EP0249531B1 - Method and apparatus for controlling a central-heating system - Google Patents

Method and apparatus for controlling a central-heating system Download PDF

Info

Publication number
EP0249531B1
EP0249531B1 EP87401237A EP87401237A EP0249531B1 EP 0249531 B1 EP0249531 B1 EP 0249531B1 EP 87401237 A EP87401237 A EP 87401237A EP 87401237 A EP87401237 A EP 87401237A EP 0249531 B1 EP0249531 B1 EP 0249531B1
Authority
EP
European Patent Office
Prior art keywords
temperature
model
heating
building
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87401237A
Other languages
German (de)
French (fr)
Other versions
EP0249531A1 (en
Inventor
Thierry Verhaege
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Alcatel Alsthom Compagnie Generale dElectricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Alcatel Alsthom Compagnie Generale dElectricite filed Critical Alcatel SA
Publication of EP0249531A1 publication Critical patent/EP0249531A1/en
Application granted granted Critical
Publication of EP0249531B1 publication Critical patent/EP0249531B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating

Definitions

  • the present invention relates to a process and a device for regulating central heating for an individual or collective residential building.
  • the object of the present invention is to implement a method which makes it possible to avoid the above drawbacks.
  • a boiler 1 with its burner control 2, its fluid circulator 3.
  • Reference 4 illustrates the fluid flow pipes to the elements for exchange with the building, while reference 5 illustrates the fluid return pipes to the boiler.
  • a regulator 10 is integrated into the boiler 1; it receives at input 11 information from a member 8 for measuring the temperature of the fluid, and has an output 12 for controlling the burner 2.
  • T 'i (t) being a family of exponential memories of the instantaneous charge rate ⁇ (t), based on different characteristic times A ti: from, approached by not
  • This model involves two parameters p 1 and p 2 . These can also be established by self-learning, taking advantage of the hourly programming, as will be explained below.
  • the regulator can interrupt the heating - generally for several hours - when the setpoint changes from the normal value to the reduced value; ⁇ 1 tends to zero, so that ⁇ i becomes well known, because it is close to ⁇ f.
  • the value obtained constitutes a precise reference, which can be injected into the "building" model (see below), in order to estimate with good precision what was the value of ⁇ i during the change of setpoint, and of deduce a condition from p 1 and p 2 .
  • the law f ( ⁇ i 1 , ⁇ f, ⁇ 1 ): 0 can be disturbed by local actions, such as for example limiting actions thermostatic valves.
  • the temperature of the fluid 0 f is higher at a given charge rate.
  • the application of the law f leads to an overestimation of ⁇ i, and therefore to a reduction in heating. This reduction is useful because the action of thermostatic valves means that the demand for heating is lower than the supply.
  • the regulator mainly regulates the average interior temperature of the building, with however a partial adaptation to the demand expressed by the local adjustment actions.
  • g (t) intervenes in a corrective term whose amplitude is of the order of 1 to 2 ° C. It reflects the fact that the outside temperature, the solar gain, the internal gain, are statistically higher during the day than at night. Being a corrective term, we admit on g (t) a certain degree of approximation, allowing the use of a preprogrammed function.
  • the sensitivity parameter p 3 it is possible to define the sensitivity parameter p 3 by self-learning; in fact, the interior temperature is well known thanks to the "network” model for some time (about two hours) after the heating stops due to each drop in setpoint. It then suffices to compare this temperature with the value given by the "building” model, and to correct p 3 accordingly.
  • the "building" model remains precise when the temperature of the fluid is high, provided that the reference 0 i 1 (to) is sufficiently recent. We can then limit the role of the "network” model to the detection of indoor temperature excursions linked to unpredictable changes in climatic conditions and occupancy.
  • the "building" model also makes it possible to implement a heating anticipation function, when the setpoint is reduced, in anticipation of the future transition to a normal setpoint: the temperature evolution should be estimated on the assumption of 'operation at full load, and to initiate said operation when the temperature estimated for the time of transition coincides with the normal set point.
  • the regulator continues to regularly use the self-learning functions, in order to adapt to any changes in the definition of the context.
  • Figure 2 represents a test result of a regulator according to the invention, applied to the heating of an inhabited dwelling, immediately after commissioning.
  • the interior temperature setpoint (curve T), the interior temperature estimated by the regulator (curve 0 i 3 ), the temperature of the fluid (curve ⁇ f ) has been shown;
  • the effective internal temperature 0 i and the sunshine (W / m 2 - curve S) are also given, which are not measured by the regulator.
  • the set temperature T is 20 ° C except between 11 p.m. and 6 a.m., where it is 17 ° C.
  • ⁇ i 3 is greater than the value T (17 ° C) and the regulator stops the heating.
  • the regulator implements the "building" model and controls the heating at full load so that the temperature ⁇ i 3 of 20 degrees is reached at 6 hours.
  • the "building" model provides a maximum correction g (t) around 3 p.m., hence the minimum temperature of the fluid, in accordance with the reduction in requirements, linked in particular to solar gains (curve S).
  • the regulator orders the heating to stop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Description

La présente invention concerne un procécé et un dispositif de régulation d'un chauffage central pour bâtiment d'habitation individuelle ou collective.The present invention relates to a process and a device for regulating central heating for an individual or collective residential building.

Les procédés employés jusqu'ici entrent dans trois catégories présentant chacune divers inconvénients. Ils sont basés sur les principes suivants :

  • - Asservissement de la température de départ du fluide de chauffage à la température extérieure, suivant une loi dite "courbe de chauffe". Ce procédé ne permet pas de prendre en compte les apports internes de chaleurs, les apports solaires, le vent, les inerties thermiques, qui ont un effet sur les températures effectivement atteintes dans les habitations ; d'autre part, il nécessite un réglage manuel délicat des paramètres définissant la courbe de chauffe. Enfin, le coût d'installation d'une sonde de température à l'extérieur d'une habitation est relativement important.
  • - Asservissement de la température de départ du fluide à une température intérieure mesurée ; ce procédé n'a pas les inconvénients précédents, mais peut être perturbé par l'influence de conditions locales et/ou passagères (ouverture de fenêtres, fermeture d'un robinet de radiateur, exposition au soleil, proximité d'une source de chaleur, etc.), de sorte qu'il ne convient pas au chauffage d'immeubles collectifs, et demande certaines précautions en chauffage individuel ; il demande encore une liaison entre la chaufferie, le régulateur et le local où la température est mesurée.
  • - Modulation de débit par des robinets thermostatiques équipant les émetteurs ; ce procédé, efficace pour des consignes constantes, ne permet pas à lui seul la programmation horaire ; il peut être couplé à une programmation horaire centralisée de la température de départ ; celle-ci doit être suffisante en période normale pour assurer la satisfaction des besoins, et être choisie en période de chauffage réduit, de sorte que, les robinets thermostatiques n'opérant plus, les températures des pièces approchent au mieux la consigne réduite ; ce résultat est difficile à obtenir lorsque la régulation centrale ne connaît que la température extérieure ou une température intérieure.
The methods employed so far fall into three categories, each having various drawbacks. They are based on the following principles:
  • - Controlling the flow temperature of the heating fluid to the outside temperature, according to a law called "heating curve". This process does not take into account the internal heat gains, solar gains, wind, thermal inertia, which have an effect on the temperatures actually reached in homes; on the other hand, it requires a delicate manual adjustment of the parameters defining the heating curve. Finally, the cost of installing a temperature sensor outside a home is relatively high.
  • - Control of the fluid flow temperature to a measured interior temperature; this process does not have the above drawbacks, but can be disturbed by the influence of local and / or transient conditions (opening of windows, closing of a radiator valve, exposure to the sun, proximity to a heat source, etc.), so that it is not suitable for heating collective buildings, and requires certain precautions in individual heating; it also requires a connection between the boiler room, the regulator and the room where the temperature is measured.
  • - Flow modulation by thermostatic valves fitted to the transmitters; this process, effective for constant setpoints, does not by itself allow time programming; it can be combined with a centralized hourly programming of the flow temperature; this must be sufficient during normal periods to ensure satisfaction of needs, and be chosen during periods of reduced heating, so that, with the thermostatic valves no longer operating, the temperatures of the rooms approach the reduced setpoint at best; this result is difficult to obtain when the central control only knows the outside temperature or an inside temperature.

On connaît par le brevet français FR-A-2.542.852 un procédé de régulation d'un chauffage central d'un bâtiment dans lequel au moins une fois par jour la consigne de température passe à une valeur réduite, procédé dans lequel on mesure en permanence deux températures du fluide caloporteur (température de départ et température de retour); on asservit la commande de chauffage à une valeur de la température intérieure estimée par approximations successives à partir de la température du fluide caloporteur et des propriétés thermiques du réseau de chauffage.We know from French patent FR-A-2,542,852 a method of regulating a central heating of a building in which at least once a day the temperature setpoint goes to a reduced value, process in which we measure in permanently two temperatures of the heat transfer fluid (flow temperature and return temperature); the heating control is slaved to a value of the interior temperature estimated by successive approximations from the temperature of the heat transfer fluid and the thermal properties of the heating network.

La mise en oeuvre de ce procédé conduit à certaines difficultés. Ainsi, les températures intérieures obtenues subissent des fluctuations trop importantes car les propriétés thermiques du réseau évoluent trop avec les actions de réglage manuel des utilisateurs.The implementation of this process leads to certain difficulties. Thus, the internal temperatures obtained are subject to too large fluctuations because the thermal properties of the network change too much with the actions of manual adjustment of the users.

On constate par ailleurs que l'apprentissage n'est pas obtenu avec une précision suffisante quand une différence faible existe entre les deux températures du fluide caloporteur.It can also be seen that learning is not obtained with sufficient precision when a small difference exists between the two temperatures of the heat transfer fluid.

La présente invention a pour but de mettre en oeuvre un procédé permettant d'éviter les inconvénients précédents.The object of the present invention is to implement a method which makes it possible to avoid the above drawbacks.

Elle a également pour but de réduire le nombre et la complexité des interventions de réglage demandées à l'utilisateur du système de chauffage.It also aims to reduce the number and complexity of the adjustment interventions required from the user of the heating system.

Ces buts sont atteints selon l'invention par le procédé tel que défini par le revendication 1.These objects are achieved according to the invention by the method as defined by claim 1.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante de divers modes de mise en oeuvre donnés à titre illustratif, mais nullement limitatif. Dans le dessin annexé :

  • - La figure 1 montre très schématiquement un dispositif pour la mise en oeuvre du procédé, intégré à une chaudière de chauffage central.
  • - La figure 2 montre un diagramme illustrant les variations de température théorique et pratique, ainsi que la puissance de chauffe au cours d'une journée.
Other characteristics and advantages of the invention will appear during the following description of various embodiments given by way of illustration, but in no way limiting. In the attached drawing:
  • - Figure 1 shows very schematically a device for implementing the method, integrated into a central heating boiler.
  • - Figure 2 shows a diagram illustrating the theoretical and practical temperature variations, as well as the heating power during a day.

On voit dans la figure 1, une chaudière 1, avec sa commande de brûleur 2, son circulateur de fluide 3. La référence 4 illustre les tuyauteries de départ du fluide vers les éléments d'échange avec le bâtiment, tandis que la référence 5 illustre les tuyauteries de retour du fluide vers la chaudière. Un régulateur 10 est intégré à la chaudière 1 ; il reçoit en entrée 11 une information d'un organe 8 de mesure de la température du fluide, et dispose d'une sortie 12 de commande du brûleur 2.We see in Figure 1, a boiler 1, with its burner control 2, its fluid circulator 3. Reference 4 illustrates the fluid flow pipes to the elements for exchange with the building, while reference 5 illustrates the fluid return pipes to the boiler. A regulator 10 is integrated into the boiler 1; it receives at input 11 information from a member 8 for measuring the temperature of the fluid, and has an output 12 for controlling the burner 2.

Le régulateur exploite un modèle d'estimation de la température intérieure du bâtiment combinant en fait deux modèles distincts appelés respectivement modèle "réseau" et modèle "bâtiment" :

  • Le modèle "réseau" caractérise le réseau de distribution de chauffage en tant qu'échangeur entre le fluide caloporteur et le bâtiment à chauffer. Il s'écrit de façon générale :
  • f (0 i1, 0f, 't1) = 0, avec :
  • 0 i1 = température intérieure moyenne estimée selon le modèle "réseau"
  • θf = température mesurée du fluide caloporteur par l'organe 8
  • τ1 = taux de charge, rapport de la puissance à la puissance maximale, connu d'après la commande définie par le régulateur.
The regulator uses a model for estimating the interior temperature of the building, in fact combining two distinct models called the "network" model and the "building" model, respectively:
  • The "network" model characterizes the heating distribution network as an exchanger between the heat transfer fluid and the building to be heated. It is generally written:
  • f (0 i 1 , 0f, 't1) = 0, with:
  • 0 i 1 = average interior temperature estimated according to the "network" model
  • θf = measured temperature of the heat transfer fluid by the member 8
  • τ 1 = charge rate, ratio of power to maximum power, known from the command defined by the regulator.

Etant donné l'inertie thermique du réseau, τ1 ne doit pas être traité comme une valeur instantanée, mais comme une valeur moyenne sur un intervalle de temps suffisant, ou mieux comme une valeur moyenne pondérée par les facteurs de réponse inertielle du réseau, soit par exemple :

Figure imgb0001
T'i (t) étant une famille de mémoires exponentielles du taux de charge instantané τ(t), basées sur des temps caractéristiques A ti différents:
Figure imgb0002
du, approché par
Figure imgb0003
nGiven the thermal inertia of the network, τ 1 should not be treated as an instantaneous value, but as an average value over a sufficient time interval, or better as an average value weighted by the inertial response factors of the network, ie for example :
Figure imgb0001
T 'i (t) being a family of exponential memories of the instantaneous charge rate τ (t), based on different characteristic times A ti:
Figure imgb0002
from, approached by
Figure imgb0003
not

Las facteurs de réponse p(i), caractéristiques du réseau, vérifiant

Figure imgb0004
p(i) = 1, ne sont pas connus a priori, mais peuvent être établis assez rapidement par auto-apprentissagei effet, l'estimation de θ i1 d'après la loi f (0 i1, θ f1, τ1) = 0 ne doit varier que lentement étant donné l'inertie thermique du bâtiment, alors que le taux de charge instantané τ(t) est susceptible de varier rapidement.Response factors p (i), network characteristics, verifying
Figure imgb0004
p (i) = 1, are not known a priori, but can be established fairly quickly by self-learning effect, the estimate of θ i 1 according to the law f (0 i 1 , θ f 1 , τ 1 ) = 0 should only vary slowly given the building's thermal inertia, while the instantaneous charge rate τ (t) is likely to vary quickly.

bilité. Il convient donc de rechercher les valeurs {P(i)} qui donnent à l'estimation de θ i1 la meilleure stabilité. bility . It is therefore advisable to seek the values {P (i)} which give the estimate of θ i 1 the best stability.

L'auto-apprentissage de p(i) se fait en permanence. Chaque minute le taux de charge τ'i est mémorisé ; si on appelle δpi la correction faible à apporter à pi pour une variation δτ'i correspondant à deux valeurs successives de τ'i:

  • δ pi = λ A δτ'i où λ est une constante, et A l'erreur sur la variation de température en une minute.
The self-learning of p (i) takes place continuously. Each minute the charge rate τ ' i is stored; if we call δp i the weak correction to be made to p i for a variation δτ ' i corresponding to two successive values of τ' i :
  • δ p i = λ A δτ ' i where λ is a constant, and A the error on the temperature variation in one minute.

La formulation la plus simple de la loi f serait :

  • θ i1 = θf - a. τ1, expression dans laquelle intervient un paramètre à identifier a, caractéristique du réseau.
The simplest formulation of the law f would be:
  • θ i 1 = θf - a. τ1, expression in which a parameter to be identified intervenes, characteristic of the network.

Etant donné les variations importantes des coefficients d'échanges et du débit avec les niveaux de température, cette formulation risque d'être insuffisamment précise, de sorte qu'il peut être utile de recourir à un modèle un peu plus complexe, soit par exemple le modèle implicite :

  • τ1 = p1 ( θ f- θi) + p2 ( θ f- θi)2, dont on peut déduire θi, connaissant θ f et τ1. Dans toute la suite on utilisera cette formulation pour le modèle"réseau".
Given the significant variations in the exchange coefficients and the flow rate with the temperature levels, this formulation risks being insufficiently precise, so that it may be useful to resort to a slightly more complex model, for example the implicit model:
  • τ1 = p 1 (θ f- θi) + p 2 (θ f- θi) 2 , from which we can deduce θi, knowing θ f and τ1. In the following we will use this formulation for the "network" model.

Ce modèle fait intervenir deux paramètres p1 et p2. Ceux-ci peuvent également être établis parauto-apprentissage, en mettant à profit la programmation horaire, comme cela va être explicité ci-dessous.This model involves two parameters p 1 and p 2 . These can also be established by self-learning, taking advantage of the hourly programming, as will be explained below.

En effet, le régulateur peut interrompre le chauffage - généralement pour plusieurs heures - lorsque la consigne passe de la valeur normale à la valeur réduite ; τ1 tend vers zéro, de sorte que θ i devient bien connu, car voisin de θ f.Indeed, the regulator can interrupt the heating - generally for several hours - when the setpoint changes from the normal value to the reduced value; τ1 tends to zero, so that θ i becomes well known, because it is close to θ f.

La valeur obtenue constitue une référence précise, que l'on peut injecter dans le modèle "bâtiment" (voir plus loin), afin d'estimer avec une bonne précision quelle était la valeur de θ i lors du changement de consigne, et d'en déduire une condition sur p1 et p2.The value obtained constitutes a precise reference, which can be injected into the "building" model (see below), in order to estimate with good precision what was the value of θ i during the change of setpoint, and of deduce a condition from p 1 and p 2 .

De même, la valeur de θ i bien connue en fin de période d'arrêt du chauffage, combinée avec le modèle "bâtiment", donne une estimation précise de θ i lorsque le chauffage a redémarré depuis peu de temps, par exemple depuis une heure, alors que τ 1 et θ f ont déjà atteint des valeurs élevées, ce qui donne une nouvelle condition sur p1 et p2. On voit donc que chaque transition de la consigne donne une information sur p1 et p2, de sorte que ceux-ci peuvent être évalués assez rapidement.Similarly, the well-known value of θ i at the end of the heating shutdown period, combined with the "building" model, gives a precise estimate of θ i when the heating has restarted for a short time, for example an hour , while τ 1 and θ f have already reached high values, which gives a new condition on p 1 and p 2 . We therefore see that each transition of the setpoint gives information on p 1 and p 2 , so that these can be evaluated fairly quickly.

La loi f ( θi1, θ f, τ1) : 0 peut être perturbée par des actions locales, telles par exemple les actions limitantes de robinets thermostatiques. Dans ce cas, la température du fluide 0 f est plus élevée à taux de charge donné. L'application de la loi f conduit à une surestimation de θ i, et donc à une réduction du chauffage. Cette réduction est utile, car l'action des robinets thermostatiques signifie que la demande de chauffage est inférieure à l'offre. On peut donc considérer que le régulateur assure principalement une régulation de la température intérieure moyenne du bâtiment, avec toutefois une adaptation partielle à la demande exprimée par les actions de réglage locales.The law f (θi 1 , θ f, τ 1 ): 0 can be disturbed by local actions, such as for example limiting actions thermostatic valves. In this case, the temperature of the fluid 0 f is higher at a given charge rate. The application of the law f leads to an overestimation of θ i, and therefore to a reduction in heating. This reduction is useful because the action of thermostatic valves means that the demand for heating is lower than the supply. We can therefore consider that the regulator mainly regulates the average interior temperature of the building, with however a partial adaptation to the demand expressed by the local adjustment actions.

Le modèle "bâtiment" est le deuxième moyen dont dispose le régulateur pour estimer la température intérieure. Il caractérise le bâtiment en tant qu'espace, dont la température est sensible aux apports de chauffage, ainsi qu'à d'autres sollicitations plus ou moins connues (climat, occupation). Il peut s'écrire par exemple :

Figure imgb0005
avec :

  • . θi2 (t) = température intérieure moyenne au temps t, selon le modèle "batiment"
  • . θi1 (to) : température intérieure moyenne selon le modèle "réseau", mémorisée depuis l'heure to de fin de la dernière période d'arrêt prolongé du chauffage
  • . i2 (t), τ2 (to) = mémoire exponentielle du taux de charge instantané τ(t), de temps caractéristique Δto égal à 3 heures environ.
  • . T2 est calculé par :
    Figure imgb0006
  • . p3 = paramètre définissant la sensibilité de la température du bâtiment vis-à-vis du chauffage.
  • . g (t), g (to) = fonction de correction horaire de la température intérieure, pour tenir compte de la part prévisible des fluctuations horaires des conditions climatiques et d'occupation ; g (t) est minimal vers 8h, et maximal vers 15h.
  • . p4 : paramètre définissant l'amplitude des corrections horaires de température à effectuer, pour le bâtiment considéré.
The "building" model is the second means available to the regulator for estimating the indoor temperature. It characterizes the building as a space, the temperature of which is sensitive to heating inputs, as well as to other more or less known stresses (climate, occupation). It can be written for example:
Figure imgb0005
with:
  • . θi 2 (t) = average interior temperature at time t, according to the "building" model
  • . θi 1 (to): average interior temperature according to the "network" model, memorized since the time to end of the last prolonged period of heating shutdown
  • . i 2 (t), τ 2 (to) = exponential memory of the instantaneous charge rate τ (t), with characteristic time Δto equal to approximately 3 hours.
  • . T2 is calculated by:
    Figure imgb0006
  • . p3 = parameter defining the sensitivity of the building temperature vis-à-vis the heating.
  • . g (t), g (to) = time correction function of the indoor temperature, to take into account the predictable share of hourly fluctuations in weather and occupancy conditions; g (t) is minimum around 8 a.m., and maximum around 3 p.m.
  • . p4: parameter defining the amplitude of the hourly temperature corrections to be made, for the building in question.

La formulation du modèle "batiment" est justifiée par les considérations suivantes : - θ i1 (to) constitue une evaluation précise de la température intérieure au temps to, même lorsque les paramètres {P (i)} P1, P2 sont mal connusThe formulation of the "building" model is justified by the following considerations: - θ i 1 (to) constitutes a precise evaluation of the interior temperature at time to, even when the parameters {P (i)} P 1 , P 2 are wrong known

L'appel à un mémoire exponentielle du taux de charge, de temps caractéristique égal à 3 heures, permet de tenir compte approximativement de l'effet combiné des inerties thermiques du réseau et du bâtiment.The call for an exponential memory of the charge rate, of characteristic time equal to 3 hours, makes it possible to take into account approximately the combined effect of the thermal inertias of the network and of the building.

L'expérience montre que cette formulation donne généralement d'assez bons résultats. L'effet à long terme (plus de 24h) des inerties thermiques n'est pas à prendre en compte, car on dispose au moins une fois par jour d'une nouvelle estimation précise θ i1 (to).Experience shows that this formulation generally gives fairly good results. The long-term effect (more than 24 hours) of thermal inertia is not to be taken into account, because we have at least once a day a new precise estimate θ i 1 (to).

La fonction g(t) intervient dans un terme correctif dont l'amplitude est de l'ordre de 1 à 2°C. Elle traduit le fait que la température extérieure, les apports solaires, les apports internes, sont statistiquement plus élevés le jour que la nuit. S'agissant d'un terme correctif, on admet sur g(t) un certain degré d'approximation, permettant le recours à une fonction préprogrammée.The function g (t) intervenes in a corrective term whose amplitude is of the order of 1 to 2 ° C. It reflects the fact that the outside temperature, the solar gain, the internal gain, are statistically higher during the day than at night. Being a corrective term, we admit on g (t) a certain degree of approximation, allowing the use of a preprogrammed function.

Il est possible de définir le paramètre de sensibilité p3 par auto-apprentissage ; en effet, la température intérieure est bien connue grâce au modèle "réseau" quelque temps (deux heures environ) après l'arrêt du chauffage occasionné par chaque baisse de consigne. Il suffit alors de comparer cette température à la valeur donnée par le modèle "bâtiment", et de corriger p3 en conséquence.It is possible to define the sensitivity parameter p 3 by self-learning; in fact, the interior temperature is well known thanks to the "network" model for some time (about two hours) after the heating stops due to each drop in setpoint. It then suffices to compare this temperature with the value given by the "building" model, and to correct p 3 accordingly.

L'auto-apprentissage du paramètre p4 est également possible mais relativement lent :

  • p4 peut être ajusté pour que la différence θ i1 (15h) - 0 i2 (15h) des températures données par les deux modèles à 15 heures soit statistiquement de moyenne nulle.
Self-learning of parameter p 4 is also possible but relatively slow:
  • p 4 can be adjusted so that the difference θ i 1 (15h) - 0 i 2 (15h) of the temperatures given by the two models at 15h is statistically of mean zero.

Le régulateur peut utiliser à tout instant une combinaison des modèles "bâtiment" et "réseau" pour accéder à la meilleure estimation possible de la température intérieure θ i3, et agir en conséquence sur la commande de chauffage. Cette combinaison doit accorder un poids plus important au modèle qu'on sait être le plus précis dans les conditions de fonctionnement considérées:

  • Le modèle "réseau" est particulièrement précis durant les périodes d'arrêt ou de réduction du chauffage ; il l'est moins lorsque la température du fluide est élevée, et dans les régimes transitoires.
The controller can use any combination of the "building" and "network" models at any time to access the best possible estimate of the interior temperature θ i 3 , and act on the heating control accordingly. This combination must give greater weight to the model that is known to be the most precise under the operating conditions considered:
  • The "network" model is particularly precise during periods of shutdown or reduction in heating; it is less so when the temperature of the fluid is high, and in transient regimes.

Le modèle "bâtiment" reste précis lorsque la température du fluide est élevée, pourvu que la référence 0 i1 (to) soit suffisamment récente. On peut alors limiter le rôle du modèle "réseau" à la détection des excursions de température intérieure liées aux modifications imprévisibles des conditions climatiques et d'occupation.The "building" model remains precise when the temperature of the fluid is high, provided that the reference 0 i 1 (to) is sufficiently recent. We can then limit the role of the "network" model to the detection of indoor temperature excursions linked to unpredictable changes in climatic conditions and occupancy.

Le modèle "bâtiment" permet également de mettre en oeuvre une fonction d'anticipation de chauffage, lorsque la consigne est réduite, en prévision du futur passage à une consigne normale : il convient d'estimer l'évolution de température dans l'hypothèse d'un fonctionnement à pleine charge, et de déclencher ledit fonctionnement lorsque la température estimée pour l'heure de la transition coïncide avec la consigne normale.The "building" model also makes it possible to implement a heating anticipation function, when the setpoint is reduced, in anticipation of the future transition to a normal setpoint: the temperature evolution should be estimated on the assumption of 'operation at full load, and to initiate said operation when the temperature estimated for the time of transition coincides with the normal set point.

Il est possible d'obtenir à la mise en service des conditions de fonctionnement acceptables, quoique non optimales, en donnant aux paramètres intervenant dans les modèles les valeurs initiales les plus plausibles. L'adaptation aux particularités du bâtiment et de son système de chauffage ne demande que quelques jours.It is possible to obtain acceptable, although not optimal, operating conditions upon commissioning, by giving the parameters involved in the models the most plausible initial values. Adapting to the specifics of the building and its heating system takes only a few days.

Il est toutefois souhaitable que le régulateur continue à faire régulièrement appel aux fonctions d'auto-apprentissage, afin de s'adapter aux modifications éventuelles de définition du contexte.However, it is desirable that the regulator continues to regularly use the self-learning functions, in order to adapt to any changes in the definition of the context.

En particulier, le paramètre p4 peut subir des variations saisonnières significatives (valeurs plus élevées en mi-saison qu'en hiver), et la condamnation provisoire de certains convecteurs peut modifier les paramètres

  • {p (i)} , p1, p2 du modèle "réseau".
In particular, the parameter p 4 can undergo significant seasonal variations (higher values in mid-season than in winter), and the provisional condemnation of certain convectors can modify the parameters
  • {p (i)}, p 1 , p 2 of the "network" model.

La figu 2 représente un résultat d'essai d'un régulateur suivant l'invention, appliqué au chauffage d'un logement habité, immédiatement après la mise en service.Figure 2 represents a test result of a regulator according to the invention, applied to the heating of an inhabited dwelling, immediately after commissioning.

En abscisse on a une échelle de temps t (Heures) ; l'origine est fixée à 16 heures 30 le 58ieme jour de l'année et la mesure se termine à 4 heures le 60ième jour de l'année.On the abscissa we have a time scale t (Hours); the origin is fixed at 4.30 pm on the 58 th day of the year and the measurement ends at 4.30 am on the 60 th day of the year.

On a représenté la consigne de température intérieure (courbe T), la température intérieure estimée par le régulateur (courbe 0 i3), la température du fluide (courbe θf) ; à titre indicatif, on a donné également la température intérieure effective 0 i et l'ensoleillement (W/m2 - courbe S), qui ne sont pas mesurés par le régulateur.The interior temperature setpoint (curve T), the interior temperature estimated by the regulator (curve 0 i 3 ), the temperature of the fluid (curve θ f ) has been shown; As an indication, the effective internal temperature 0 i and the sunshine (W / m 2 - curve S) are also given, which are not measured by the regulator.

Cette figure montre que l'on obtient rapidement après la mise en service des performances satisfaisantes.This figure shows that satisfactory performance is obtained quickly after commissioning.

La température de consigne T est égale à 20° C sauf entre 23 heures et 6 heures du matin, où elle est égale à 17°C.The set temperature T is 20 ° C except between 11 p.m. and 6 a.m., where it is 17 ° C.

A la mise en service le 58ieme jour de l'année à 16 heures 30, on arrête le chauffage. Cette période d'arrêt est nécessaire pour obtenir une première estimation de la température intérieure 0 i3.A commissioning the 58 th day of the year at 16 hours 30, the heating is stopped. This stopping period is necessary to obtain a first estimate of the interior temperature 0 i 3 .

A 18 heures θ i3 étant inférieure à la température de consigne, le chauffage est mis en marche à plein régime, θ f croit et le régulateur fonctionne sur la base du modèle "bâtiment" qui est alors le plus précis.At 6 pm θ i 3 being lower than the set temperature, the heating is switched on at full speed, θ f increases and the regulator operates on the basis of the "building" model which is then the most precise.

A 23 heures θ i3 est supérieure à la valeur T (17°C) et le régulateur arrête le chauffage. La température θ baisse relativement lentement à cause de l'inertie thermique du réseau. Si on se réfère à la formule du modèle "bâtiment" pour to = 1 heure du matin, θ i1 (to) = θ i2 (to), le modèle "bâtiment" coïncide avec le modèle "réseau".At 23 hours θ i 3 is greater than the value T (17 ° C) and the regulator stops the heating. The temperature θ drops relatively slowly due to the thermal inertia of the network. If we refer to the formula of the "building" model for to = 1 am, θ i 1 (to) = θ i 2 (to), the "building" model coincides with the "network" model.

On peut à ce moment corriger la valeur de p3 qui pouvait être sous-estimée.We can then correct the value of p 3 which could be underestimated.

Vers 1 heure 30 environ, le régulateur met en oeuvre le modèle "batiment" et commande le chauffage à pleine charge pour que la température θ i3 de 20 degrés soit atteinte à 6 heures.Around 1:30 am, the regulator implements the "building" model and controls the heating at full load so that the temperature θ i 3 of 20 degrees is reached at 6 hours.

A partir de 5 heures le régulateur met en oeuvre une combinaison des deux modèles "bâtiment" et "réseau" jusqu'à 23 heures.From 5 am the regulator implements a combination of the two models "building" and "network" until 11 pm.

Le modèle "bâtiment" apporte une correction g(t) maximale vers 15 heures, d'où le passage de la température du fluide par un minimum, conformément à la diminution des besoins, liée en particulier aux apports solaires (courbe S).The "building" model provides a maximum correction g (t) around 3 p.m., hence the minimum temperature of the fluid, in accordance with the reduction in requirements, linked in particular to solar gains (curve S).

A 23 heures, le régulateur commande l'arrêt du chauffage.At 11 p.m., the regulator orders the heating to stop.

Claims (4)

1. A method of regulating the central heating of a building in which the reference temperature switches to a low value at least once a day, in which method a temperature of the heat-conveying fluid is measured continuously and heating is servo-controlled to an inside temperature value estimated by successive approximations from the temperature of the heat-conveying fluid and the thermal properties of the heating network, the method being characterized by the fact that in order to estimate the inside temperature, two models are used in combination, a "network" model which is used during periods when the heating is stopped or when heating is being reduced, and a "building" model which is used when the temperature of the fluid is high, said "network" model being represented by the relationship:
f(θi1, θf, τ1) = 0 where:
- θi1 = the mean inside temperature of the building according to the " network " model;
- θf = the temperature of said heat conveying fluid; and
- τ1 = the load factor, i.e. the ratio of the heating power to maximum power; said "building" model being represented by the relationship:
- θi2(t) = θi1(to) + p3[τ2(t) - τ2(to)] + p4[g(t) - g(to)] where
- θi2(t) = the mean inside temperature at time t according to the "building" model;
- θi1 (to) = the mean inside temperature according to the "network" model as stored from time to at the end of the previous prolonged period during which heating was stopped;
- τ2(t), r2(to) = an exponential memory of the instantaneous load factor τ(t) having a characteristic time Δ to;
- p3 = a parameter defining the sensitivity of the building temperature to heating;
- g(t), g(to) = a time correction function of the inside temperature to take account of the foreseeable portion of hourly fluctuations in climate and conditions of use; and
- p4 = a parameter defining the amplitude of the time temperature corrections to be performed for the building under consideration.
2. A regulation method according to claim 1, characterized by the fact that the "network" model is represented by the following equation:
τ1 = p1(θf - θi1) + P2(θf - θi1)2
3. A regulation method according to claim 1 or 2, characterized by the fact that the various parameters of said models are given non-optimized, plausible initial values when the method is put into operation, which values are optimized by automatic learning over a period of a few days.
4. Apparatus for implementing the method according to any preceding claim, the apparatus comprising a regulator (10) integrated in the central heating boiler (1), an input (11) to the regulator being connected to a single member (8) for measuring fluid temperature and an output (12) of the regulator being connected to control the burner (2) of the boiler or to control a three-way or a four-way valve, the apparatus further including means for estimating the inside temperature at all times, the apparatus being characterized in that the inside temperature is estimated using two models in combination, namely the "network" model and the "building" model mentioned in claims 1 and 2.
EP87401237A 1986-06-06 1987-06-03 Method and apparatus for controlling a central-heating system Expired - Lifetime EP0249531B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8608178A FR2599823B1 (en) 1986-06-06 1986-06-06 METHOD AND DEVICE FOR CONTROLLING CENTRAL HEATING
FR8608178 1986-06-06

Publications (2)

Publication Number Publication Date
EP0249531A1 EP0249531A1 (en) 1987-12-16
EP0249531B1 true EP0249531B1 (en) 1992-01-15

Family

ID=9336078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401237A Expired - Lifetime EP0249531B1 (en) 1986-06-06 1987-06-03 Method and apparatus for controlling a central-heating system

Country Status (3)

Country Link
EP (1) EP0249531B1 (en)
DE (1) DE3775998D1 (en)
FR (1) FR2599823B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838005A1 (en) * 1988-11-09 1990-05-10 Danfoss As METHOD FOR ADJUSTING THE AVERAGE VALUE OF THE FLOW TEMPERATURE OF A HEATING MEDIUM AND CIRCUIT ARRANGEMENT FOR IMPLEMENTING THE METHOD
FR2755262B1 (en) * 1996-10-31 2002-10-25 Gaz De France PROGRAMMING PROCESS FOR THE INTERMITTENT HEATING OF A BUILDING AND PROGRAMMER FOR IMPLEMENTING THE METHOD
FR3001068B1 (en) * 2013-01-16 2024-04-26 Probayes METHOD AND SYSTEM FOR THERMAL REGULATION IN A BUILDING
CN104656694B (en) * 2014-12-18 2016-11-02 河北农业大学 Greenhouse temperature based on temperature point algorithm regulation and control method
CN114484584B (en) * 2022-01-20 2022-11-11 国电投峰和新能源科技(河北)有限公司 Heat supply control method and system based on offline reinforcement learning

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2542852B1 (en) * 1983-03-14 1988-10-14 Comp Generale Electricite DEVICE FOR REGULATING THE HEATING OR AIR CONDITIONING OF A LIVING ROOM, AND METHOD FOR IMPLEMENTING THE DEVICE

Also Published As

Publication number Publication date
EP0249531A1 (en) 1987-12-16
DE3775998D1 (en) 1992-02-27
FR2599823B1 (en) 1993-11-19
FR2599823A1 (en) 1987-12-11

Similar Documents

Publication Publication Date Title
FR2567992A1 (en) DEVICE FOR ADJUSTING THE ON AND OFF PERIODS OF A BURNER OF A HOT WATER HEATING SYSTEM
FR2476425A1 (en) DEVICE FOR CONTROLLING POWER SUPPLY, IN PARTICULAR FOR AIR CONDITIONING AND HEATING FACILITIES
CA2677047C (en) System for controlling the heating of housing units in a building
EP0249531B1 (en) Method and apparatus for controlling a central-heating system
WO2018060157A1 (en) Self-adapting self-parameterization method for a domestic hot water and heating system
FR2782375A1 (en) SYSTEM FOR REGULATING THE HEATING OF A BUILDING
EP0069028A1 (en) Regulation method for a heating system, and device for carrying it out
EP2339255A1 (en) Method for optimised control of a temperature control device
EP3340004B1 (en) Method for determining the load-shedding capability of a building using thermal inertia, associated load-shedding method and system using said methods
JP2020165645A (en) Method for operating heat pump system, heat pump system, and hvac system
EP0014612A1 (en) Method and apparatus for the regulation of a heating installation for rooms
EP2603742B1 (en) Device and method for temperature regulation in a building
EP3835680B1 (en) System controlling an air exchange device for a zone and a heating device for the zone
EP3650762A1 (en) Method for controlling a thermal power to be injected in a heating system and heating system implementing said method
FR2542852A1 (en) Device for regulating the heating or the air-conditioning of an inhabited enclosure, and method for implementing this device
EP3273170B1 (en) Installation for producing hot water with a thermodynamic circuit powered by photovoltaic cells
EP0316496A1 (en) Method for regulating the temperature of a central heating installation
EP0117796B1 (en) Air conditioning installation for a building
FR3096762A1 (en) Device for predictive control of devices in a home or building, to save energy, and obtain optimum comfort in temperature, humidity, pollution and pollen.
FR3078770A1 (en) METHOD FOR THE DOMOTIC DRIVING OF A BUILDING AND DEVICE FOR IMPLEMENTING THE METHOD
FR2672991A1 (en) System for metering the private consumption of energy in premises belonging to a collective unit
FR2597967A1 (en) BI-ENERGY CENTRAL HEATING PROCESS AND INSTALLATION
LU84915A1 (en) DEVICE AND MEANS FOR MONITORING LOCAL CONDITIONING INSTALLATIONS
FR3115098A1 (en) Thermodynamic heater with optimized regulation
FR2747765A1 (en) Combined solar and electric heating of rooms in building

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880616

17Q First examination report despatched

Effective date: 19891120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3775998

Country of ref document: DE

Date of ref document: 19920227

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030530

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030603

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030611

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050603