EP0243663A2 - Pressurized gas cylinder made from an austenitic steel alloy - Google Patents

Pressurized gas cylinder made from an austenitic steel alloy Download PDF

Info

Publication number
EP0243663A2
EP0243663A2 EP87104162A EP87104162A EP0243663A2 EP 0243663 A2 EP0243663 A2 EP 0243663A2 EP 87104162 A EP87104162 A EP 87104162A EP 87104162 A EP87104162 A EP 87104162A EP 0243663 A2 EP0243663 A2 EP 0243663A2
Authority
EP
European Patent Office
Prior art keywords
containers
container
weight
ultra
steel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87104162A
Other languages
German (de)
French (fr)
Other versions
EP0243663A3 (en
EP0243663B1 (en
Inventor
Martin Dr. Kesten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Priority to AT87104162T priority Critical patent/ATE75641T1/en
Publication of EP0243663A2 publication Critical patent/EP0243663A2/en
Publication of EP0243663A3 publication Critical patent/EP0243663A3/en
Application granted granted Critical
Publication of EP0243663B1 publication Critical patent/EP0243663B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2172Polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/012Reducing weight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/053Reducing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0781Diving equipments

Definitions

  • the invention relates to a pressurized gas container made of an austenitic steel alloy according to the preamble of claim 1, which is provided in particular for the storage of ultra-pure gases. is.
  • the equipment and devices used to store and distribute ultra-pure gases which are increasingly used, for example, in the semiconductor industry, must meet very special requirements. So only materials may be used whose surfaces can be pretreated so that the composition of the. gases in contact with them are not changed. In particular, no surface particles may be released that would contaminate the gases in an inadmissible manner.
  • All storage and distribution components for ultra-pure gases are therefore made of austenitic CrNi steels and their gas-side surface is polished electrolytically. Electrolytic polishing removes the surface layer that is particularly contaminated and disturbed by production and processing. Surface roughness is also leveled, reducing the effective surface in contact with the medium.
  • the main problem is the extraordinarily low mechanical strength of the austenitic CrNi steels.
  • austenitic CrNi steels when used in the usual way, have strength values that are three to four times lower are. For containers with the same capacity, this means a correspondingly greater material expenditure and a correspondingly higher weight.
  • the weight-related storage capacity of conventional austenitic compressed gas containers is negligibly small. Their use for gas transport, e.g. as a compressed gas bottle, is therefore economically justifiable only in exceptional cases.
  • the invention is therefore based on the object of creating a pressurized gas container for storing ultra-pure gases which, on the one hand, makes it possible for gas purity reasons to use the required CrNi steels as the container material, on the other hand makes the weight-related storage capacity of the container so large that it approximately corresponds to that of pressure containers made of conventional ferritic materials.
  • cryogenic deformation of austenitic materials is known, for example from DE-OS 14.52 533 and DE-PS 26 54 702.
  • Container materials suitable for the invention are, for example, the metastable steel grades 1.4301, 1.4306 and 1.4404 according to DIN 17 440, however with analytical tolerances that deviate from the norm.
  • An essential prerequisite for carrying out the solidification process while simultaneously meeting the purity requirements and the associated surface treatment is that the materials used do not contain titanium and niobium (Ti + Nb below 0.02% by weight).
  • the carbon and nickel content must be additionally limited in the manner specified.
  • the prefabricated containers are deformed by applying a certain amount of pressure at low temperatures.
  • the temperature must be below the. Martensite formation temperature Md. This is the temperature above which regardless of size there is no martensitic transformation due to mechanical deformation. Under these conditions, the material solidifies more than is the case with normal cold forming, because the structure is partly transformed into martensite. The degree of solidification corresponds to the amount of the transformed structure.
  • the structural component converted into martensite increases with falling deformation temperature and increasing degree of deformation, the most favorable hardening conditions for the containers are achieved if the deformation process is carried out at a temperature which is significantly lower than Md. The most practical is if the deformation is below the Ms Temperature takes place. This is the temperature at which the martensite transformation of the structure begins even without simultaneous deformation. Only a relatively small amount of deformation, for example a degree of deformation below 12%, is then required in order to convert a sufficiently large proportion of the structure and to achieve the desired high strength.
  • the Ms temperatures of the suitable metastable CrNi steels with the carbon and nickel contents according to the invention can be calculated using the known formulas from Eichelmann and Hull and are close to the temperature of the liquid nitrogen. It is therefore best to deform the prefabricated containers after they have been cooled by filling or immersing them in liquid nitrogen. Either liquid nitrogen itself or a gas that does not condense at this temperature, e.g. Helium.
  • the height of the pressure to be applied depends on the container geometry and the desired material strength.
  • a device for performing the method according to the invention is shown in the drawing.
  • the prefabricated container 1 is located in an insulated cryogenic container 2, which is filled with liquid nitrogen 3. Gaseous helium is drawn off from a storage container 4, brought to the desired deformation pressure by means of the compressor 5 and introduced through the line 6 into the interior of the prefabricated container. The deformation pressure is checked with the manometer 7.
  • the following table contains the characteristic data of test containers produced according to the invention from a cylindrical tube and two welded hemispherical bases made of modified material 1.4301 and, in comparison, the corresponding values of a container manufactured according to conventional methods.
  • this process expediently takes place with the raw container which has not yet been cryoformed.
  • the container material still has a homogeneous, austenitic structure, the polishability of which is not impaired by the simultaneous presence of austenitic and martensitic structural components.
  • This surface condition remains essentially unchanged in the subsequent solidification process, because the deformation of the raw container, as described, takes place at a low temperature, so that despite a high increase in strength, the overall deformation of the container material and thus also that of the electrolytically polished surface remains small.

Abstract

Die Oberflächen von Behältern, in denen ultrareine Gase gespeichert werden sollen, müssen im Hinblick auf Reinheit und Passivität gegenüber dem Medium ertreme Anforderungen erfüllen. Dies erfordert den Einsatz von CrNi-Stählen as Behälterwerkstoff. Da diese Materialien nur eine geringe Festigkeit besitzen, sind alle auf herkömmliche Weise hergestellten Druckgasbehälter aus CrNi-Stählen wegen des großen Materialaufwandes sehr teuer und so schwer, daß sich ihr Einsatz as Transportbehälter in den meisten Fällen verbietet. Um leichte, zur Speicherung ultrareiner Gase geeignete Behälter herstellen zu können, wird as Behälterwerkstoff metastabiler CrNi-Stahl verwendet mit definierten Gehalten an Titan, Niob, Nickel und Kohlenstoff. Die gegebenenfalls elektrolytisch polierten Kohbehälter werden durch Aufbringen von Innendruck bei Temperaturen unterhalb der Martensitumwandlungstemperatur in an sich bekannter Weise plastisch verformt und dadurch verfestigt.The surfaces of containers in which ultra-pure gases are to be stored must meet extremely stringent requirements with regard to purity and passivity in relation to the medium. This requires the use of CrNi steels as the container material. Since these materials have only a low strength, all pressure gas containers made of stainless steel made in a conventional manner are very expensive because of the large amount of material and so heavy that their use as a transport container is forbidden in most cases. In order to be able to manufacture light containers that are suitable for storing ultra-pure gases, the container material used is metastable CrNi steel with defined contents of titanium, niobium, nickel and carbon. The optionally electrolytically polished carbon containers are plastically deformed in a manner known per se by applying internal pressure at temperatures below the martensite transformation temperature and are thereby solidified.

Description

Die Erfindung betrifft einen Druckgasbehälter aus einer austenitischen Stahllegierung nach dem Oberbegriff des Anspruches.1, der insbesondere für die Speicherung ultrareiner Gase vorgesehen. ist. Die zur Speicherung und Verteilung von ultrareinen Gasen, die in zunehmendem Maße z.B. in der Halbleiterindustrie verwendet werden, eingesetzten Einrichtungen und Geräte müssen ganz besondere Anforderungen erfüllen. So dürfen nur Materialien verwendet werden, deren Oberflächen so vorbehandelt werden können, daß sich die Zusammensetzung der mit. ihnen in Berührung kommenden Gase nicht verändert. Insbesondere dürfen keine Oberflächenpartikel abgegeben werden, welche die Gase in unzulässiger Weise verunreinigen würden.The invention relates to a pressurized gas container made of an austenitic steel alloy according to the preamble of claim 1, which is provided in particular for the storage of ultra-pure gases. is. The equipment and devices used to store and distribute ultra-pure gases, which are increasingly used, for example, in the semiconductor industry, must meet very special requirements. So only materials may be used whose surfaces can be pretreated so that the composition of the. gases in contact with them are not changed. In particular, no surface particles may be released that would contaminate the gases in an inadmissible manner.

Diese Voraussetzungen sind mit den herkömmlichen ferritischen Werkstoffen nicht mehr erfüllbar. Alle Speicher-und Verteilungskomponenten für ultrareine Gase werden daher aus austenitischen CrNi-Stählen hergestellt und ihre gasseitige Oberfläche wird elektrolytisah poliert. Durch das elektrolytische Polieren wird die durch die Herstellung und Verarbeitung besonders verunreinigte und gestörte Oberflächenschicht abgetragen. Außerdem werden Oberflächenrauhigkeiten eingeebnet und somit die effektive mediumberührte Oberfläche verringert.These requirements can no longer be met with conventional ferritic materials. All storage and distribution components for ultra-pure gases are therefore made of austenitic CrNi steels and their gas-side surface is polished electrolytically. Electrolytic polishing removes the surface layer that is particularly contaminated and disturbed by production and processing. Surface roughness is also leveled, reducing the effective surface in contact with the medium.

Während diese Technik bei Transport- und Speicherbehältern für tiefkalte verflüssigte Gase bereits weitgehend eingeführt ist, bestehen große, bisher nicht gelöste Schwierigkeiten bei der Übertragung dieser Maßnahmen auf Druckgasbehälter für komprimierte ultrareine Gase.While this technology has already been largely introduced in the case of transport and storage containers for cryogenic liquefied gases, there are great, as yet unsolved difficulties in transferring these measures to compressed gas containers for compressed ultra-pure gases.

Das Hauptproblem stellt die außerordentlich geringe mechanische Festigkeit der austenitischen CrNi-Stähle dar. Im Vergleich zu den üblichen ferritischen Druckbehälterwerkstoffen haben austenitische CrNi-Stähle, wenn sie in der gängigen Weise eingesetzt werden,-Festigkeitskenn- werte, die um den Faktor 3 bis 4 geringer sind. Für Behälter mit gleicher Kapazität bedeutet dies einen entsprechend größeren Materialaufwand und ein entsprechend höheres Gewicht. Dadurch wird die gewichtsbezogene Speicherkapazität herkömmlicher austenitischer Druckgasbehälter verschwindend klein. Ihre Verwendung für den Gastransport, z.B. als Druckgasflasche, ist deshalb nur in Ausnahmefällen wirtschaftlich vertretbar.The main problem is the extraordinarily low mechanical strength of the austenitic CrNi steels. Compared to the usual ferritic pressure vessel materials, austenitic CrNi steels, when used in the usual way, have strength values that are three to four times lower are. For containers with the same capacity, this means a correspondingly greater material expenditure and a correspondingly higher weight. As a result, the weight-related storage capacity of conventional austenitic compressed gas containers is negligibly small. Their use for gas transport, e.g. as a compressed gas bottle, is therefore economically justifiable only in exceptional cases.

Der Erfindung liegt daher die Aufgabe zugrunde,einen Druckgasbehälter - - für die Speicherung ultrareiner Gase zu schaffen, welcher es einerseits ermöglicht, die aus Gründen der Gasreinheit erforderlichen CrNi-Stähle als Behältermaterial zu verwenden, andererseits die gewichtsbezogene Speicherkapazität der Behälter so groß macht, daß sie annähernd der von Druckbehältern aus üblichen ferritischen Werkstoffen entspricht.The invention is therefore based on the object of creating a pressurized gas container for storing ultra-pure gases which, on the one hand, makes it possible for gas purity reasons to use the required CrNi steels as the container material, on the other hand makes the weight-related storage capacity of the container so large that it approximately corresponds to that of pressure containers made of conventional ferritic materials.

Ausgehend von dem im Oberbegriff des Anspruches 1 berücksichtigten Stand der Technik ist diese Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen.Starting from the prior art taken into account in the preamble of claim 1, this object is achieved according to the invention with the features specified in the characterizing part of claim 1.

Eine vorteilhafte Weiterbildung der Erfindung ist im Unteranspruch angegeben.An advantageous development of the invention is specified in the subclaim.

Die Kryoverformung austenitischer Werkstoffe, auch zur Herstellung von Druckbehältern, ist bekannt, beispielsweise aus der DE-OS 14.52 533 und der DE-PS 26 54 702. Für die Erfindung geeigneteBehälterwerkstoffe sind beispielsweise die metastabilen Stahlgualitäten 1.4301, 1.4306 und 1.4404 nach DIN 17 440, jedoch mit von der Norm abweichenden Analysentoleranzen. Eine wesentliche Voraussetzung für die Durchführung des Verfestigungsprozesses bei gleichzeitiger Erfüllung der Reinheitsanforderungen und der damit zusammenhängenden Oberflächenbehandlung ist nämlich, daß die verwendeten Werkstoffe kein Titan und Niob enthalten (Ti + Nb unter 0,02 Gew.%). Außerdem muß der Kohlenstoff- und Nickelgehalt in der angegebenen Weise zusätzlich eingeschränkt werden.The cryogenic deformation of austenitic materials, also for the production of pressure vessels, is known, for example from DE-OS 14.52 533 and DE-PS 26 54 702. Container materials suitable for the invention are, for example, the metastable steel grades 1.4301, 1.4306 and 1.4404 according to DIN 17 440, however with analytical tolerances that deviate from the norm. An essential prerequisite for carrying out the solidification process while simultaneously meeting the purity requirements and the associated surface treatment is that the materials used do not contain titanium and niobium (Ti + Nb below 0.02% by weight). In addition, the carbon and nickel content must be additionally limited in the manner specified.

Um die Druckgasbehälter auf die gewünschte hohe Festigkeit zu bringen, werden die vorgefertigten Behälter durch Aufbringen von Innendruck um einen bestimmten Betrag bei tiefen Temperaturen verformt. Die Temperatur muß unterhalb der. Martensitbildungstemperatur Md liegen. Dies ist die Temperatur, oberhalb der unabhängig von der Größe der mechanischen Verformung keine martensitische Umwandlung stattfindet. Unter diesen Bedingungen verfestigt sich das Material stärker, als dies bei normaler Kaltverformung der Fall ist, weil sich das Gefüge zu einem Teil in Martensit umwandelt. Der Grad der Verfestigung entspricht dabei der Menge des umgewandelten Gefüges.In order to bring the compressed gas containers to the desired high strength, the prefabricated containers are deformed by applying a certain amount of pressure at low temperatures. The temperature must be below the. Martensite formation temperature Md. This is the temperature above which regardless of size there is no martensitic transformation due to mechanical deformation. Under these conditions, the material solidifies more than is the case with normal cold forming, because the structure is partly transformed into martensite. The degree of solidification corresponds to the amount of the transformed structure.

Da der in Martensit umgewandelte Gefügeanteil mit sinkender Verformungstemperatur und steigendem Verformungsgrad zunimmt, erreicht man die günstigsten Verfestigungsbedingungen für die Behälter, wenn der Verformungsprozeß bei einer Temperatur durchgeführt wird, die deutlich unter Md liegt- Am xweckmäBigsten ist es, wenn die Verformmg unterhalb der Ms-Temperatur stattfindet. Dies ist die Temperatur, bei der die Martensitumwandlung des Gefüges auch ohne gleichzeitige Verformung einsetzt. Es ist dann nur eine relativ geringe Verformung, beispielsweise ein Verformungsgrad unter 12%, erforderlich, um einen ausreichend großen Anteil des Gefüges umzuwandeln und die gewünschtehohe Festigkeit zu erreichen.Since the structural component converted into martensite increases with falling deformation temperature and increasing degree of deformation, the most favorable hardening conditions for the containers are achieved if the deformation process is carried out at a temperature which is significantly lower than Md. The most practical is if the deformation is below the Ms Temperature takes place. This is the temperature at which the martensite transformation of the structure begins even without simultaneous deformation. Only a relatively small amount of deformation, for example a degree of deformation below 12%, is then required in order to convert a sufficiently large proportion of the structure and to achieve the desired high strength.

Die Ms-Temperaturen der geeigneten metastabilen CrNi-Stähle mit den erfindungsgemäßen Gehalten an Kohlenstoff und Nickel lassen sich durch die bekannten Formeln von Eichelmann und Hull berechnen und liegen in der Nähe der Temperatur des flüssigen Stickstoffs. Daher erfolgt die Verformung der vorgefertigten Behälter am zweckmäßigsten, sie durch Befüllen oder Eintauchen in flüssigen Stickstoff abgekühlt worden sind. Als Medium zur Erzeugung des für die Verformmg erforderlichen Innendrucks kamm emtweder flüssiger Stickstoff selbst oder ein bei dieser Temperatur micht kondensierendes Gas, z.B. Helium, verwendet werdem. Die Höhe des anzuwendenden Druckes richtet sich mach der Behältergeonetrie und der angestrebten Materialfestigkeit.The Ms temperatures of the suitable metastable CrNi steels with the carbon and nickel contents according to the invention can be calculated using the known formulas from Eichelmann and Hull and are close to the temperature of the liquid nitrogen. It is therefore best to deform the prefabricated containers after they have been cooled by filling or immersing them in liquid nitrogen. Either liquid nitrogen itself or a gas that does not condense at this temperature, e.g. Helium. The height of the pressure to be applied depends on the container geometry and the desired material strength.

Eine Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist in der Zeichnung dargestellt.A device for performing the method according to the invention is shown in the drawing.

Der vorgefertigte Behälter 1 befindet sich in einen isolierten Kryobehälter 2, welcher mit flüssigem Stickstoff 3 gefüllt ist. Aus einem Vorratsbehälter 4 wird gasförmiges Helium abgezogen, mittels des Kompressors 5 auf den gewünschten Verformungsdruck gebracht und durch die Leitung 6 in das Innere des vorgefertigten Behälters eingeführt. Der Verformungsdruck wird mit dem Manometer 7 kontrolliert.The prefabricated container 1 is located in an insulated cryogenic container 2, which is filled with liquid nitrogen 3. Gaseous helium is drawn off from a storage container 4, brought to the desired deformation pressure by means of the compressor 5 and introduced through the line 6 into the interior of the prefabricated container. The deformation pressure is checked with the manometer 7.

Bei zylindrischen Behältern mit halbkugelförmigen Böden unter innerem Überdruck tritt die höchste, für die Dimensionierung des Behälters maßgebende Spannung im zylindrischen Umfang auf.

Figure imgb0001

  • Dm: mittlerer zylindrischer Durchmesser(mm)
  • p: Innendruck .(bar)
  • s: zylindrische Wanddicke (mm)
In the case of cylindrical containers with hemispherical bottoms under internal overpressure, the highest stress which is decisive for the dimensioning of the container occurs in the cylindrical periphery.
Figure imgb0001
  • Dm: average cylindrical diameter (mm)
  • p: internal pressure (bar)
  • s: cylindrical wall thickness (mm)

Die sich nach dieser Formel beim Kryoverformen einstellende Spannung entsprich der erzielten Materialfestigkeit Rp (Kryo) (Streckgrenze bei der Verformungstemperatur) . Wie Versuche mit entsprechend hergestellten Behältern ergeben haben, ist diese wiederum mit der Zerreißfestigkeit des Material bei Umgebungstempeatur Rm (RT) gleichzusetzen, da sich herausgestellt hat, daß der Berstdruck der durch Kryoverformung hergestellten Behälter in guter Übereinstimmung mit dem bei der Kryoverfestigung angewendeten Druck steht. Bei Kenntnis dieser Zusammenhänge ist es möglich, die herzustellendem Behälter ihren betrieblichen Erfordernissen entsprechend auszulegen und in der beschriebenen Weise zu verfestigen.The stress that occurs during cryoforming according to this formula corresponds to the material strength Rp (cryo) achieved (yield point at the deformation temperature). As tests with appropriately manufactured containers have shown, this in turn is to be equated with the tensile strength of the material at ambient temperature R m (RT), since it has been found that the bursting pressure of the containers produced by cryoforming is in good agreement with the pressure used for cryosolidification . With knowledge of these relationships, it is possible to manufacture the container according to your operational requirements interpret and solidify in the manner described.

Die folgende Tabelle enthält als Beispiel die Kenndaten von erfindungsgemäß aus einem zylindrischen Rohr und zwei angeschweißten Halbkugelböden aus modifiziertem Werkstoff 1.4301 hergestellten Versuchsbehältern und im Vergleich dazu die entsprechenden Werte eines nach herkömmlichen Verfahren gefertigten Behälters.

Figure imgb0002
As an example, the following table contains the characteristic data of test containers produced according to the invention from a cylindrical tube and two welded hemispherical bases made of modified material 1.4301 and, in comparison, the corresponding values of a container manufactured according to conventional methods.
Figure imgb0002

Wie eingangs dargestellt, ist es unbedingt erforderlich, die Innenoberflächen der Druckgasbehälter elektrolytisch zu polieren. Dieser Prozeß kann sowohl vor als auch nach der Kryoverformung durchgeführt werden.As shown at the beginning, it is absolutely necessary to electrolytically polish the inner surfaces of the compressed gas containers. This process can be carried out both before and after cryoforming.

Um ein optimales Polierergebnis zu erzielen, findet dieser Prozeß jedoch zweckmäßigerweise mit dem noch nicht kryoverformten Rohbehälter statt. In diesem Zustand besitzt der Behälterwerkstoff noch ein homogenes, austenitisches Gefüge, dessen Polierbarkeit durch das gleichzeitige Vorliegen austenitischer und martensitischer Gefügebestandteile nicht beeinträchtigt ist.In order to achieve an optimal polishing result, this process expediently takes place with the raw container which has not yet been cryoformed. In this state, the container material still has a homogeneous, austenitic structure, the polishability of which is not impaired by the simultaneous presence of austenitic and martensitic structural components.

Dieser Oberflächenzustand bleibt auch bei dem anschließenden Verfestigungsprozeß im wesentlichen erhalten, weil die Verformung des Rohbehälters, wie beschrieben, bei tiefer Temperatur erfolgt, so daß trotz hoher Festigkeitssteigerung die Gesamtverformung des Behälterwerkstoffes und damit auch die der elektrolytisch polierten Oberfläche gering bleibt.This surface condition remains essentially unchanged in the subsequent solidification process, because the deformation of the raw container, as described, takes place at a low temperature, so that despite a high increase in strength, the overall deformation of the container material and thus also that of the electrolytically polished surface remains small.

Claims (2)

1. Druckgasbehälter, der aus einer austenitischen Stahllegierung als Rohbehälter hergestellt und anschließend durch Kryoverformung verfestigt ist,
dadurch gekennzeichnet,
daß die austenitische Stahllegierung ein metastabiler CrNi-Stahl ist, der einen Titan- und Niobgehalt von zusammen gleich oder kleiner 0,02 Gew.% und einen Kohlenstoffgehalt von gleich oder kleiner 0,045 Gew.% besitzt, wobei bei Nickelgehalten bis 9,5 Gew% der Kohlenstoffgehalt zwischen 0,03 und 0,045 Gew.% liegt und bei Nickelgehalten zwischen.9,5 und 10,0 Gew.% der Kohlenstoffgehalt unter 0,03 Gew.% liegt.
1. compressed gas container, which is made of an austenitic steel alloy as a raw container and then solidified by cryogenic deformation,
characterized,
that the austenitic steel alloy is a metastable CrNi steel which has a titanium and niobium content of equal to or less than 0.02% by weight and a carbon content of equal to or less than 0.045% by weight, with nickel contents of up to 9.5% by weight the carbon content is between 0.03 and 0.045% by weight and with nickel contents between 9.5 and 10.0% by weight the carbon content is below 0.03% by weight.
2. Druckgasbehälter nach Anspruch 1,
dadurch gekennzeichnet,
daß der Rohbehälter vor der Kryoverformung elektrolytisch poliert wird.
2. compressed gas container according to claim 1,
characterized,
that the raw container is electrolytically polished before cryoforming.
EP87104162A 1986-04-26 1987-03-20 Pressurized gas cylinder made from an austenitic steel alloy Expired - Lifetime EP0243663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87104162T ATE75641T1 (en) 1986-04-26 1987-03-20 COMPRESSED GAS TANK MADE OF AN AUSTENITIC STEEL ALLOY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3614290 1986-04-26
DE19863614290 DE3614290A1 (en) 1986-04-26 1986-04-26 COMPRESSED GAS TANKS FROM AN AUSTENITIC STEEL ALLOY

Publications (3)

Publication Number Publication Date
EP0243663A2 true EP0243663A2 (en) 1987-11-04
EP0243663A3 EP0243663A3 (en) 1988-11-30
EP0243663B1 EP0243663B1 (en) 1992-05-06

Family

ID=6299672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87104162A Expired - Lifetime EP0243663B1 (en) 1986-04-26 1987-03-20 Pressurized gas cylinder made from an austenitic steel alloy

Country Status (5)

Country Link
US (1) US4772337A (en)
EP (1) EP0243663B1 (en)
JP (1) JPS62278249A (en)
AT (1) ATE75641T1 (en)
DE (1) DE3614290A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840054A2 (en) * 1996-11-04 1998-05-06 Messer Griesheim Gmbh Composite container for gases
WO2012175499A3 (en) * 2011-06-22 2013-02-21 Mt Aerospace Ag Pressure vessel for receiving and storing cryogenic fluids, in particular cryogenic liquids, methods for producing said pressure vessel, and use of said pressure vessel
EP2865612A1 (en) 2013-10-22 2015-04-29 Reemtsma Cigarettenfabriken GmbH Package for tobacco products or tobacco related commodities or smoking devices and use thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726960A1 (en) * 1987-08-13 1989-02-23 Messer Griesheim Gmbh METHOD FOR PRODUCING A COMPRESSED GAS CONTAINER FROM AUSTENITIC STEELS BY CRYFORMING
DE3736579C3 (en) * 1987-10-26 1996-10-17 Mannesmann Ag Pressure tank for storing gases of high purity
US5085745A (en) * 1990-11-07 1992-02-04 Liquid Carbonic Corporation Method for treating carbon steel cylinder
DE4114301A1 (en) * 1991-05-02 1992-11-05 Messer Griesheim Gmbh Conversion of metastable austenite to martensite, for pressure vessel mfr. - subjecting to oscillating strain pref. at cryogenic temp.
US5259935A (en) * 1991-05-03 1993-11-09 The Boc Group, Inc. Stainless steel surface passivation treatment
DE19711844B4 (en) * 1997-03-21 2005-06-02 Metall-Spezialrohr Gmbh Method for producing a compressed gas container
DE19934851A1 (en) 1999-07-24 2001-02-01 Messer Griesheim Gmbh Diving bottle and process for making it
GB2389411B (en) * 2001-02-13 2004-09-22 African Oxygen Ltd A transportable pressure vessel assembly for liquefiable petroleum gas and a method of transporting liquefiable petroleum gas
DE10239372B3 (en) * 2002-08-28 2004-03-11 Mq Engineering Gmbh Production of deformed parts comprises using a deformation temperature controlled via an active medium and fitting an alloy composition in combination with a relatively low deformation speed compared with a classical deep drawing process
US20040188272A1 (en) * 2003-03-25 2004-09-30 Blanks Jeremy Daniel Method for reducing degradation of reactive compounds during transport
ATE461764T1 (en) * 2008-08-06 2010-04-15 Witzenmann Gmbh HIGH PRESSURE RESISTANT METAL BELLOWS AND METHOD FOR PRODUCING THE SAME
DE102011105426B4 (en) 2011-06-22 2013-03-28 Mt Aerospace Ag Pressure vessel for receiving and storing cryogenic fluids, in particular cryogenic fluids, and method for its production and its use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1093394B (en) * 1956-08-16 1960-11-24 Mannesmann Ag Process for the manufacture of rolled products from stable austenitic chromium-nickel steels
DE1452533A1 (en) * 1962-03-28 1969-02-20 Arde Portland Inc Process for the production of pressure vessels with high tensile strength and device for carrying out the process
DE2654702B2 (en) * 1975-12-03 1979-08-16 Union Carbide Corp., New York, N.Y. (V.St.A.) Method for improving the strength and toughness properties of an austenitic steel alloy
GB2147840A (en) * 1983-10-10 1985-05-22 Sodastream Ltd Manufacture of metal containers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB622713A (en) * 1947-03-21 1949-05-05 Electro Metallurg Co Improvements in stainless steels
US3255051A (en) * 1962-07-25 1966-06-07 Aerojet General Co Method for strengthening iron base alloys
US3258370A (en) * 1964-07-27 1966-06-28 Int Nickel Co High strength, notch ductile stainless steel products
US3919061A (en) * 1973-12-13 1975-11-11 John F Jumer Polishing large cylindrical vessels or tanks with closed ends
JPS592740B2 (en) * 1980-01-14 1984-01-20 新日本製鐵株式会社 Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1093394B (en) * 1956-08-16 1960-11-24 Mannesmann Ag Process for the manufacture of rolled products from stable austenitic chromium-nickel steels
DE1452533A1 (en) * 1962-03-28 1969-02-20 Arde Portland Inc Process for the production of pressure vessels with high tensile strength and device for carrying out the process
DE2654702B2 (en) * 1975-12-03 1979-08-16 Union Carbide Corp., New York, N.Y. (V.St.A.) Method for improving the strength and toughness properties of an austenitic steel alloy
GB2147840A (en) * 1983-10-10 1985-05-22 Sodastream Ltd Manufacture of metal containers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840054A2 (en) * 1996-11-04 1998-05-06 Messer Griesheim Gmbh Composite container for gases
EP0840054A3 (en) * 1996-11-04 1998-11-04 Messer Griesheim Gmbh Composite container for gases
WO2012175499A3 (en) * 2011-06-22 2013-02-21 Mt Aerospace Ag Pressure vessel for receiving and storing cryogenic fluids, in particular cryogenic liquids, methods for producing said pressure vessel, and use of said pressure vessel
EP2865612A1 (en) 2013-10-22 2015-04-29 Reemtsma Cigarettenfabriken GmbH Package for tobacco products or tobacco related commodities or smoking devices and use thereof
US10287090B2 (en) 2013-10-22 2019-05-14 Reemtsma Cigarettenfabriken Gmbh Package for tobacco products or tobacco related commodities or smoking devices and use thereof

Also Published As

Publication number Publication date
DE3614290A1 (en) 1987-10-29
EP0243663A3 (en) 1988-11-30
EP0243663B1 (en) 1992-05-06
ATE75641T1 (en) 1992-05-15
JPS62278249A (en) 1987-12-03
US4772337A (en) 1988-09-20
DE3614290C2 (en) 1988-05-19

Similar Documents

Publication Publication Date Title
DE3614290C2 (en)
EP0256450B1 (en) Process for manufacturing powder compacts with a high resistance and relatively low density from a heat-resisting aluminium alloy
DE3242607A1 (en) NICKEL-BASED SUPER ALLOY MATERIAL AND METHOD FOR PRODUCING IT
DE2413977B2 (en) METHOD OF TRAINING A POROUS BODY WITH A TRAENING METAL
DE2853575B2 (en) Process for the powder-metallurgical production of alloy bodies from hydrogenated metal powder batches
DE2654676A1 (en) PROCESS FOR IMPROVING THE STRENGTH PROPERTIES OF WIRE OR TAPE-SHAPED MATERIAL
EP0303840B1 (en) Valve bushing for the receipt of the gas bottle valve of a pressurised-gas container made from highly alloyed chromium-nickel steels
EP1076794B1 (en) Method for storing low-boiling permanent gases or gas mixtures in pressurised containers
DE3237761A1 (en) METHOD FOR PRODUCING A PRESSURE CONTAINER IN COMPOSITE DESIGN
DE2435463A1 (en) HIGH PRESSURE VESSEL AND METHOD FOR ITS MANUFACTURING
WO2010127668A2 (en) Powder-metallurgical method for producing metal foam
EP0303016B1 (en) Method of making a gas pressure vessel of austenitic stainless steel by cryogenic forming
DE4204527C2 (en) Method of making a shielded transport container for irradiated nuclear reactor fuel elements
EP0660029A1 (en) Acetylene transporting process
EP0840054B1 (en) Composite container for gases
DE4012163A1 (en) METHOD FOR PRODUCING TANTALE HOLLOW BODIES
EP0632923B1 (en) Substantially spherical particles made of lithium silicates having improved mechanical properties and surface quality
DE3608563C2 (en)
DE2512552A1 (en) PROCESS FOR SEPARATION OF URANIUM, PLUTONIUM AND THEIR COMPOUNDS
DE3844164C2 (en)
EP0246557A1 (en) Internal surfaces of a gas bottle, and process for their manufacture
DE2643440C3 (en) Impregnation and reforming process for the clocked production of electrolytic capacitors
EP1206662B1 (en) Diver tank and method for the production thereof
EP0813024A2 (en) Process for charging a pressurized gas bottle with ethene
DE1179005B (en) Process for the production of heat-resistant and at the same time corrosion-resistant aluminum sintered materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH FR GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: B21D 51/24

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB LI NL

17P Request for examination filed

Effective date: 19890309

17Q First examination report despatched

Effective date: 19900730

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB LI NL

REF Corresponds to:

Ref document number: 75641

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040309

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040310

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040311

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060213

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070319

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20