EP0241599A2 - Hochwirksame Glühlampe - Google Patents
Hochwirksame Glühlampe Download PDFInfo
- Publication number
- EP0241599A2 EP0241599A2 EP86118100A EP86118100A EP0241599A2 EP 0241599 A2 EP0241599 A2 EP 0241599A2 EP 86118100 A EP86118100 A EP 86118100A EP 86118100 A EP86118100 A EP 86118100A EP 0241599 A2 EP0241599 A2 EP 0241599A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- glass
- bulb
- gas
- filler gas
- incandescent lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/50—Selection of substances for gas fillings; Specified pressure thereof
Definitions
- the present invention relates to incandescent lamps for automobiles and more particularly to compact incandescent lamps made of soft glass and having improved luminous efficacy.
- the glass tube of a conventional compact incandescent lamp of this type is maintained vacuum so as to prevent oxidization or burning of the filament made of tungsten. If the temperature of the filament is raised to improve luminous efficacy, the quantity of evaporation of the filament extremely increases, thus resulting in a very short lifetime of the lamp. In view of this, in case where luminous efficacy approximately greater than 10 lm/W is needed, conventional incandescent lamps have been filled with inactive gas, for example, argon gas at 0.5 to 0.6 atmospheric pressure to reduce the evaporation quantity of filament and avoid a short lifetime.
- inactive gas for example, argon gas at 0.5 to 0.6 atmospheric pressure to reduce the evaporation quantity of filament and avoid a short lifetime.
- the quality of illumination i.e., color rendering has recently been intended to be improved in the field of such compact incandescent lamps, e.g. in the field of illumination devices for automobiles.
- the improvement on color rendering is theoretically possible by raising the color temperature or in other words, the temperature itself of the filament.
- the temperature rise of the filament also results in a high luminous efficacy so that such operating state should be considered idealistic.
- a color temperature greater than those currently used e.g., 2300 K to 2400 K for a wedge base lamp used in a dashboard of automobiles
- the evaporation quantity of filament becomes extremely large in a vacuum state due to the temperature rise of filament.
- the lifetime becomes very short and becomes unsuitable for practical use.
- inactive gas e.g., argon gas
- the ability of preventing evaporation is near its limit at the current luminous efficacy of about 10 lm/W and therefore substantial and practical improvement on the efficacy can no more be expected.
- heat generation increases how small such improvement on the efficacy is, so that filled argon with its thermal conductivity (38.8 x 10 ⁇ 6 cal ⁇ cm ⁇ 1 ⁇ s ⁇ 1 ⁇ deg ⁇ 1) reaches the glass bulb to cause the temperature of the bulb made of soft glass such as soda glass excess over its limit value.
- the present invention seeks to solve the above problems and to provide a high efficacy incandescent lamp having the glass bulb outer diameter smaller than 40 mm.
- a lamp having a glass bulb outer diameter smaller than 40 mm characterized in that said glass tube is made of soft glass; the main component of filler gas to be filled in said glass bulb is an inactive gas whose atomic weight is larger than 80 and whose thermal conductivity is smaller than 25 x 10 ⁇ 6cal ⁇ cm ⁇ 1 ⁇ s ⁇ 1 ⁇ deg ⁇ 1 ; the pressure of said filler gas is between 1 to 3.5, preferably between 1.5 to 2.5 atmospheric pressure under non excitation of said bulb.
- Fig. 1 schematically shows the process for filling gas in the high efficacy incandescent lamp according to the present invention.
- reference numeral 1 represents the glass bulb of an incandescent lamp wherein necessary elements such as a filament are housed.
- the glass tube 1 is coupled to a distributor tube 4 via a glass exhaust tube 2 and a stop valve 3.
- a vacuum pump and a container for filler gas are connected interchangeably (not illustrated) to the distributor tube 4. Therefore, the interior of the glass bulb 1 can be filled with filler gas by opening the stop valve 3, operating the vacuum pump and thereafter filling filler gas through the distributor tube 4.
- the glass bulb 1 After closing the stop valve 3, the glass bulb 1 is immersed into solution 5 such as liquid nitrogen to cool the filler gas in the glass bulb 1.
- the temperature of the solution 5 as of liquid nitrogen is about -200°C so that the volume becomes 75/(275 + 25) according to the above equation and reduces to one fourth.
- the inner pressure of the glass bulb 1 and the exhaust tube 2 becomes negative relative to the atmospheric pressure.
- the exhaust tube 2 is heated with gas burners 6 and 6 ⁇ to the softening temperature of glass to compress the exhaust tube 2 by the atmospheric pressure, thereby sealing the filler gas within the bulb 1.
- the bulb 1 is picked up from the solution 5 and remains at room temperature to resume an ordinary state of the volume of the filler gas. Assuming that the pressure of the filler gas at the time of filling operation from the distributor tube 4 is 2.5 atmospheric pressure, the filler gas at the ordinary state becomes also 2.5 atmospheric pressure. However, in practice, some adjustment of the pressure becomes necessary in view of cooling efficiency or the like.
- Reference numeral 7 represents the filament.
- the pressure of the filler gas is set at 1.5 to 2.5 atmospheric pressure as compared with conventional 0.5 to 0.6 atmospheric pressure. Therefore, it is possible to markedly reduce the evaporation quantity of filament and basically improve the luminous efficacy.
- the evaporation quantity of filler gas depends on the atomic weight of inactive filler gas to be used. Further, it is obvious that the thermal conductivity is preferably small so that the temperature of the glass bulb 1 is hard to be raised.
- inactive filler gas is filled in the glass bulb at the range of 1.5 to 2.5 atmospheric pressure to basically suppress the evaporation quantity of filament.
- filler gas having its atomic weight larger than 80 is used to further suppress the evaporation quantity of filaments.
- the filler gas having its thermal conductivity smaller than 25 x 10 ⁇ 6 cal ⁇ cm ⁇ 1 ⁇ s ⁇ 1 ⁇ deg ⁇ 1 is used to prevent the temperature rise of the glass tube. Therefore, it is possible to use conventional soft glass (soda glass) so that it is cost effective.
- compact incandescent lamps whose dimension is defined by the specifications, such as automobile incandescent lamps, can adopt the conventional configuration and dimension with high efficacy being achieved.
Landscapes
- Discharge Lamp (AREA)
- Glass Compositions (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5574386U JPS62167365U (de) | 1986-04-14 | 1986-04-14 | |
JP55743/86 | 1986-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0241599A2 true EP0241599A2 (de) | 1987-10-21 |
EP0241599A3 EP0241599A3 (de) | 1989-03-22 |
Family
ID=13007340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86118100A Withdrawn EP0241599A3 (de) | 1986-04-14 | 1986-12-29 | Hochwirksame Glühlampe |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0241599A3 (de) |
JP (1) | JPS62167365U (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB461315A (en) * | 1934-08-06 | 1937-02-08 | Strateg Strahlungstechnik Ges | Improvements in or relating to electric incandescent lamps |
US2115480A (en) * | 1934-01-23 | 1938-04-26 | Pour Les Applic De L Electriei | Incandescent electric lamp |
EP0140330A2 (de) * | 1983-10-31 | 1985-05-08 | Kabushiki Kaisha Toshiba | Miniaturglühlampe |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5265987A (en) * | 1975-11-28 | 1977-05-31 | Toshiba Corp | Glow lamp |
JPS58214269A (ja) * | 1982-06-04 | 1983-12-13 | 松下電子工業株式会社 | ヘツドライト用ハロゲン電球 |
-
1986
- 1986-04-14 JP JP5574386U patent/JPS62167365U/ja active Pending
- 1986-12-29 EP EP86118100A patent/EP0241599A3/de not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2115480A (en) * | 1934-01-23 | 1938-04-26 | Pour Les Applic De L Electriei | Incandescent electric lamp |
GB461315A (en) * | 1934-08-06 | 1937-02-08 | Strateg Strahlungstechnik Ges | Improvements in or relating to electric incandescent lamps |
EP0140330A2 (de) * | 1983-10-31 | 1985-05-08 | Kabushiki Kaisha Toshiba | Miniaturglühlampe |
Non-Patent Citations (1)
Title |
---|
S.T. HENDERSON et al.: "Lamps and Lighting" 2nd edition, 1972, pages 149-153, E. Arnold, London, GB; * |
Also Published As
Publication number | Publication date |
---|---|
JPS62167365U (de) | 1987-10-23 |
EP0241599A3 (de) | 1989-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6215254B1 (en) | High-voltage discharge lamp, high-voltage discharge lamp device, and lighting device | |
EP1339092B1 (de) | Hochdruckentladungslampe und Leuchte | |
EP0585446B1 (de) | Eine amalgam enthaltende niederdruck-quecksilber-entladungslampe | |
US20030102805A1 (en) | High pressure discharge lamp and lamp unit | |
US3209188A (en) | Iodine-containing electric incandescent lamp with heat conserving envelope | |
EP0315261A1 (de) | Hochdrucknatriumdampfentladungslampe | |
US3117248A (en) | Low pressure mercury vapor discharge lamp for direct current operation | |
EP0443675A1 (de) | Hochdrucknatriumdampfentladungslampe | |
JPH09506996A (ja) | ハロゲン白熱電球 | |
US5473226A (en) | Incandescent lamp having hardglass envelope with internal barrier layer | |
US2094694A (en) | Vapor electric discharge device and method of operation | |
EP1227512A2 (de) | Hochdruckhalogenglühlampe | |
EP1056119B1 (de) | Vorrichtung mit einer kalten distalen Stelle einer Niederdruckquecksilberdampfentladungslampe | |
KR20040002635A (ko) | 고압수은램프 및 램프유닛 | |
EP0241599A2 (de) | Hochwirksame Glühlampe | |
CA1239978A (en) | Low-pressure mercury vapour lamp containing amalgam | |
GB2080020A (en) | Electrical Light Source with a Metal Halide Discharge Tube and a Tungsten Filament Connected in Series with the Discharge Tube | |
JPS6210854A (ja) | 高効率白熱電球 | |
US6956328B1 (en) | Tungsten halogen lamp with halogen-containing compound and silicon-containing compound | |
US4629935A (en) | Tungsten-halogen lamp with organic and inorganic getters | |
US3240975A (en) | Iodine cycle incandescent electric lamp | |
US3800180A (en) | Halogen incandescent lamp containing bromine and phosphorus | |
CN104253014A (zh) | 卤钨灯的制作方法 | |
JPH07249398A (ja) | 電球の製造方法及び電球 | |
WO2000038215A1 (en) | Electric lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19890503 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): FR GB NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 19910313 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19920213 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CHIBA, MASATOSHI Inventor name: MOTOOKA, HIDETAKA Inventor name: MURAKAMI, YUKIO |