EP0259606B1 - Electron-beam collector or a transit-time tube - Google Patents

Electron-beam collector or a transit-time tube Download PDF

Info

Publication number
EP0259606B1
EP0259606B1 EP87111286A EP87111286A EP0259606B1 EP 0259606 B1 EP0259606 B1 EP 0259606B1 EP 87111286 A EP87111286 A EP 87111286A EP 87111286 A EP87111286 A EP 87111286A EP 0259606 B1 EP0259606 B1 EP 0259606B1
Authority
EP
European Patent Office
Prior art keywords
electron beam
collecting electrodes
insulating parts
half shell
beam collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111286A
Other languages
German (de)
French (fr)
Other versions
EP0259606A1 (en
Inventor
Wilhelm Bibracher
Josef Ing. Grad. Hauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0259606A1 publication Critical patent/EP0259606A1/en
Application granted granted Critical
Publication of EP0259606B1 publication Critical patent/EP0259606B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • H01J23/0275Multistage collectors

Definitions

  • the invention relates to an electron beam receiver according to the preamble of patent claim 1.
  • a multi-stage collector for runtime tubes in particular traveling wave tubes is known, with several collecting electrodes surrounding the electron beam, which are spaced apart by insulating bodies (spacers) which are in fixed connection with the collecting electrodes spaced from them, whereby these electrodes are each adapted from a sleeve with a small thermal expansion of the spacers connected to the electrodes compared to the electrodes. All parts of the electron beam collector are soldered together at their contact surfaces.
  • FR-A-2 219 518 describes traveling wave tubes according to the preamble of claim, in which round insulating rods are pressed into the gap between an electrode beam receiver and a housing. Stainless steel is mentioned as the material for the housing. Round insulating rods, however, have a relatively small area of contact with the adjacent surfaces. Optimal heat transfer cannot therefore be achieved there.
  • US-A-3 208 126 describes an embodiment with an enlarged contact surface into which round insulating rods are pressed into corresponding recesses in the housing wall.
  • the indentation is widened to press in and is thereby intended to be resilient; rest on the bars.
  • This process is complex, the heat transfer will also not be optimal here, especially since the expansion can only be achieved with a relatively small number of bars.
  • the spring must namely be able to expand into free spaces so that a spring pressure can then remain.
  • the invention has for its object to provide a multi-stage collector, which is characterized by perfect electrical insulation of the collecting electrodes and mechanical robustness by optimal dissipation of the heat caused by high electrical power loss and which is particularly easy to manufacture.
  • the advantages achieved by the invention are, in particular, that instead of the previous complex soldering technique when assembling the individual parts of the electron beam collector, a simple clamping technique is now used. This avoids complex metallizations of metal-ceramic parts to be soldered. In addition, the uncertainties that arise when soldering with regard to exact connections of the individual parts cannot occur. Optimal heat dissipation of the heat loss occurring at the collecting electrodes is achieved through the intimate connection of metal and insulating parts, as well as through the choice of particularly good heat-conducting insulating materials for the insulating parts Collecting electrodes and between them and the outer or vacuum cover.
  • the first collecting electrode 1 has an electron beam inlet opening, and the second collecting electrode is as Trap bottom trained.
  • the bottom has a funnel shape to prevent backflow of electrons.
  • the insulating parts 4 are preferably made of boron nitride, aluminum oxide, beryllium oxide or aluminum nitride. Other insulating materials with similarly favorable properties, in particular high thermal conductivity, can also be used.
  • the collecting electrodes 1, 2 are preferably made of copper.
  • the collecting electrodes 1, 2 can, however, consist of molybdenum or similar metals or alloys instead of copper.
  • the Auben- or vacuum sleeve 3 consisting of copper is shrunk onto the half-shell-shaped insulating parts 4, in such a way that the half-shells 4 are pressed onto the collecting electrodes 1, 2 and the Auben- or vacuum sleeve 3 made of copper.
  • the shrinking is expediently carried out as follows: First, the half-shells 4 are held on the collecting electrodes 1, 2 which are spaced apart from one another. This can be done, for example, using clamps made of molybdenum, for example. It is advantageous to use collecting electrodes 1, 2, each of which has at least one projection 5, the two half-shells 4 each being provided with corresponding internal grooves 6, so that the parts can be plugged together, in compliance with the specified dimensions. However, it may also be expedient to fix it instead of through Cantilever and corresponding internal grooves in the parts to be joined together, using pins, notches, steps or the like.
  • the collecting electrodes 1, 2 with the half-shells 4 are inserted into the outer or vacuum envelope 3, which was previously heated to a temperature of approximately 500 ° C. to 800 ° C., for example by quartz lamps in an oven. Then the outer or vacuum sleeve 3 is cooled again and shrinks during this process onto the half-shells 4, so that the required mechanically robust connection between the collecting electrodes 1 and 2, the half-shells 4 and the outer or vacuum sleeve is created.

Description

Die Erfindung bezieht sich auf einen Elektronenstrahlauffänger gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to an electron beam receiver according to the preamble of patent claim 1.

Aus der DE-PS-24 49 890 ist ein Mehrstufen- Kollektor für Laufzeitröhren, insbesondere Wanderfeldröhren bekannt, mit mehreren den Elektronenstrahl umgebenden Auffangelektroden, die durch Isolierkörper (Distanzstücke) voneinander beabstandet sind welche mit den von ihnen beabstandeten Auffangelektroden in fester Verbindung stehen, wobei diese Elektroden jeweils von einer Manschette mit einer im Vergleich zu den Elektroden kleinen Wärmeausdehnung der mit den Elektroden verbundenen Distanzstücke angepaßt ist. Dabei sind alle Teile des Elektronenstrahlauffängers an ihren Berührungsflächen miteinander verlötet.From DE-PS-24 49 890 a multi-stage collector for runtime tubes, in particular traveling wave tubes is known, with several collecting electrodes surrounding the electron beam, which are spaced apart by insulating bodies (spacers) which are in fixed connection with the collecting electrodes spaced from them, whereby these electrodes are each adapted from a sleeve with a small thermal expansion of the spacers connected to the electrodes compared to the electrodes. All parts of the electron beam collector are soldered together at their contact surfaces.

Die FR-A-2 219 518 beschreibt Wanderfeldröhren gemäß dem Oberbegriff von Anspruch, bei denen runde Isolierstoffstäbe in den Spalt zwischen einem Elektrodenstrahlauffänger und einem Gehäuse eingepreßt sind. Als Material für das Gehäuse wird rostfreier Stahl genannt. Runde Isolierstoffstäbe haben jedoch einen relativ kleinen Berührungsbereich mit den angrenzenden Flächen. Ein optimaler Wärmeübergang ist daher dort nicht zu erreichen.FR-A-2 219 518 describes traveling wave tubes according to the preamble of claim, in which round insulating rods are pressed into the gap between an electrode beam receiver and a housing. Stainless steel is mentioned as the material for the housing. Round insulating rods, however, have a relatively small area of contact with the adjacent surfaces. Optimal heat transfer cannot therefore be achieved there.

Die US-A-3 208 126 beschreibt eine Ausführungsform mit vergrößerter Auflagefläche, in die runde Isolierstoffstäbe in entsprechende Ausnehmungen der Gehäusewand eingedrückt werden. Zum Eindrücken wird die Wendel aufgeweitet und soll dadurch federnd an; den Stäben anliegen. Dieses Verfahren ist aufwendig, der Wärmeübergang wird auch hier nichtiOptimal sein, zumal da das Aufweiten nur bei einer relativ geringen Zahl von Stäben gelingen kann. Während des Aufweitens muß nämlich eine Ausdehnung der Feder in freie Zwischenräume möglich sein, damit anschließend ein Federdruck bestehen bleiben kann.US-A-3 208 126 describes an embodiment with an enlarged contact surface into which round insulating rods are pressed into corresponding recesses in the housing wall. The indentation is widened to press in and is thereby intended to be resilient; rest on the bars. This process is complex, the heat transfer will also not be optimal here, especially since the expansion can only be achieved with a relatively small number of bars. During expansion, the spring must namely be able to expand into free spaces so that a spring pressure can then remain.

Der Erfindung liegt die Aufgabe zugrunde, einen Mehrstufenkollektor zu schaffen, der sich bei einwandfreier elektrischer Isolation der Auffangelektroden und mechanischer Robustheit durch eine optimale Ableitung der durch hohe elektrische Verlustleistung bedingten Wärme auszeichnet und der insbesondere relativ einfach herstellbar ist.The invention has for its object to provide a multi-stage collector, which is characterized by perfect electrical insulation of the collecting electrodes and mechanical robustness by optimal dissipation of the heat caused by high electrical power loss and which is particularly easy to manufacture.

Diese Aufgabe wird erfindungsgemäß durch einen Elektronenstrahlauffänger mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved according to the invention by an electron beam interceptor with the features of claim 1.

Vorteilhafte Ausgestaltungen bzw. Weiterbildungen der Erfindung sind Gegenstand zusätzlicher Ansprüche.Advantageous refinements or developments of the invention are the subject of additional claims.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß statt der bisherigen aufwendigen Löttechnik bei Zusammenbau der Einzelteile des Elektronenstrahlauffängers nunmehr eine einfache Klemmtechnik angewendet wird. Hierdurch werden aufwendig Metallisierungen von zu verlötenden Metall-Keramikteilen vermieden. Zudem können die beim Verlöten auftretenden Unsicherheiten hinsichtlich exakter Verbindungen der Einzelteile nicht erst auftreten. Durch die mittels des Aufschrumpfens bewirkten innigen Verbindung von Metall- und Isolierteilen sowie durch die Auswahlmöglichkeit besonders gut wärmeleitender Isolierstoffe für die Isolierteile wird eine optimale Wärmeableitung der an den Auffangelektroden auftretenden Verlustwärme erreicht, Darüber hinaus treten gegenüber bekannten Elektronenstrahlauffängern keine lsolationsprobleme hinsichtlich der elektrischen Durchschlagsfestigkeit zwischen den Auffangelektroden sowie zwischen diesen und der Außen-oder Vakuumhülle auf.The advantages achieved by the invention are, in particular, that instead of the previous complex soldering technique when assembling the individual parts of the electron beam collector, a simple clamping technique is now used. This avoids complex metallizations of metal-ceramic parts to be soldered. In addition, the uncertainties that arise when soldering with regard to exact connections of the individual parts cannot occur. Optimal heat dissipation of the heat loss occurring at the collecting electrodes is achieved through the intimate connection of metal and insulating parts, as well as through the choice of particularly good heat-conducting insulating materials for the insulating parts Collecting electrodes and between them and the outer or vacuum cover.

Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in den Figuren der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:

  • Fig. 1 einen erfindungsgemäßen Elektronenstrahlauffänger schematisch in Schnitt und
  • Fig. 2 das Ausführungsbeispiel der Fig. 1 im Schnitt 11-11.
A preferred embodiment of the invention is shown in the figures of the drawing and is described in more detail below. Show it:
  • Fig. 1 shows an electron beam catcher according to the invention schematically in section and
  • Fig. 2 shows the embodiment of FIG. 1 in section 11-11.

Der in den Figuren 1 und 2 dargestellte Elektronenstrahlauffänger ist als Zweistufen-Kollektor ausgebildet und besteht im wesentlichen aus zwei in Richtung der Elektronenstrahlachse in Abstand hintereinander angeordneten hohlzylindrischen Auffangelektroden 1, 2. Die erste Auffangelektrode 1 weist eine Elektronenstrahleintrittsöffnung auf, und die zweite Auffangelektrode ist als Auffängerboden ausgebildet. Der Boden ist dabei zum Verhindern eines Elektronenrückflie- ßens trichterförmig zugespitzt. Zwischen den beiden Auffangelektroden 1, 2 und der aus Kupfer bestehenden Außen- oder Vakuumhülle 3 sind zwei in axialer Richtung verlaufende, halbschalenförmige Isolierteile 4 angeordnet. Die Isolierteile 4 bestehen vorzugsweise aus Bornitrid, Aluminiumoxid, Berylliumoxid oder Aluminiumitrid. Auch andere Isoliermaterialien mit ähnlich günstigen Eigenschaften, insbesondere hoher Wärmeleitfähigkeit, sind verwendbar. Die Auffangelektroden 1, 2 bestehen vorzugsweise aus Kupfer. Die Auffangelektroden 1, 2 können jedoch statt aus Kupfer aus Molybdän oder aus ähnlichen Metallen bzw. Legierungen bestehen. Die aus Kupferbestehende Auben- oder Vakuumhülle 3 ist auf die halbschalenförmigen Isolierteile 4 aufgeschrumpft, und zwar derart, daß die Halbschalen 4 an die Auffangelektroden 1, 2 und die aus Kupfer bestehende Auben- oder Vakuumhülle 3 angepreßt sind.1 and 2 is designed as a two-stage collector and essentially consists of two hollow cylindrical collecting electrodes 1, 2 arranged one behind the other in the direction of the electron beam axis. The first collecting electrode 1 has an electron beam inlet opening, and the second collecting electrode is as Trap bottom trained. The bottom has a funnel shape to prevent backflow of electrons. Between the two collecting electrodes 1, 2 and the outer or vacuum envelope 3 made of copper, two half-shell-shaped insulating parts 4 extending in the axial direction are arranged. The insulating parts 4 are preferably made of boron nitride, aluminum oxide, beryllium oxide or aluminum nitride. Other insulating materials with similarly favorable properties, in particular high thermal conductivity, can also be used. The collecting electrodes 1, 2 are preferably made of copper. The collecting electrodes 1, 2 can, however, consist of molybdenum or similar metals or alloys instead of copper. The Auben- or vacuum sleeve 3 consisting of copper is shrunk onto the half-shell-shaped insulating parts 4, in such a way that the half-shells 4 are pressed onto the collecting electrodes 1, 2 and the Auben- or vacuum sleeve 3 made of copper.

Das Aufschrumpfen wird zweckmäßig folgendermaßen vorgenommen: Zunächst werden die Halbschalen 4 an den voneinander beabstandeten Auffangelektroden 1, 2 gehaltert. Das kann beispielsweise mittels Klemmen z.B. aus Molybdän geschehen. Vorteilhaft ist es dabei, Auffangelektroden 1, 2 zu verwenden, die jeweils mindestens eine Auskragung 5 aufweisen, wobei die beiden Halbschalen 4, jeweils mit entsprechenden Innennuten 6 versehen sind, so daß die Teile zusammensteckbar sind, und zwar unter Einhaltung der vorgegebenen Bemessungen. Es kann jedoch auch zweckmäßig sein, die Fixierung statt durch Auskragungen und entsprechende Innennuten in den zusammenzufügenden Teilen, mittels Stiften, Kerben, Stufen oder dergleichen vorzunehmen. Anschließend werden die Auffangelektroden 1, 2 mit den Halbschalen 4 in die zuvor auf eine Temperatur von ca. 500°C bis 800°C beispielsweise durch Quarzlampen in einem Ofen erhitzte aus Kupferbestehende Außen- oder Vakuumhülle 3 eingeschoben. Dann wird die Außen- oder Vakuumhülle 3 wieder abgekühlt und schrumpft währens diese Vorganges auf die Halbschalen 4 auf, so daß die geforderte mechanisch robuste Verbindung zwischen dan Auffangelektroden 1 und 2, den Halbschalen 4 und er Außen- oder Vakuumhülle entsteht.The shrinking is expediently carried out as follows: First, the half-shells 4 are held on the collecting electrodes 1, 2 which are spaced apart from one another. This can be done, for example, using clamps made of molybdenum, for example. It is advantageous to use collecting electrodes 1, 2, each of which has at least one projection 5, the two half-shells 4 each being provided with corresponding internal grooves 6, so that the parts can be plugged together, in compliance with the specified dimensions. However, it may also be expedient to fix it instead of through Cantilever and corresponding internal grooves in the parts to be joined together, using pins, notches, steps or the like. Subsequently, the collecting electrodes 1, 2 with the half-shells 4 are inserted into the outer or vacuum envelope 3, which was previously heated to a temperature of approximately 500 ° C. to 800 ° C., for example by quartz lamps in an oven. Then the outer or vacuum sleeve 3 is cooled again and shrinks during this process onto the half-shells 4, so that the required mechanically robust connection between the collecting electrodes 1 and 2, the half-shells 4 and the outer or vacuum sleeve is created.

Claims (4)

1. Electron beam collector for velocity-modulated tubes, preferably multi-stage collectors for travelling-wave tubes, having a plurality of collecting electrodes surrounding the electron beam and arranged behind one another in the direction of the electron beam axis, said collecting electrodes being electrically insulated from one another and surrounded by a metallic outer or vacuum envelope, insulating part is being arranged between the collecting electrodes and the outer envelope and the insulating parts being held in their position by radial pressure, characterized in that said electron beam collector contains two insulating parts which are half shell-shaped, in that the metallic outer or vacuum envelope (3) consists of copper and is shrunk onto the half shell-shaped insulating parts (4), and in that the insulating parts (4) are pressed by the metallic outer or vacuum envelope (3) against the collecting electrodes (1,2).
2. Electron beam collector according to Claim 1, characterized in that the half shell-shaped insulating parts (4) consist of boron nitride, aluminium oxide, beryllium oxide or aluminium nitride.
3. Electron beam collector according to one of Claims 1 or 2, characterized in that the collecting electrodes (1, 2) have at least one projection (5) each and the half shell-shaped insulating parts (4) have in each case corresponding internal grooves (6).
4. Method for producing an electron beam collector according to one of Claims 1 to 3, characterized in that the half shell-shaped insulating parts (4) are secured at the collecting electrodes (1, 2) which are spaced from one another, in that the collecting electrodes (1, 2) together with the insulating parts (4) are inserted into the copper outer or vacuum envelope (3) previously heated to a temperature of approximately 700 to 800°C, and in that the outer or vacuum envelope (3) is subsequently cooled down and thus shrunk onto the insulating parts (4).
EP87111286A 1986-08-29 1987-08-04 Electron-beam collector or a transit-time tube Expired - Lifetime EP0259606B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3629461 1986-08-29
DE3629461 1986-08-29

Publications (2)

Publication Number Publication Date
EP0259606A1 EP0259606A1 (en) 1988-03-16
EP0259606B1 true EP0259606B1 (en) 1991-01-23

Family

ID=6308493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111286A Expired - Lifetime EP0259606B1 (en) 1986-08-29 1987-08-04 Electron-beam collector or a transit-time tube

Country Status (4)

Country Link
US (1) US4840595A (en)
EP (1) EP0259606B1 (en)
JP (1) JPH0754666B2 (en)
DE (1) DE3767617D1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361047B1 (en) * 1988-09-30 1995-11-22 Thomson Tubes Electroniques Travelling wave tube
DE3913064A1 (en) * 1989-04-21 1990-10-25 Licentia Gmbh Electronic collector for HF electronic beam tube - has in-line electrodes located within cylindrical tube of ceramic with outer metal sleeve
DE3913538C2 (en) * 1989-04-25 1996-11-21 Licentia Gmbh Electron collector for an electron beam tube
FR2650702B1 (en) * 1989-08-01 1996-07-05 Thomson Tubes Electroniques MICROWAVE TUBE PROVIDED WITH AT LEAST ONE COLD-SOCKET AXIAL PART IN A COAXIAL ENVELOPE
US5227694A (en) * 1991-11-19 1993-07-13 Itt Corporation Collector apparatus for an electron beam
DE4238165A1 (en) * 1992-11-12 1994-05-19 Licentia Gmbh Electron tube
US5964633A (en) * 1997-12-15 1999-10-12 Hughes Electronics Corporation Method of heat shrink assembly of traveling wave tube
JP6452533B2 (en) * 2015-04-17 2019-01-16 三菱電機株式会社 Collector for electron tube
CN105788998B (en) * 2016-04-19 2017-11-21 北京航空航天大学 A kind of small size, small-power barium tungsten hollow cathode

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076159A (en) * 1961-09-29 1963-01-29 Hewlett Packard Co Waveguide coupling apparatus
US3208126A (en) * 1962-05-14 1965-09-28 Sperry Rand Corp Method for making traveling wave tubes
US3394453A (en) * 1965-10-04 1968-07-30 Itt Traveling wave tube assembly
US3586100A (en) * 1968-09-28 1971-06-22 Nippon Electric Co Heat dissipating devices for the collectors of electron-beam tube
FR2038785A5 (en) * 1969-03-28 1971-01-08 Thomson Csf
US3751802A (en) * 1970-12-02 1973-08-14 Litton Systems Inc Method of manufacturing a ceramic ball insulated depressed collector for a microwave tube
FR2219518B1 (en) * 1973-02-23 1976-11-05 Thomson Csf
DE7638159U1 (en) * 1976-12-06 1977-06-16 Siemens Ag, 1000 Berlin Und 8000 Muenchen TROPICAL TUBE WITH A COIL-LIKE DELAY LINE
DE2906657C2 (en) * 1979-02-21 1983-05-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Lauffeldtube
JPS60258831A (en) * 1984-06-06 1985-12-20 Nec Corp Microwave electron tube

Also Published As

Publication number Publication date
US4840595A (en) 1989-06-20
JPH0754666B2 (en) 1995-06-07
JPS6364245A (en) 1988-03-22
EP0259606A1 (en) 1988-03-16
DE3767617D1 (en) 1991-02-28

Similar Documents

Publication Publication Date Title
EP0259606B1 (en) Electron-beam collector or a transit-time tube
DE2014543A1 (en) Electron tube
EP0132804B1 (en) Vacuum switch, particularly for a low-voltage protector
DE102009007474B4 (en) Vacuum interrupter
EP0335114A2 (en) Housing for a vacuum switch
DE2834135C3 (en) Method for manufacturing a traveling wave tube
DE2901681A1 (en) ROENTINE PIPE
DE2526681C3 (en) Traveling wave tube
DE2135439A1 (en) Device with a hnienformigem electron beam
DE3344643A1 (en) Vacuum switching tube for medium-voltage switching apparatuses
DE1541005C3 (en) Electron discharge device
DE69835070T2 (en) Electrode assembly with a deformed sleeve
DE2608718C3 (en) Magnetron with axial decoupling and axial cathode feeds
DE2223057A1 (en) Arc lamp
DE2423345A1 (en) ELECTRON BEAM DEVICE
EP0258667A1 (en) Electron beam collector for transit-time tubes
CH643393A5 (en) VACUUM LOAD SWITCH WITH A DEVICE FOR CARRYING THE ARC SHELL.
DE1491469B1 (en) Microwave tube of the traveling field type that works with crossed static, electric and magnetic fields
US4712293A (en) Method for securing a slow-wave structure in enveloping structure with crimped spacers
US5334907A (en) Cooling device for microwave tube having heat transfer through contacting surfaces
DE3409061C1 (en) Bipolar coagulation instrument
DE3411784A1 (en) CONTACTS FOR A VACUUM SWITCH
DE2906657C2 (en) Lauffeldtube
DE2211752A1 (en) Electron beam device
EP0156004A1 (en) Travelling-wave tube and manufacturing method of the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880425

17Q First examination report despatched

Effective date: 19890629

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3767617

Country of ref document: DE

Date of ref document: 19910228

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950811

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960804

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050804