company Annular aerosol jet deposition using an extended nozzle
US8110247B2 (en) * 1998-09-30 2012-02-07 Optomec Design Company Laser processing for heat-sensitive mesoscale deposition of oxygen-sensitive materials
US20030020768A1 (en) * 1998-09-30 2003-01-30 Renn Michael J. Direct write TM system
US20050156991A1 (en) * 1998-09-30 2005-07-21 Optomec Design Company Maskless direct write of copper using an annular aerosol jet
US6636676B1 (en) * 1998-09-30 2003-10-21 Optomec Design Company Particle guidance system
US7294366B2 (en) * 1998-09-30 2007-11-13 Optomec Design Company Laser processing for heat-sensitive mesoscale deposition
US7108894B2 (en) * 1998-09-30 2006-09-19 Optomec Design Company Direct Write™ System
US7045015B2 (en) 1998-09-30 2006-05-16 Optomec Design Company Apparatuses and method for maskless mesoscale material deposition
AU2001274364B2 (en) * 2000-06-13 2005-09-15 Element Six (Pty) Ltd Composite diamond compacts
US7674671B2 (en) * 2004-12-13 2010-03-09 Optomec Design Company Aerodynamic jetting of aerosolized fluids for fabrication of passive structures
US7938341B2 (en) * 2004-12-13 2011-05-10 Optomec Design Company Miniature aerosol jet and aerosol jet array
US20080013299A1 (en) * 2004-12-13 2008-01-17 Optomec, Inc. Direct Patterning for EMI Shielding and Interconnects Using Miniature Aerosol Jet and Aerosol Jet Array
US20070154634A1 (en) * 2005-12-15 2007-07-05 Optomec Design Company Method and Apparatus for Low-Temperature Plasma Sintering
US9185810B2 (en) * 2006-06-06 2015-11-10 Second Sight Medical Products, Inc. Molded polymer comprising silicone and at least one metal trace and a process of manufacturing the same
US7750076B2 (en) * 2006-06-07 2010-07-06 Second Sight Medical Products, Inc. Polymer comprising silicone and at least one metal trace
US20100310630A1 (en) * 2007-04-27 2010-12-09 Technische Universitat Braunschweig Coated surface for cell culture
TWI482662B (en) 2007-08-30 2015-05-01 Optomec Inc Mechanically integrated and closely coupled print head and mist source
TW200918325A (en) * 2007-08-31 2009-05-01 Optomec Inc AEROSOL JET® printing system for photovoltaic applications
TWI538737B (en) * 2007-08-31 2016-06-21 阿普托麥克股份有限公司 Material deposition assembly
US8887658B2 (en) * 2007-10-09 2014-11-18 Optomec, Inc. Multiple sheath multiple capillary aerosol jet
CN103572341B (en) * 2013-09-23 2016-01-20 江苏大学 The electrochemical copolymerization deposition method for preparing of laser light pipe electrode and device
EP3256308B1 (en) 2015-02-10 2022-12-21 Optomec, Inc. Fabrication of three-dimensional structures by in-flight curing of aerosols
CN105081576A (en) * 2015-08-25 2015-11-25 江苏大学 Device and method for improving strength of water pump impeller through laser-generated cavitation
US10632746B2 (en) 2017-11-13 2020-04-28 Optomec, Inc. Shuttering of aerosol streams
CN109732199B (en) * 2019-02-25 2020-11-20 江苏大学 Semiconductor material laser electrochemical back cooperative micromachining method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0048514B1 (en) * 1980-09-18 1984-07-18 L'Etat belge, représenté par le Secrétaire Général des Services de la Programmation de la Politique Scientifique Process for crystallising films, and films thus obtained
JPS5864368A (en) * 1981-10-12 1983-04-16 Inoue Japax Res Inc Chemical plating method
JPS59129780A (en) * 1983-01-14 1984-07-26 Hitachi Ltd Selective working device
US4497692A (en) * 1983-06-13 1985-02-05 International Business Machines Corporation Laser-enhanced jet-plating and jet-etching: high-speed maskless patterning method
GB2154017B (en) * 1984-02-03 1987-09-30 Gen Electric Laser material processing through a fiber optic

Also Published As

Publication number Publication date
DE3686161D1 (en) 1992-08-27
EP0261296A1 (en) 1988-03-30
US4826583A (en) 1989-05-02

Similar Documents

Publication Publication Date Title
EP0261296B1 (en) Apparatus for laser-enhanced metal electroplating
US5292418A (en) Local laser plating apparatus
US4497692A (en) Laser-enhanced jet-plating and jet-etching: high-speed maskless patterning method
US5612099A (en) Method and apparatus for coating a substrate
US5814152A (en) Apparatus for coating a substrate
CA2517239C (en) Process for reloading a single-crystal or gradient solidification metal part
EP0363256A1 (en) Method of making electrical connections through a substrate
US20070040003A1 (en) Low temperature methods of bonding components and related structures
FR2591763A1 (en) ELECTRO-OPTICAL TRANSDUCER MODULE AND METHOD FOR MANUFACTURING THE SAME
FR2472199A1 (en) METHOD AND DEVICE FOR COUPLING AN OPTICAL FIBER TO A LIGHT SOURCE
BE897641A (en) Apparatus for laser processing
BE1014736A5 (en) Manufacturing method and charging for target sputtering.
WO1996029444A1 (en) Photoionic microhead device
EP0112211B1 (en) Method of aligning an opto-electronic device
WO1999040234A1 (en) Method and apparatus for deposition of three dimensional object
CA1285521C (en) Apparatus for discrete, laser assisted, electrolytic metal deposition on solidsubstrates
FR2513273A1 (en) METHOD AND APPARATUS FOR ELECTRO-DEPOSITION OF A METAL ON A WORKPIECE USING A LASER BEAM OR AN ANALOGUE THERMAL LIGHT BEAM
FR2623820A1 (en) GAS PHASE DEPOSITION BY LASER CHEMICAL PROCESS USING FIBER OPTIC BEAM
FR2569427A1 (en) METHOD AND DEVICE FOR DEPOSITING A THIN FILM SUBSTRATE OF A COMPOUND HAVING AT LEAST ONE CATIONIC COMPONENT AND AT LEAST ONE ANIONIC COMPONENT
WO2021134782A1 (en) Method for preparing sodium interface and method for preparing sodium optical structure device
FR2670505A1 (en) METHOD AND APPARATUS FOR SUPPLYING A METALLIC COMPOUND MADE OF A SUBSTRATE.
FR2460347A1 (en) Direct metallisation, esp. of microcircuits, by electroplating - with low current pre-metallising and high current metallising in single bath
FR2883889A1 (en) Reduction electrode for the deposition of metal on an object with a metallized surface by an oxido-reduction reaction, notably for coating micro-spheres for a range of micro-component applications
FR2792861A1 (en) METHOD FOR PRODUCING WELDING PLOTS ON A SUBSTRATE AND GUIDE FOR IMPLEMENTING THE METHOD
KR100511398B1 (en) Optical fiber with square type cross section and mirror coating core structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LAUDE, LUCIEN DIEGO

Owner name: BIERNAUX, ALAIN

17P Request for examination filed

Effective date: 19880825

17Q First examination report despatched

Effective date: 19891227

DIN1 Information on inventor provided before grant (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LAUDE, LUCIEN DIEGO

18D Application deemed to be withdrawn

Effective date: 19910803

18RA Request filed for re-establishment of rights before grant

Effective date: 19920225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

18RR Decision to grant the request for re-establishment of rights before grant

Free format text: 920505 ANGENOMMEN

D18D Application deemed to be withdrawn (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19920722

Ref country code: GB

Effective date: 19920722

Ref country code: NL

Effective date: 19920722

Ref country code: SE

Effective date: 19920722

Ref country code: DE

Effective date: 19920722

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8570

REF Corresponds to:

Ref document number: 3686161

Country of ref document: DE

Date of ref document: 19920827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920930

Ref country code: CH

Effective date: 19920930

Ref country code: BE

Effective date: 19920930

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19920722

BERE Be: lapsed

Owner name: LAUDE LUCIEN DIEGO

Effective date: 19920930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930528

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST