EP0248397B1 - Prebaked zirconium for electron beam melted barrier tube shell material - Google Patents

Prebaked zirconium for electron beam melted barrier tube shell material Download PDF

Info

Publication number
EP0248397B1
EP0248397B1 EP87107946A EP87107946A EP0248397B1 EP 0248397 B1 EP0248397 B1 EP 0248397B1 EP 87107946 A EP87107946 A EP 87107946A EP 87107946 A EP87107946 A EP 87107946A EP 0248397 B1 EP0248397 B1 EP 0248397B1
Authority
EP
European Patent Office
Prior art keywords
sponge
melting
vacuum
zirconium
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87107946A
Other languages
German (de)
French (fr)
Other versions
EP0248397A3 (en
EP0248397A2 (en
Inventor
Samuel Austin Worcester
Young Jin Kwon
Charles Robert Woods
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of EP0248397A2 publication Critical patent/EP0248397A2/en
Publication of EP0248397A3 publication Critical patent/EP0248397A3/en
Application granted granted Critical
Publication of EP0248397B1 publication Critical patent/EP0248397B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum

Definitions

  • This invention relates to the production of purified zirconium.
  • the conventional process for making zirconium metal utilizes a fluidized bed process in which the ore is subjected to a chlorination step which produces a relatively impure, hafnium-containing zirconium tetrachloride and by-product silicon tetrachloride (which by-product is relatively easily separated).
  • the hafnium and zirconium containing material is then subjected to a number of purifying operations and also a complex hafnium separation operation. These operations result in purified oxides of zirconium and hafnium, which, of course, are maintained separate.
  • the purified oxides are separately chlorinated.
  • Zirconium and hafnium are commonly reduced from the chloride by means of a reducing metal, typically magnesium.
  • U.S. Patent Specification No. 3,966,460 describes a process of introducing zirconium tetrachloride vapor onto molten magnesium, with the zirconium being reduced and traveling down through the magnesium layer to the bottom of the reactor and forming a metallic sponge.
  • the metallic sponge (containing remaining chloride and some remaining excess reducing metal) is then placed in a distillation vessel for removal of the remaining salt and reducing metal by high temperature vacuum distillation.
  • the sponge material is generally crushed, screened and pressed into electrodes for vacuum arc melting. Particularly, the material is multiple (typical double or triple) vacuum arc melted to provide ingots which are then further fabricated into various shapes.
  • Most of the zirconium currently is used to produce Zircaloy.
  • Zircaloy tubes as cladding material to contain the uranium dioxide fuel.
  • a Zircaloy ingot is processed into a so-called "trex" and pilgering operations are used to reduce the trex inside diameter and wall thickness to size.
  • Ultra-pure zirconium has been proposed for a liner for the inside surface of Zircaloy tubing which is used as a cladding for nuclear fuel and is described in, for example, U.S. Patent Specification No. 4,372,817 (Armijo et al.).
  • a similar use of moderate purity material is proposed in U.S. Patent Specification No. 4,200,492 (Armijo et al.).
  • the ultra-pure zirconium material described has been purified by iodide cells to produce so called "crystal bar” material.
  • This rather expensive crystal bar processing is performed after reduction and is described, for example, in U.S. Patent Specification No. 4,368,072 (Siddal).
  • EB (electron beam) melting of materials has been discussed in a number of U.S. patent specifications. EB melting has been used to consolidate crushed particles or chips in so called hearth furnaces and to separate impurities by either overflowing floating inclusions (U.S. Patent Specification No. 4,190,404 (Drs et al.) or to produce an electrode for arc melting (U.S. Patent Specification No. 4,108,644 (Walberg et al.).
  • a number of U.S. patent specifications have used EB melting of powders or granules, often producing an ingot in a chilled mold. These powder melting EB patent specifications include U.S. Patent Specification Nos.
  • 3,091,525 to (D. A. Hunt) describes adding a small amount of zirconium, for example, to hafnium, for example and melting in an EB furnace to deoxidize the hafnium.
  • Japanese application 1979-144789 Kawakita published as patent publication 1981-67788 describes the use of a very small ingot with a high power density and ultra slow melting to produce a deep molten pool to produce a high purity ingot directly usable for lining of Zircaloy tubing for nuclear reactor applications.
  • Such laboratory sized apparatus with its high powered consumption and very low throughput is, of course, not practical for commercial production.
  • a process for producing zirconium in purified form comprises reducing zirconium tetrachloride to produce a sponge of metallic zirconium which is distilled to generally remove residual magnesium and residual magnesium chloride, and melting the distilled sponge to produce an ingot, characterized by vacuum baking the distilled sponge for at least one-half hour at 120-400°C; and electron beam melting said vacuum baked sponge.
  • this process provides material much purer than the so-called sponge material and almost as good as the crystal bar material, at a fraction of the cost of crystal bar material.
  • Generally purified zirconium produced according to the present invention has oxygen in the 250-350 ppm range and iron in the 50-300 ppm range.
  • Total impurities are generally in the 500-1000 ppm range (total impurities for these purposes generally comprise the elements listed in the afore-mentioned U.S. Patent Specification No. 4,200,492).
  • Vacuum baking in the temperature range of 120-400°C generally removes moisture absorbed on the surface of the sponge (it is felt that the moisture generally is in the form of absorbed moisture on small amounts of residual magnesium chloride salt which still may remain after distillation).
  • the EB melting generally removes iron from the zirconium. The combined baked and EB melted material provides high purity material approaching the quality of crystal bar.
  • the vacuum baked material is generally maintained in an inert atmosphere between the vacuum baking and EB melting to avoid moisture pick up.
  • the vacuum baking can be performed within the EB furnace prior to the start of melting and the vacuum maintained until melting is begun, thus generally avoiding the regaining of moisture.
  • the distilled sponge is tested and only sponge having less than about 600 ppm of oxygen is selected for use in the instant process.
  • the iron impurity level is reduced by about a factor of 2 on each pass through the EB furnace (that is, when the intermediate ingot form during the first EB melting pass is used as the consumable electrode for a second EB melting, the iron level is reduced by another factor of approximately 2).
  • this process makes the speed of the first EB melting less critical, and provides for a more controlled and more complete moisture removal, and thus a lower oxygen content product for a given oxygen level in the distilled sponge.
  • this process gives oxygen levels in the 250-350 ppm range (which, of course, are preferred in any event, but are much more controllably obtained in the instant invention).
  • These two inventions are desirably combinable such that the material can be prebaked, EB melted, and then vacuum arc melted for optimum properties.
  • the baking at 120-400°C for at least one-half hour is most desirably done within the EB furnace such that the material can be maintained under vacuum until melting
  • the material can be baked in any vacuum chamber, including the EB welding chambers which are sometimes used to weld end stubs on electrodes which have been fabricated by pressing sponge material.
  • the crushed sponge can be baked prior to pressing (again preferably generally keeping the material in a dry, inert atmosphere) and then pressed and possibly subjected to a second baking cycle.
  • the product of this process has low total impurities, and especially a low oxygen and low iron (the iron level generally being controlled by the number of passes through the EB furnace).
  • the process is relatively inexpensive and, being compatible with existing production processes, requires little additional capital investment.

Description

  • This invention relates to the production of purified zirconium.
  • The conventional process for making zirconium metal utilizes a fluidized bed process in which the ore is subjected to a chlorination step which produces a relatively impure, hafnium-containing zirconium tetrachloride and by-product silicon tetrachloride (which by-product is relatively easily separated). The hafnium and zirconium containing material is then subjected to a number of purifying operations and also a complex hafnium separation operation. These operations result in purified oxides of zirconium and hafnium, which, of course, are maintained separate. The purified oxides are separately chlorinated. Zirconium and hafnium are commonly reduced from the chloride by means of a reducing metal, typically magnesium. At the present time, the commercial processes are batched-type processes. U.S. Patent Specification No. 3,966,460, for example, describes a process of introducing zirconium tetrachloride vapor onto molten magnesium, with the zirconium being reduced and traveling down through the magnesium layer to the bottom of the reactor and forming a metallic sponge. The metallic sponge (containing remaining chloride and some remaining excess reducing metal) is then placed in a distillation vessel for removal of the remaining salt and reducing metal by high temperature vacuum distillation. The sponge material is generally crushed, screened and pressed into electrodes for vacuum arc melting. Particularly, the material is multiple (typical double or triple) vacuum arc melted to provide ingots which are then further fabricated into various shapes. Most of the zirconium currently is used to produce Zircaloy.
  • Commercial nuclear reactors generally have used Zircaloy tubes as cladding material to contain the uranium dioxide fuel. Generally a Zircaloy ingot is processed into a so-called "trex" and pilgering operations are used to reduce the trex inside diameter and wall thickness to size. Ultra-pure zirconium has been proposed for a liner for the inside surface of Zircaloy tubing which is used as a cladding for nuclear fuel and is described in, for example, U.S. Patent Specification No. 4,372,817 (Armijo et al.). A similar use of moderate purity material is proposed in U.S. Patent Specification No. 4,200,492 (Armijo et al.). The ultra-pure zirconium material described has been purified by iodide cells to produce so called "crystal bar" material. This rather expensive crystal bar processing is performed after reduction and is described, for example, in U.S. Patent Specification No. 4,368,072 (Siddal).
  • EB (electron beam) melting of materials, including zirconium has been discussed in a number of U.S. patent specifications. EB melting has been used to consolidate crushed particles or chips in so called hearth furnaces and to separate impurities by either overflowing floating inclusions (U.S. Patent Specification No. 4,190,404 (Drs et al.) or to produce an electrode for arc melting (U.S. Patent Specification No. 4,108,644 (Walberg et al.). A number of U.S. patent specifications have used EB melting of powders or granules, often producing an ingot in a chilled mold. These powder melting EB patent specifications include U.S. Patent Specification Nos. 2,942,098 (Smith); 2,960,331 (Hanks); 2,963,530 (Hanks et al.); 2,997,760 (Hanks et al); 2,935,395 (Smith); and 4,482,376 (Tarasescu et al.). Electron beam zone refining using multiple passes is described in U.S. Patent Specification No. 3,615,345 (King).
  • EB melting using a consumable feed "electrode" to produce an ingot collected in a chilled mold has also been discussed in a number of U.S. patent specifications, including 3,087,211 (Howe); 3,226,223 (Bussard et al.); 2,880,483 (Hanks et al.); and 4,130,416 (Zaboronok et al.). U.S. Patent Specification No. 3,219,435 (Gruber et al.) shows a commercial type EB furnace utilizing multiple beams. Typically the beams are directed to the surface of the molten pool and are continually swept across the pool surface to avoid overheating of any single portion of the pool surface. U.S. Patent Specification No. 3,091,525 to (D. A. Hunt) describes adding a small amount of zirconium, for example, to hafnium, for example and melting in an EB furnace to deoxidize the hafnium. Japanese application 1979-144789 Kawakita, published as patent publication 1981-67788 describes the use of a very small ingot with a high power density and ultra slow melting to produce a deep molten pool to produce a high purity ingot directly usable for lining of Zircaloy tubing for nuclear reactor applications. Such laboratory sized apparatus with its high powered consumption and very low throughput is, of course, not practical for commercial production.
  • Accordingly, a process for producing zirconium in purified form comprises reducing zirconium tetrachloride to produce a sponge of metallic zirconium which is distilled to generally remove residual magnesium and residual magnesium chloride, and melting the distilled sponge to produce an ingot, characterized by vacuum baking the distilled sponge for at least one-half hour at 120-400°C; and electron beam melting said vacuum baked sponge.
  • This is a process for making a very pure material for use in the lining of the interior of zirconium alloy fuel element cladding, and having, in particular, exceptionally low oxygen. Generally this process provides material much purer than the so-called sponge material and almost as good as the crystal bar material, at a fraction of the cost of crystal bar material. Generally purified zirconium produced according to the present invention has oxygen in the 250-350 ppm range and iron in the 50-300 ppm range. Total impurities are generally in the 500-1000 ppm range (total impurities for these purposes generally comprise the elements listed in the afore-mentioned U.S. Patent Specification No. 4,200,492).
    Vacuum baking in the temperature range of 120-400°C generally removes moisture absorbed on the surface of the sponge (it is felt that the moisture generally is in the form of absorbed moisture on small amounts of residual magnesium chloride salt which still may remain after distillation). The EB melting generally removes iron from the zirconium. The combined baked and EB melted material provides high purity material approaching the quality of crystal bar.
  • Preferably, the vacuum baked material is generally maintained in an inert atmosphere between the vacuum baking and EB melting to avoid moisture pick up. The vacuum baking can be performed within the EB furnace prior to the start of melting and the vacuum maintained until melting is begun, thus generally avoiding the regaining of moisture. Preferably, also the distilled sponge is tested and only sponge having less than about 600 ppm of oxygen is selected for use in the instant process.
  • It has been found that moisture has heretofore been a significant contributor of oxygen to zirconium during the normal processing. Further, our experiments have shown that only by vacuum baking within a relatively narrow temperature range can this oxygen contamination be generally avoided. This moisture, if not generally eliminated prior to melting, results in oxidizing of zirconium and magnesium, which zirconium oxide can then only be eliminated by very expensive processing (i.e., by the crystal bar process or by extremely slow and extremely high temperature EB melting as described in the afore-mentioned Japanese Patent Report 1981-67788). In addition, vacuum melting at below 250°C generally requires longer times for moisture reduction and baking at above 400°C causes the oxidation of zirconium and hydrolized MgCl₂ (to MgO), thus affixing the oxygen, rather than removing it.
  • It has generally been found that the iron impurity level is reduced by about a factor of 2 on each pass through the EB furnace (that is, when the intermediate ingot form during the first EB melting pass is used as the consumable electrode for a second EB melting, the iron level is reduced by another factor of approximately 2). As compared with copending United States patent application S.N. 871,183, filed June 5, 1986, this process makes the speed of the first EB melting less critical, and provides for a more controlled and more complete moisture removal, and thus a lower oxygen content product for a given oxygen level in the distilled sponge. Thus, generally this process gives oxygen levels in the 250-350 ppm range (which, of course, are preferred in any event, but are much more controllably obtained in the instant invention). These two inventions are desirably combinable such that the material can be prebaked, EB melted, and then vacuum arc melted for optimum properties.
  • Generally virgin material (as opposed to recycled scrap or turnings) is selected, generally for low oxygen content, at the sponge stage to obtain the best product. While generally low oxygen sponge material is desirable, reliably measuring such oxygen levels at the sponge stage is difficult.
  • While the baking at 120-400°C for at least one-half hour (and preferably for several hours including, for example, 12 to 16 hours), is most desirably done within the EB furnace such that the material can be maintained under vacuum until melting, the material can be baked in any vacuum chamber, including the EB welding chambers which are sometimes used to weld end stubs on electrodes which have been fabricated by pressing sponge material.
  • Conversely, the crushed sponge can be baked prior to pressing (again preferably generally keeping the material in a dry, inert atmosphere) and then pressed and possibly subjected to a second baking cycle.
  • Another alternative is for vacuum baking directly in a EB melter without pressing into an electrode in a furnace of the type where granules can be fed as in the aforementioned "powder melting EB patent specifications" (e.g., U.S. Patent Specification Nos. 2,942,098; 4,482,376, etc.). Some such EB furnaces are referred to as "rotary feeder" EB furnaces.
  • Although it is desirable to avoid exposure to the atmosphere between the vacuum baking and EB melting, the moisture pick up is apparently not extremely rapid and exposures of less than one hour to the atmosphere will generally give good results. Multiple passes through the EB furnace can, of course, be used, and may be necessary, especially if the starting material is high in iron. Multiple passes through a vacuum arc melting can, of course, follow the EB melting and, as mentioned in the aforementioned copending application, provides homogenous distribution of impurities and avoids localized impurity concentrations.
  • Thus, the product of this process has low total impurities, and especially a low oxygen and low iron (the iron level generally being controlled by the number of passes through the EB furnace). The process is relatively inexpensive and, being compatible with existing production processes, requires little additional capital investment.

Claims (8)

  1. A process for producing zirconium in purified form which comprises reducing zirconium tetrachloride to produce a sponge of metallic zirconium which is distilled to generally remove residual magnesium and residual magnesium chloride, and melting the distilled sponge to produce an ingot, characterized by vacuum baking the distilled sponge for at least one-half hour at 120-400°C; and electron beam melting said vacuum baked sponge.
  2. A process according to claim 1, characterized in that the vacuum baked sponge is generally maintained in an inert atmosphere between vacuum baking and EB melting.
  3. A process according to claim 2, characterized in that vacuum baking is performed in an EB furnace prior to melting and the EB melting is then performed without breaking vacuum.
  4. A process according to claim 3, characterized in that a rotary feeder EB furnace is utilized and the sponge is melted without being consolidated into an electrode.
  5. A process according to claim 3 or 4, characterized in that the EB furnace has multiple swept beams.
  6. A process according to claim 3, 4 or 5, characterized in that the EB melted sponge is melted by multiple passes through a vacuum arc.
  7. A process according to claim 1, characterized in that the vacuum baked sponge is exposed to the atmosphere for less than one hour between the vacuum baking and the EB melting.
  8. A process according to any of claims 1 to 7, characterized in that the distilled sponge is tested and sponge having 600 ppm or more of oxygen is rejected.
EP87107946A 1986-06-05 1987-06-02 Prebaked zirconium for electron beam melted barrier tube shell material Expired - Lifetime EP0248397B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87118286A 1986-06-05 1986-06-05
US871182 1986-06-05

Publications (3)

Publication Number Publication Date
EP0248397A2 EP0248397A2 (en) 1987-12-09
EP0248397A3 EP0248397A3 (en) 1990-05-02
EP0248397B1 true EP0248397B1 (en) 1992-08-19

Family

ID=25356888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87107946A Expired - Lifetime EP0248397B1 (en) 1986-06-05 1987-06-02 Prebaked zirconium for electron beam melted barrier tube shell material

Country Status (4)

Country Link
EP (1) EP0248397B1 (en)
KR (1) KR880000612A (en)
DE (1) DE3781206T2 (en)
ES (1) ES2033736T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849016A (en) * 1987-12-18 1989-07-18 Westinghouse Electric Corp. Combined ultra slow electron beam and vacuum arc melting for barrier tube shell material
US5062887A (en) * 1991-02-08 1991-11-05 Westinghouse Electric Corp. Process for chloride removal from sponge metal
US6861030B2 (en) * 2000-10-02 2005-03-01 Nikko Materials Company, Limited Method of manufacturing high purity zirconium and hafnium
US9938605B1 (en) 2014-10-01 2018-04-10 Materion Corporation Methods for making zirconium based alloys and bulk metallic glasses

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2814560A (en) * 1954-04-23 1957-11-26 James S Ballantine Apparatus and process for melting material of high melting point
BE568331A (en) * 1956-07-27 1900-01-01
NL239776A (en) * 1958-08-04
DE1110877B (en) * 1959-04-24 1961-07-13 Heraeus Gmbh W C Process for melting metal blocks using electron beams
US3966460A (en) * 1974-09-06 1976-06-29 Amax Specialty Metal Corporation Reduction of metal halides
US4190404A (en) * 1977-12-14 1980-02-26 United Technologies Corporation Method and apparatus for removing inclusion contaminants from metals and alloys

Also Published As

Publication number Publication date
DE3781206T2 (en) 1993-02-18
EP0248397A3 (en) 1990-05-02
EP0248397A2 (en) 1987-12-09
ES2033736T3 (en) 1993-04-01
DE3781206D1 (en) 1992-09-24
KR880000612A (en) 1988-03-28

Similar Documents

Publication Publication Date Title
KR910001489B1 (en) Process for producing high purity zirconium and hafnium
EP1445350B1 (en) Method and apparatus for smelting titanium metal
RU2346891C2 (en) Obtaining high-purity niobium monoxide and manufacturing of capacitor out of it
NO171778B (en) PROCEDURE FOR REFINING SILICONE
US3721549A (en) Preparation of metal ingots from the corresponding metal oxides
EP0248397B1 (en) Prebaked zirconium for electron beam melted barrier tube shell material
US3746535A (en) Direct reduction process for making titanium
CA1245864A (en) Process for reduction of zirconium, hafnium or titanium using a zinc or tin seal
US4913884A (en) Uranium-preextraction in zirconium/hafnium separations process
US4722827A (en) Zirconium and hafnium with low oxygen and iron
US4610720A (en) Method for preparing high purity vanadium
US2922710A (en) Production of refractory metals
US4814136A (en) Process for the control of liner impurities and light water reactor cladding
EP0248396B1 (en) Combined electron beam and vacuum arc melting for barrier tube shell material
CA2267601A1 (en) Process for obtaining titanium or other metals using shuttle alloys
CA1245863A (en) Continuous reactive metal reduction using a salt seal
US4849016A (en) Combined ultra slow electron beam and vacuum arc melting for barrier tube shell material
US4849013A (en) Combined electron beam and vacuum arc melting for barrier tube shell material
US4816214A (en) Ultra slow EB melting to reduce reactor cladding
JP2784324B2 (en) Manufacturing method of titanium
JPH0681051A (en) Production of metal by reduction reaction of metal halide
Fischer et al. Investigation of the distribution of fission products among molten fuel and reactor phases:(I). The distribution of fission products between molten iron and molten uranium dioxide
EP0316579B1 (en) Ultra-pure zirconium-tin liner material for nuclear reactor fuel elements
Carlson et al. Preparation of high purity vanadium
RU2800271C1 (en) Method for manufacturing ingots of zirconium alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR IT SE

17P Request for examination filed

Effective date: 19901029

17Q First examination report despatched

Effective date: 19910718

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3781206

Country of ref document: DE

Date of ref document: 19920924

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2033736

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930616

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930629

Year of fee payment: 7

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931029

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940603

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19940603

EUG Se: european patent has lapsed

Ref document number: 87107946.3

Effective date: 19950110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

EUG Se: european patent has lapsed

Ref document number: 87107946.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960607

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050602