EP0255931B1 - Procédé de transmission d'un signal vidéo - Google Patents

Procédé de transmission d'un signal vidéo Download PDF

Info

Publication number
EP0255931B1
EP0255931B1 EP87111205A EP87111205A EP0255931B1 EP 0255931 B1 EP0255931 B1 EP 0255931B1 EP 87111205 A EP87111205 A EP 87111205A EP 87111205 A EP87111205 A EP 87111205A EP 0255931 B1 EP0255931 B1 EP 0255931B1
Authority
EP
European Patent Office
Prior art keywords
transformation
coefficients
weighting
inverse
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111205A
Other languages
German (de)
English (en)
Other versions
EP0255931A2 (fr
EP0255931A3 (en
Inventor
Heinz-Werner Dr.-Ing. Keesen
Wolfgang Dipl.-Ing. Hartnack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Thomson Brandt GmbH
Original Assignee
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Thomson Brandt GmbH filed Critical Deutsche Thomson Brandt GmbH
Publication of EP0255931A2 publication Critical patent/EP0255931A2/fr
Publication of EP0255931A3 publication Critical patent/EP0255931A3/de
Application granted granted Critical
Publication of EP0255931B1 publication Critical patent/EP0255931B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation

Definitions

  • the invention relates to a method for transmitting a video signal according to the preamble of patent claim 1.
  • a weighting in some places in arithmetic units can lead to an eye-physiologically adapted data reduction.
  • the weighting can be achieved by multiplying the result matrices with a weighting function in further arithmetic units after a transformation and / or reverse transformation.
  • the weighting function consists of a constant and can be different in the horizontal and / or vertical direction in order to be adapted to the physiology of the eye, the image content and / or the line-oriented television standard.
  • Such a weighting is e.g. IEEE TRANS. ON COMMUNICATIONS, COM-33, N 6, June 1985, pages 551-557.
  • the object of the invention is to simplify the method for source coding.
  • Fig. 1 shows a block diagram of a general communication system with a television camera 1, an AD-D converter 2, hereinafter called ADU (analog-digital converter), a transformation circuit 3, hereinafter called a transformer, and a modulator 4 on a transmitter side , a memory 5 and a demodulator 6, a reverse transformation circuit 7, hereinafter called reverse transformer or inverse transformer, a D / A converter 8, hereinafter called DAU (digital-to-analog converter) and a monitor 9 on a receiver side.
  • Lines 10 - 17 are arranged between the individual assemblies 1 - 9.
  • the modules 2-8 and 10-17 are arranged in a video recorder.
  • a fault S (T) 18 acts on the magnetic tape storage 5.
  • the television camera 1 supplies a video signal via line 10 to the ADU 2.
  • the ADU 2 converts the analog video signals into digitized video signals and passes these digitized video signals to the transformer 3.
  • the transformer 3 transforms the digitized video signals from the time domain into a spectral domain, hereinafter referred to as the frequency domain. Transforming means that the digitized video signals are viewed as numbers, arranged in blocks as matrices and multiplied in a matrix.
  • the digitized values in the frequency domain are called spectral coefficients.
  • the spectral coefficients reach the modulator 4 via a line 12.
  • the modulator 4 modulates the spectral coefficients and transmits the modulated spectral coefficients via a line 13 to a magnetic memory 5.
  • the magnetic memory 5 can also be replaced by a transmission link.
  • the recorded signals pass from the magnetic memory 5 via a line 14 to a demodulator 6.
  • the demodulator 6 demodulates the spectral coefficients.
  • the demodulated spectral coefficients are passed on to the back transformer 7 via a line 5.
  • the inverse function of the transformer 3 is carried out in the reverse transformer 7.
  • the spectral coefficients are transferred from the frequency domain to the time domain in the reverse transformer 7.
  • the digitized video signals, which are in the time domain are given to the ADC 8 via the line 16.
  • the digitized video signals are converted into analog signals and sent via a line 17 to the monitor 9, hereinafter referred to as the screen.
  • the signals recorded by the television camera 1 are made visible on the screen 9.
  • the back-transformed analog signals are not necessarily identical to the digitized signals on the transmitter side in front of the transformer 3, because irrelevant and redundant portions of the digitized signals are suppressed in the transformer and sifted out before transmission (storage
  • the 3 shows the inverse transformer 7 arranged on the receiver side.
  • the demodulated digital signals pass from the demodulator 6 via the line 15 to the arithmetic unit 24.
  • the arithmetic unit 24 carries out the functions inverse to the transformer 3.
  • the arithmetic logic unit 24 accesses a memory ROMTI (Random only Memory Transformation inverse) 25 via a data, address and control bus 26.
  • the arithmetic unit 24 there is also a memory which stores the spectral coefficients after a first inverse transformation and then carries out a second (inverse) transformation and only then outputs the inverse-transformed signals via the data bus 16.
  • a first transformation can be a vertical transformation
  • a second transformation can be a horizontal transformation.
  • FIG. 4 shows a transformer 3 which carries out a transformation more quickly.
  • two arithmetic units 27 and 28 are provided, which carry out two one-dimensional transformations in series.
  • 8 bits are supplied in parallel to the arithmetic logic unit 27 via the data bus 11 with eight lines. Transformation coefficients are supplied from the memory 30 to the arithmetic logic unit 27 via the data bus 33.
  • the lines 33 have additional control and address lines which announce a request from the arithmetic unit to the memory.
  • the digitized video signals are multiplied using transformation equations and passed on to the arithmetic unit 28 via the data bus 36.
  • Spectral coefficients are present at the input of the arithmetic unit 28, which have a one-dimensional transformation.
  • the arithmetic unit 28 receives transformation coefficients from the memory 31 via data, control and address lines 34.
  • the data come via a data line 34
  • the control and address signals are given via control 34 and address lines 34.
  • the memories 30 and 31 can have the same spectral coefficients. But this is not absolutely necessary.
  • Two arithmetic units 27 and 28 are provided for the transformation to be able to perform faster. After the two transformations, the two-dimensional spectral coefficients are forwarded to the arithmetic unit 29 via the data bus 37 with 8 data lines.
  • a second weighting at certain points in the arithmetic unit can lead to an eye-physiologically adapted data reduction.
  • the second weighting can be achieved in that after the transformation or the reverse transformation, the result matrix is multiplied in the arithmetic units by a weighting function FVFH, which is stored in ROMS.
  • the function of the second weighting can be different in the horizontal and vertical directions in order to adapt it to the physiology of the eye and / or the image content and / or the line-oriented television standard. Accordingly, in addition to the ROMS for the transformation coefficients, additional ROMS are required for the function of the second weighting, which are carried out in an additional multiplier.
  • the two-dimensional spectral coefficients present on the data lines 37 are weighted for the second time in the arithmetic unit 29.
  • a memory 32 is actuated by the arithmetic unit 29, which outputs weighting coefficients to the arithmetic unit 29, with which the two-dimensional spectral coefficients are applied, evaluated and / or multiplied.
  • Eight bits are forwarded in parallel to quantizer 21 via data bus 38 with eight data lines.
  • the digitized two-dimensional spectral coefficients with a weighting factor are quantized (corresponds to the first weighting) and fed to the demodulator via the eight bit parallel data line 12.
  • -R3A- -T1- * -E-
  • -R- -R3A- * -T2- and
  • the spectral values on the transmitter side are weighted with a weighting function, that is, multiplied by a factor less than 1.
  • weighting factors corresponding to the transmitter side are reciprocal. The weighting factors are in the above Dissertation work specified.
  • the weighted spectral coefficients are fed via the eight bit parallel data lines 15 to the arithmetic logic unit 39, which fetches the third weighting factors from the memory 42 via a data, address and control line 47 and multiplies them by the spectral coefficients.
  • the third weighting factors are reciprocal to the second weighting factors on the transmitter side.
  • the data are passed on from the arithmetic unit 39 via an eight bit parallel data bus 45 to the arithmetic unit 40, where an inverse transformation of the spectral coefficients takes place.
  • the reverse transformation coefficients are fetched from the memory 43, which is connected to the arithmetic logic unit 40 via a data, control and address bus 48 to the arithmetic logic unit 40.
  • the one-dimensional back-transformed spectral coefficients are sent to the arithmetic logic unit 41 for the next one-dimensional transformation via the data line 46 with eight bits, where the second one-dimensional back transformation takes place.
  • reverse transformation coefficients are output to the arithmetic logic unit 41 via the control and address line 49.
  • the back-transformed digitized video signals are then on line 16.
  • -R6A- -T3- * -E-
  • -Z- -R6A- * -T4- and
  • FIG. 6 shows the block diagram of a fast and hardware-simple transformer 3.
  • the two one-dimensional transformations are carried out in series and the weighting factors are already included in the two memories 52 and 53, so that an additional memory is not required. So there are no spectral coefficients, but weighted transformation coefficients.
  • Digitized video signals are sent to arithmetic logic unit 50 via data bus 11 with eight data lines.
  • the arithmetic unit 50 fetches the associated weighted transformation coefficients from the memory 52 via the data bus of the control, address and data bus 56.
  • the values from the digitized video signals are multiplied by the weighted transformation coefficients in the arithmetic unit 50 and passed on to the arithmetic unit 51 via the data bus 54.
  • the arithmetic unit 51 fetches the associated weighted transformation coefficients from the memory 53 for the second one-dimensional transformation, the fetching taking place via the data, address and control lines of the data, address and control bus 57.
  • the second one-dimensional transformation is carried out in the arithmetic unit 51 and sent to the quantizer 21 via the data bus 55, which has eight data lines. After quantization, eight bits are passed on in parallel via the data bus 12.
  • the weighting coefficients are incorporated into the memories 52 and 53 in the horizontal and vertical transformation coefficients.
  • FIG. 7 shows the block diagram of the reverse transformer 7, which performs reverse transformation functions.
  • the memory 60 has stored the horizontal transformation coefficients with incorporated weighting coefficients for a first one-dimensional transformation and the memory 61 has stored the vertical transformation coefficients with incorporated weighting coefficients for a second one-dimensional transformation.
  • eight bits are given in parallel to the arithmetic logic unit 58, which fetches the associated transformation coefficients via the control, data and address bus 63 and multiplies these with the data arriving via the data bus 15.
  • Eight bits are given in parallel via eight data lines to arithmetic logic unit 59 via data bus 62.
  • the associated transformation coefficients which consist of the vertical transformation coefficients and the vertical weighting coefficients incorporated into them, are transformed via the data, control and address bus 64 coefficients and one-dimensionally transformed spectral coefficients for the second time and the result is transmitted via the data bus 16 to eight data lines passed on to DAU 8.
  • FIG. 8 shows a process sequence with process steps 70-80.
  • a first step 70 horizontal and vertical weighting functions are entered. In the simplest case, the weighting functions are a constant factor.
  • a DCT and an inverse DCT coefficient matrix are calculated.
  • a modified DCT and the modified inverse DCT coefficient matrix are created. For this purpose, the weighting function is incorporated into the DCT and the inverse DCT coefficient matrix.
  • the fourth method step 73 is the block-by-block input of digitized video signals, hereinafter referred to as image data, which are assigned to an image segment having 8 * 8 pixels and are constructed in the form of a matrix.
  • this image data is transformed into spectral coefficients using a DCT which has weighted transformation coefficients.
  • these generated spectral coefficients are quantized.
  • the quantized spectral coefficients are stored in method step 76.
  • the stored spectral coefficients are transformed back, that is, they are transformed with the inverse DCT with inverse weighting.
  • an 8 * 8 pixel block with transformed and back-transformed digitized video signals appears as method step 78.
  • a query is made as to whether all data belonging to an image, a sequence, a video signal or some other amount of data have been taken into account. If this is not the case, query 79 returns to method step 73 and continues there. If it is determined in method step 79 that all the data have been processed, the method is ended with a method step 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Television Systems (AREA)
  • Image Processing (AREA)
  • Studio Circuits (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Complex Calculations (AREA)

Claims (5)

  1. Procédé de transmission d'un signal vidéo sous forme de données numériques dans lequel le signal vidéo est transformé dans un domaine spectral avant la transmission, des blocs de points d'image étant multipliés avec une matrice bidimensionnelle de coefficients de transformation par deux transformations unidimensionnelles, une pondération pour une réduction des données adaptée à la physiologie de la vision et une quantification étant réalisées dans les blocs, une pondération et une transformation inverses étant réalisées dans le décodeur, caractérisé en ce que du côté du codeur, les coefficients de transformation de la matrice bidimensionnelle sont pondérés différemment, de sorte que la transformation et la pondération par multiplication des blocs avec la matrice sont réalisées simultanément et en ce que la transformation et la pondération inverses côté décodeur sont réalisées par multiplication avec des coefficients de transformation inverse pondérés en conséquence, les facteurs de pondération étant inférieurs à 1.
  2. Procédé selon la revendication 1, caractérisé en ce que la transformation est une transformation cosinus discrète et la transformation inverse une transformation cosinus discrète inverse.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les blocs ont une taille de 8*8 points d'image ou coefficients.
  4. Procédé selon une ou plusieurs des revendications 1 à 3, caractérisé en ce qu'on utilise pour la transformation dans la seconde dimension des coefficients de transformation pondérés différemment que pour la transformation dans la première dimension et qu'on utilise pour la transformation inverse dans la seconde dimension des coefficients de transformation inverse pondérés différemment que pour la transformation inverse dans la première dimension.
  5. Utilisation du procédé selon l'une des revendications 1 à 4 dans un magnétoscope.
EP87111205A 1986-08-08 1987-08-04 Procédé de transmission d'un signal vidéo Expired - Lifetime EP0255931B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863626916 DE3626916A1 (de) 1986-08-08 1986-08-08 Verfahren zur uebertragung eines videosignales
DE3626916 1986-08-08

Publications (3)

Publication Number Publication Date
EP0255931A2 EP0255931A2 (fr) 1988-02-17
EP0255931A3 EP0255931A3 (en) 1989-10-04
EP0255931B1 true EP0255931B1 (fr) 1995-07-12

Family

ID=6306956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111205A Expired - Lifetime EP0255931B1 (fr) 1986-08-08 1987-08-04 Procédé de transmission d'un signal vidéo

Country Status (9)

Country Link
US (1) US4814871A (fr)
EP (1) EP0255931B1 (fr)
JP (1) JP2557899B2 (fr)
KR (1) KR950004110B1 (fr)
CN (1) CN1018506B (fr)
AT (1) ATE125092T1 (fr)
DE (2) DE3626916A1 (fr)
ES (1) ES2076928T3 (fr)
HK (1) HK65697A (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780761A (en) * 1987-06-02 1988-10-25 Eastman Kodak Company Digital image compression and transmission system visually weighted transform coefficients
US5162923A (en) * 1988-02-22 1992-11-10 Canon Kabushiki Kaisha Method and apparatus for encoding frequency components of image information
US4941043A (en) * 1988-06-14 1990-07-10 Siemens Aktiengesellschaft Method for reducing blocking artifacts in video scene coding with discrete cosine transformation (DCT) at a low data rate
DE69032177T2 (de) * 1989-12-25 1998-11-12 Mitsubishi Electric Corp Kodierungsgerät
US5144688A (en) * 1990-03-23 1992-09-01 Board Of Regents, The University Of Texas System Method and apparatus for visual pattern image coding
DE4026523A1 (de) * 1990-08-22 1992-02-27 Thomson Brandt Gmbh Verfahren und vorrichtung zur bilddaten-transformation
AU3274593A (en) * 1991-12-13 1993-07-19 Avid Technology, Inc. Quantization table adjustment
US5355450A (en) * 1992-04-10 1994-10-11 Avid Technology, Inc. Media composer with adjustable source material compression
US5715018A (en) * 1992-04-10 1998-02-03 Avid Technology, Inc. Digital advertisement insertion system
DE4441294C2 (de) * 1994-11-21 1997-01-09 Sican Gmbh Decoder und Verfahren zur Decodierung von codierter Bild-, Video- und Filminformation
DE4441291C1 (de) * 1994-11-21 1996-08-14 Sican Gmbh Verfahren und Schaltungsanordnung zur inversen Quantisierung und inversen diskreten Cosinus-Transformation von komprimierter Bildinformation
US5706216A (en) * 1995-07-28 1998-01-06 Reisch; Michael L. System for data compression of an image using a JPEG compression circuit modified for filtering in the frequency domain
GB2387058A (en) * 2002-03-28 2003-10-01 Sony Uk Ltd Method of selecting a quantisation parameter using trial parameters

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889668A (fr) * 1972-02-25 1973-11-22
US4196448A (en) * 1978-05-15 1980-04-01 The United States Of America As Represented By The Secretary Of The Navy TV bandwidth reduction system using a hybrid discrete cosine DPCM
US4270025A (en) * 1979-04-09 1981-05-26 The United States Of America As Represented By The Secretary Of The Navy Sampled speech compression system
NL8004521A (nl) * 1980-08-08 1982-03-01 Philips Nv Werkwijze voor het digitaliseren van een kleuren-videosignaal.
US4375650A (en) * 1981-04-29 1983-03-01 General Electric Company System for processing video signals
US4541012A (en) * 1982-01-04 1985-09-10 Compression Labs, Inc. Video bandwidth reduction system employing interframe block differencing and transform domain coding
ATE25177T1 (de) * 1982-10-14 1987-02-15 British Telecomm Bilduebertragung.
EP0201679B1 (fr) * 1985-04-17 1991-03-13 Siemens Aktiengesellschaft Procédé de réduction de données d'images pour des signaux de télévision numériques

Also Published As

Publication number Publication date
US4814871A (en) 1989-03-21
JP2557899B2 (ja) 1996-11-27
HK65697A (en) 1997-05-23
DE3751397D1 (de) 1995-08-17
ATE125092T1 (de) 1995-07-15
KR880003526A (ko) 1988-05-17
JPS6351786A (ja) 1988-03-04
CN1018506B (zh) 1992-09-30
EP0255931A2 (fr) 1988-02-17
DE3626916A1 (de) 1988-02-11
KR950004110B1 (ko) 1995-04-25
EP0255931A3 (en) 1989-10-04
ES2076928T3 (es) 1995-11-16
CN87105400A (zh) 1988-06-22

Similar Documents

Publication Publication Date Title
DE2953109C2 (de) Digitalcodierer zur Faksimile-Übertragung
EP0276753B1 (fr) Méthode et appareil pour la transmission d'informations numériques et/ou l' enregistrement et la reproduction
EP0255931B1 (fr) Procédé de transmission d'un signal vidéo
DE2740945C3 (de) Verfahren zum Übertragen von Bildsignalen mit Hilfe der Differenz-Puls-Code-Modulation (DPCM) und geste uertem Quantisierer
DE3208859C2 (fr)
EP0197527B1 (fr) Procédé de transmission numérique d'informations
EP0346766A1 (fr) Procédé pour la réduction d'artefacts d'enconbrement dans le codage de scène de vidéo par transformation en cosinus discrète avec débit de données réduit
EP0309669A2 (fr) Procédé de réduction de données d'images se basant sur des modèles de scènes pour signaux de télévision numériques
DE10022331A1 (de) Verfahren zur Transformationscodierung von Bewegtbildsequenzen
EP0517324A2 (fr) Appareil pour commander le quantificateur d'un codeur hybride
DE3613343A1 (de) Hybrid-codierer
DE2124754B2 (de) Verfahren und Vorrichtung zur differentiellen Pulscodemodulation
EP0304836B1 (fr) Procédé et circuit relatifs à la résolution de signaux numériques
DE2835434C2 (de) Verfahren zur Übertragung von Bildsignalen über schmalbandige !bertragungskanäle
EP0336510B1 (fr) Codeur predictif d'image immobile
DE3545106C2 (fr)
DE2460654A1 (de) Verfahren und einrichtung zum codieren eines gegebenen informationssignals
EP0544735B1 (fr) Procede et dispositif de transformation de donnees video
DE3726601C2 (fr)
EP0303978B1 (fr) Procédé et circuit pour augmenter la résolution de signaux numériques
EP0244001B1 (fr) Codeur hybride pour des signaux vidéo
EP0118755B1 (fr) Procédé pour la transmission numérique d'images de télévision
DE2046974C3 (de) Verfahren zur Reduktion der Bandbreite von Nachrichtensignalen
EP0165488B1 (fr) Procédé de transmission d'images de télévision
EP0118754B1 (fr) Procédé et cicuit pour la transmission numérique d'images de télévision

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900310

17Q First examination report despatched

Effective date: 19920713

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950712

REF Corresponds to:

Ref document number: 125092

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950805

REF Corresponds to:

Ref document number: 3751397

Country of ref document: DE

Date of ref document: 19950817

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076928

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19960911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060710

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060817

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060821

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060828

Year of fee payment: 20

Ref country code: BE

Payment date: 20060828

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060829

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20070804

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070803

BE20 Be: patent expired

Owner name: DEUTSCHE *THOMSON-BRANDT G.M.B.H.

Effective date: 20070804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060829

Year of fee payment: 20