EP0241365B1 - Process for preparing a borosilicate glass containing nuclear wastes - Google Patents
Process for preparing a borosilicate glass containing nuclear wastes Download PDFInfo
- Publication number
- EP0241365B1 EP0241365B1 EP87400752A EP87400752A EP0241365B1 EP 0241365 B1 EP0241365 B1 EP 0241365B1 EP 87400752 A EP87400752 A EP 87400752A EP 87400752 A EP87400752 A EP 87400752A EP 0241365 B1 EP0241365 B1 EP 0241365B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solution
- waste
- matrix
- process according
- calcined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 55
- 239000005388 borosilicate glass Substances 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000000243 solution Substances 0.000 claims abstract description 140
- 238000000034 method Methods 0.000 claims abstract description 68
- 239000000203 mixture Substances 0.000 claims abstract description 67
- 239000011521 glass Substances 0.000 claims abstract description 62
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 59
- 230000008569 process Effects 0.000 claims abstract description 59
- 239000011159 matrix material Substances 0.000 claims abstract description 45
- 238000004017 vitrification Methods 0.000 claims abstract description 26
- 238000002156 mixing Methods 0.000 claims abstract description 21
- 239000002671 adjuvant Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 15
- 239000002243 precursor Substances 0.000 claims abstract description 15
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 14
- 230000008018 melting Effects 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 12
- 239000007864 aqueous solution Substances 0.000 claims abstract description 11
- 150000001639 boron compounds Chemical class 0.000 claims abstract description 10
- 238000011282 treatment Methods 0.000 claims abstract description 8
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- 239000002253 acid Substances 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims description 11
- 229910002012 Aerosil® Inorganic materials 0.000 claims description 10
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 8
- 239000004327 boric acid Substances 0.000 claims description 6
- AUTNMGCKBXKHNV-UHFFFAOYSA-P diazanium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [NH4+].[NH4+].O1B([O-])OB2OB([O-])OB1O2 AUTNMGCKBXKHNV-UHFFFAOYSA-P 0.000 claims description 3
- 239000012736 aqueous medium Substances 0.000 abstract description 8
- 230000004992 fission Effects 0.000 abstract description 4
- 239000000499 gel Substances 0.000 description 48
- 239000011734 sodium Substances 0.000 description 32
- 229910052708 sodium Inorganic materials 0.000 description 24
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000009472 formulation Methods 0.000 description 13
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- 229910052796 boron Inorganic materials 0.000 description 12
- 239000000470 constituent Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- GDTSJMKGXGJFGQ-UHFFFAOYSA-N 3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B([O-])OB2OB([O-])OB1O2 GDTSJMKGXGJFGQ-UHFFFAOYSA-N 0.000 description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 229910002651 NO3 Inorganic materials 0.000 description 7
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 7
- 238000013019 agitation Methods 0.000 description 7
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 6
- 229910052681 coesite Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910052906 cristobalite Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910052682 stishovite Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052905 tridymite Inorganic materials 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 241001639412 Verres Species 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 230000001476 alcoholic effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000005070 ripening Effects 0.000 description 3
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 3
- 229940093635 tributyl phosphate Drugs 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- UYCAGRPOUWSBIQ-WOYAITHZSA-N [(1s)-1-carboxy-4-(diaminomethylideneamino)butyl]azanium;(2s)-5-oxopyrrolidine-2-carboxylate Chemical compound OC(=O)[C@@H]1CCC(=O)N1.OC(=O)[C@@H](N)CCCN=C(N)N UYCAGRPOUWSBIQ-WOYAITHZSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- DNEHKUCSURWDGO-UHFFFAOYSA-N aluminum sodium Chemical compound [Na].[Al] DNEHKUCSURWDGO-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Inorganic materials [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Inorganic materials [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- QNZFKUWECYSYPS-UHFFFAOYSA-N lead zirconium Chemical compound [Zr].[Pb] QNZFKUWECYSYPS-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000010198 maturation time Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 239000006012 monoammonium phosphate Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005025 nuclear technology Methods 0.000 description 1
- 239000010816 packaging waste Substances 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229960004029 silicic acid Drugs 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Inorganic materials [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
- G21F9/301—Processing by fixation in stable solid media
- G21F9/302—Processing by fixation in stable solid media in an inorganic matrix
- G21F9/305—Glass or glass like matrix
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/16—Processing by fixation in stable solid media
- G21F9/162—Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
Definitions
- High-level nuclear waste - such as fission products - or long-lived waste such as actinides is currently immobilized in borosilicate glasses which offer sufficient guarantees of safety for man and the environment.
- the French Atomic Energy Commission has developed an industrial vitrification process for fission products (PF).
- This process (known as AVM) consists in calcining the solution of the fission products, and in sending the calcinate obtained, simultaneously with a glass frit, to a melting furnace.
- the glass frit is composed mainly of silica and boric anhydride, plus the other oxides (sodium aluminum etc.) necessary for the total formulation calcinate + frit to give a glass which can be produced by known glass techniques and fulfilling the conditions of safety for storage (condition on leaching, mechanical strength, etc.).
- the temperature should be chosen high enough to hasten digestion but without having a detrimental effect on the life of the oven.
- the applicant instead of preparing the glass from solid constituents in the form of oxides, has developed a process in which the constituents of the glass are mixed in an aqueous medium so as to form a gelled solution.
- obtaining a glass from a gelled solution can be done at temperatures lower than those necessary with the oxides (“oxide route”).
- the main objective is to manufacture by the gels of glasses having the same formulation as those currently prepared by the oxide route, as the examples will show, but any borosilicate formulation acceptable for packaging waste can be prepared.
- a way is known for preparing the gels in an aqueous medium known as the sol-gel method, consisting in using a sol in water and in de-establishing it by modifying the pH, thus causing this solution to gel.
- boron makes gelation very difficult (in the HITACHI process described below, boron is added moreover after gel formation), in particular due to the high insolubility of many boron compounds and promotes recrystallization in mixed gels. aluminum promotes precipitation at the expense of gelling, which is opposed to the desired result sodium, calcium and zirconium lead to the formation of crystals which later constitute fragile points which can cause local destruction.
- the gel prepared from compounds X (OR) n in an alcoholic medium can be obtained more easily because there is no problem of solubility and moreover the peptizing effect of water at high temperature is eliminated by using l 'alcohol.
- the Applicant has developed a method for immobilizing nuclear waste, which does not have the drawbacks of the Westinghouse and Hitachi processes, and in which a borosilicate matrix is prepared in an aqueous medium, the nuclear waste is subsequently added to said matrix at any stage of its treatment, this mixture then being heat treated to obtain a borosilicate glass.
- This process therefore has the advantages of working in an aqueous medium and of adding boron at the same time as the formation of the gelled matrix, the boron therefore participating in the structure of the gelled matrix, for this so-called borosilicate.
- a substance containing silica particles, possibly partially hydrolyzed, which is either in the form of a powder which, when dissolved in acid, can produce a sol, or directly in the form of a gel, will be called a gel precursor. 'a floor.
- Gel precursors sold commercially and advantageously used in the process can be, for example, a soil such as Ludox R (from Pont de Nemours) or Aerosil R (Degussa) which is formed by hydrolysis in the gas phase of silicon tetrachloride. In an acidic environment, the Aerosil leads to a soil then to a firm gelled mass.
- Ludox R from Pont de Nemours
- Aerosil R Degussa
- the Ludox is brought into solution as it is, the Aerosil on the other hand can be used either directly in the form of powder introduced into the mixture (depending on the technology used in particular for stirring) or in solution.
- the gel precursor can consist of a mixture of gel precursor, for example in the same operation the silica will be supplied by Ludox and Aerosil.
- the gel precursor is placed, in an acidic aqueous medium, according to the process which is the subject of the invention, so that it is transformed into a gelled solution by polymerization from the Si-OH- bonds.
- the boron necessary to form the borosilicate structure is supplied by the aqueous solution of a boron compound which is sufficiently soluble. It may for example be ammonium tetraborate (TBA) which has a satisfactory solubility between 50 and 80 ° C (about 300 g / I or 15.1% B 2 0 3 ). Preferably, the solution is prepared and used at 65-70 ° C. Boric acid may just as well be suitable: solubility of 130 g / I at 65 °, ie 6.5% B203 ..
- TSA ammonium tetraborate
- the solutions used are concentrated prepared solutions with the aim of rapidly manufacturing a gel and minimizing the amount of water to be evaporated, as will be explained in the description and the examples. It is difficult to give an exact concentration limit for each of the compounds, but the concentration of the solutions can reasonably be situated at least 75% of the saturation concentration.
- the solution of the adjuvant it is necessary to use compounds containing the desired elements which are soluble in water, at the process temperature, which are compatible with each other, which do not unnecessarily add other ions and whose ions not participating in the structure of the final glass are easily removed by heating.
- They are, for example, nitrate solutions when nitric FP solutions are treated.
- the solid compounds are preferably dissolved in the minimum quantity of water so as to minimize the volumes treated and the quantities of water to be evaporated.
- the mixing is carried out between 20 and 80 ° C.
- the concentrated solution of the boron compound is maintained to avoid precipitation between 50 and 80 ° C.
- the other solutions are developed at room temperature. It is then possible either to mix the solutions at the temperature at which they are prepared or brought, or to bring all the solutions to a higher temperature.
- the latter has the following advantage. After mixing has taken place and the gelled solution has started to form, the polymerization (gelling) takes place during a so-called maturation time. The rise in temperature favors it. It is therefore very advantageous to prepare the mixture between 50 ° C. and 80 ° C. The maturation of the gelled solution takes place, in the process which is the subject of the invention, during drying, at 100-1 050 ° C.
- the solutions of the glass constituents have different pH values: the gel precursor in solution is alkaline (Ludox) or acid (Aerosil in nitric solution), the solution of acid vitrification adjuvant, the solution of the acidic boron compound (boric acid) or alkaline (TBA).
- the pH of the mixture must be less than 7 and preferably between 2.5 and 3.5. An adjustment of the pH can be undertaken if necessary.
- the mixing of the components takes place by simultaneously bringing these components together and agitating them with "a high rate of shear".
- These components can be brought separately or possibly grouped when they do not react with each other.
- a high shear rate is defined as agitation delivered by a device rotating at at least 500 rpm and preferably 2000 rpm and for which the thickness of the agitated layer (distance between the agitation blade and the wall of the mixing zone) does not exceed 10% of the diameter of the blade.
- This device can be a turbine, for example, for application on an industrial scale. Laboratory tests with a mixer or mechanical stirrer in a narrow beaker have shown sufficient mixing capacity.
- an important advantage not previously obtained by the other gelling techniques is that large amounts of gel can be prepared without difficulty. With a turbine, without being at the limit we reached 40 kg / h of gel very easily.
- a solution called a gelled solution By mixing, a solution called a gelled solution is obtained, its viscosity and its texture changing over time and going from a fluid solution to a gel.
- the inactive borosilicate matrix thus obtained in the form of a gelled solution is then heat treated, the nuclear waste being added at any stage of said treatment.
- the method can be applied to various types of solid and / or liquid nuclear waste. It is particularly suitable for the vitrification of FP solutions alone or with other active effluents, for example the sodium washing solution of tributylphosphate used for the extraction of uranium and plutonium, the sodium washing solution possibly being even be treated alone by this process.
- active effluents for example the sodium washing solution of tributylphosphate used for the extraction of uranium and plutonium, the sodium washing solution possibly being even be treated alone by this process.
- FP solutions are nitric solutions resulting from the reprocessing of fuels, they contain a large number of elements in various chemical forms and a certain amount of insolubles.
- An example of composition is given below.
- the soda effluent is based on sodium carbonate and contains degradation products of tributylphosphate (TBP) caused by washing (example 2).
- TBP tributylphosphate
- the high sodium content of this effluent must be taken into account when determining the composition of the borosilicate matrix.
- Case 1 nuclear waste in solution is added to an inactive borosilicate matrix whose volume has been reduced.
- the gelled solution obtained by mixing the constituents under the conditions described is subjected to drying, between 100 and 200 ° C at 100-105 ° C preferably. During this operation, the water evaporates and the volume is reduced. It is possible, for the remainder of the process either to carry out a thorough drying so as to be able to obtain a friable solid product, or to simply be satisfied with a reduction in volume - more rapidly obtained - of 25 to 75% of the initial volume of way to get a paste.
- the reduced volume matrix obtained is dispersed and mixed with stirring with the solution of nuclear waste to be treated. It may be advantageous to mix at a temperature between 60 and 100 ° C to reduce the volume of water while mixing.
- the dried matrix is introduced into the calciner, the waste solution is brought simultaneously to this calciner, the mixing takes place in the calciner which rotates around its longitudinal axis.
- the product obtained is sent directly to the melting furnace.
- the process has the same characteristics: preparation of the matrix-drying-addition of waste-heat treatment going from a drying temperature to a melting temperature (drying-calcination-melting).
- the mixture obtained is dried if necessary (between 100 and 200 ° C at 100-105 ° C preferably) in an oven for example, drying under vacuum is also possible. After drying, a calcination is then carried out between 300 and 500 ° C (350 to 400 ° C preferably) during which the water finishes evaporating and the nitrates decompose in part.
- the calcination can be carried out either in a conventional calciner (of the type used in the AVM process) or in a melting furnace of the ceramic melter type for example.
- the melting temperature of the mixture depends on the composition of said mixture. Sodium improves the fusibility of glasses, but it does have the disadvantage of lowering their resistance to leaching.
- the CEA has developed a formulation of glass that meets the nuclear safety conditions and can be treated by known glass techniques according to the so-called oxide route.
- the process which is the subject of the invention makes it possible to vitrify various wastes, in particular wastes rich in sodium, since the composition of the borosilicate matrix is adjusted to the type of wastes treated.
- a borosilicate matrix low in sodium (or even without sodium) is prepared as will be shown in the examples.
- drying-calcination-melting steps described correspond to heat treatments in certain temperature zones. It is obvious that similar heat treatments in other devices are suitable, as is generally any technique for making glass from the gel. 2nd case: nuclear waste in solution is added to a calcined borosilicate matrix
- the borosilicate matrix in the form of a gelled solution is dried (between 100 and 200 ° C, preferably at 100-105 ° C) and then calcined between 300 and 500 ° C, temperature below 400 ° C preferred, in devices similar to those described for the 1st case.
- the calcined matrix obtained is dispersed and mixed with the solution of the waste to be treated.
- This operation of mixing the calcined matrix with the waste solution can be carried out in a reactor or else in the calciner itself.
- the calciner is supplied with the solution of the FPs and the calcined matrix separately brought into the desired proportions. From then on, the operation takes place at around 200 ° C at the entrance to the calciner to progress to around 400 ° C.
- a stirring device makes it possible to mix the substances, in the calciner it is its own rotation around its longitudinal axis which ensures the mixing.
- the mixture obtained (calcined matrix + waste) is subjected to a heat treatment (drying, calcination, fusion) under the conditions already described to form a glass.
- a heat treatment drying, calcination, fusion
- This process has the advantage of being able to be implemented immediately in current production chains by allowing the adaptation of the vitrification adjuvant to the treated waste (as will be shown in Example 3).
- Group 1 represents the inactive elements of the FP solution and group 2 simulates the active elements of this same solution and the insolubles.
- the simulated FP solution has a pH: 1.3.
- the final glass composition to be obtained is:
- the solution of the vitrification aid is prepared according to the composition of the glass to be obtained and that of the waste solution to be treated.
- the vitrification aid solution is prepared as follows:
- Each of the compounds is dissolved in the minimum amount of water, ie a total of 640 g of water at 65 ° C; pH: 0.6.
- the TBA solution (NH 4 ) 2 0.2B 2 0 3 , 4H 2 0, 265.2 g dissolved in 663 g of water at 65 ° C - pH: 9.2.
- a conventional turbine comprising a mixing zone of small volume in which a propeller with several blades rotates so that a mixture with a high rate of shear is produced. In this example, it rotates at 2000 rpm.
- the turbine used for the tests is manufactured by the company STERMA, the mixing zone has a volume of 1 cm 3 and the thickness of the agitated layer is of the order of mm.
- 1.6 1 of simulated FP solution are placed in a 3 l container fitted with a rotating mechanical agitator, the dried matrix is poured regularly while stirring.
- the mixture obtained is stirred for approximately 30 min then dried at 100-105 ° C in an oven, on a plate, calcined for 2 hours at 400 ° C and finally melted for 5 hours at 1050 ° C.
- the glass obtained (0.5 kg) obeys acceptability criteria.
- a glass of good quality was defined as being a homogeneous glass, not presenting unfonders and bubbles and moreover not showing on the surface traces of molybdate.
- molybdate coming from FP solutions poses a major problem: part of the active Mo tends to separate from the solution and sediment so that this phase is not completely dispersed in the mixture therefore it is not fully included in the gelled solution.
- the chemical analysis of the glass obtained also shows that the components have practically not volatilized, so that one can consider that the composition of the mixtures (borosilicate matrix then matrix + waste) practically corresponds to that of the final glass.
- the mixture is calcined for 4 hours at 400 ° C. after baking for 34 hours at 120 ° C., then melted at 1125 ° C.
- This test relates to the treatment of subsequently acidified washing soda effluent.
- the present invention makes it possible to manufacture a borosilicate glass with the soda effluent having a composition close to that giving any satisfaction in the AVM process.
- the ripening temperature can be significantly lowered or the ripening times shortened.
- a sodium solution was therefore simulated with 100 g Na 2 CO 3 in one liter of water.
- the TBA solution 312 g / I TBA, 4H 2 0.
- the Aerosil R marketed by the company DEGUSSA.
- the gel precursor is formed by gradually pouring, with stirring, the Aerosil into water acidified with 3N HNO 3 (pH: 2.5) so as to obtain a solution of 150 g of silica per liter.
- the borosilicate matrix obtained in the form of a gelled solution is dried for 24 hours at 105 ° C. and then calcined for 3 hours at 350 ° C. Solid particles having a large specific surface are removed from the oven, varying from one test to another but always close to 50m 2 / g. After cooling, these particles are poured into the effluent to be treated and stirred for 2 h. A gelatinous mass is formed which is dried at 105 ° , calcined at 400 ° C and finally melts at 1150 ° C.
- This example shows that one can prepare a calcined gel having the same composition as the glass frit used in the AVM process.
- a calcined matrix is prepared having a composition similar to the glass frit of the AVM process except for sodium: the sodium oxide content is reduced from 7% to 2.6%.
- the vitrification aid solution will have the following composition:
- the silica to boric anhydride ratio is equal to 3.244 in the theoretical formula and to 3.242 in the calcined gel.
- the silica to alumina ratio is 13.75 in the theoretical formulation and 13.69 in the calcined gel.
- silica / sodium ratio is equal to 8.407 in the theoretical formulation and to 22.82 in the calcined gel.
- the sodium content is 7% in the theoretical formula and 2.7% in the calcined gel.
- This example shows the possibility of producing at will a calcined gel having a composition which is difficult to obtain in the form of a glass frit, and in particular the possibility of manufacturing a calcined gel low in sodium making it possible to vitrify at the same time the solution of the FPs and the soda effluent.
- the concentrated solutions have been prepared, some are even close to saturation, so as not to increase the drying times and the volumes of liquid to be handled. It may be necessary, without damage to the process, to further dilute these solutions, in particular for pumping and flow issues.
- the Applicant believes that it has succeeded in preparing in an aqueous medium a borosilicate matrix ready to be used for the treatment of nuclear waste by the solutions used and the method of agitation used.
- the process which is the subject of the invention has an important advantage during its industrial exploitation in a nuclear environment: the matrix is prepared in an inactive environment, so that this whole part of the process is outside the rigid constraints which are essential to observe in an active environment, conventional technologies in the chemical industry can be used as they are.
- the second part of the process heat treatment with introduction of waste
- the second part of the process can use virtually as is the current production lines already installed and working with oxides.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Glass Compositions (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
Description
Les déchets nucléaires de haute activité - comme les produits de fission - ou de longue période tels que les actinides sont actuellement immobilisés dans des verres borosilicatés qui présentent des garanties de sûreté suffisantes pour l'homme et l'environnement.High-level nuclear waste - such as fission products - or long-lived waste such as actinides is currently immobilized in borosilicate glasses which offer sufficient guarantees of safety for man and the environment.
Le Commissariat à l'Energie Atomique (CEA) a développé un procédé industriel de vitrification des produits de fissions (PF).The French Atomic Energy Commission (CEA) has developed an industrial vitrification process for fission products (PF).
Ce procédé (dit AVM) consiste à calciner la solution des produits de fission, et à envoyer le calcinat obtenu, simultanément avec une fritte de verre, dans un four de fusion.This process (known as AVM) consists in calcining the solution of the fission products, and in sending the calcinate obtained, simultaneously with a glass frit, to a melting furnace.
En quelques heures, à une température de l'ordre de 1100°C, on obtient un verre qui est coulé dans des conteneurs métalliques.In a few hours, at a temperature of the order of 1100 ° C., a glass is obtained which is poured into metal containers.
La fritte de verre est composée principalement de silice et d'anhydride borique, plus les autres oxydes (sodium aluminium etc.) nécessaires pour que la formulation totale calcinat + fritte donne un verre élabo- rable par les techniques verrières connues et remplissant les conditions de sûreté pour le stockage (condition sur la lixiviation, la tenue mécanique...).The glass frit is composed mainly of silica and boric anhydride, plus the other oxides (sodium aluminum etc.) necessary for the total formulation calcinate + frit to give a glass which can be produced by known glass techniques and fulfilling the conditions of safety for storage (condition on leaching, mechanical strength, etc.).
Dans le four de fusion il y a digestion du calcinat qui s'incorpore dans la structure vitreuse. La température doit être choisie assez haute pour hâter la digestion mais sans avoir un effet néfaste sur la durée de vie du four.In the melting furnace there is digestion of the calcine which is incorporated into the glass structure. The temperature should be chosen high enough to hasten digestion but without having a detrimental effect on the life of the oven.
Pour limiter cet inconvénient, la demanderesse, au lieu de préparer le verre à partir de constituants solides sous forme d'oxydes, a développé un procédé dans lequel les constituants du verre sont mélangés en milieu aqueux de façon à former une solution gélifiée.To limit this drawback, the applicant, instead of preparing the glass from solid constituents in the form of oxides, has developed a process in which the constituents of the glass are mixed in an aqueous medium so as to form a gelled solution.
Il est par ailleurs connu que l'obtention d'un verre à partir d'une solution gélifiée (encore appelée "voie des gels") peut se faire à des températures inférieures à celles nécessaires avec les oxydes ("voie des oxydes"). On vise essentiellement la fabrication par voie des gels de verres ayant la même formulation que ceux actuellement préparés par la voie des oxydes, ainsi que le montreront les exemples, mais toute formulation borosilicatée acceptable pour le conditionnement des déchets peut être préparée.It is also known that obtaining a glass from a gelled solution (also called "gel route") can be done at temperatures lower than those necessary with the oxides ("oxide route"). The main objective is to manufacture by the gels of glasses having the same formulation as those currently prepared by the oxide route, as the examples will show, but any borosilicate formulation acceptable for packaging waste can be prepared.
Dans la suite du texte, les termes suivants seront employés dans le sens défini ci-dessous :
- . adiuvant de vitrification : c'est l'ensemble des constituants du verre final autres que les constituants provenant des déchets nucléaires et sauf B et Si. Cet adjuvant ne contient donc pas d'éléments nucléaires actifs. Dans le procédé AVM, il est inclus dans une fritte de verre ; dans le procédé objet de l'invention, c'est une solution aqueuse,
- . verre final : Il s'agit du verre dans lequel les déchets nucléaires sont immobilisés,
- . sol : c'est une solution d'acide orthosilicique ; celui-ci instable évolue en se polymérisant. Les sols commerciaux, tels que le Ludox R (du Pont de Nemours), sont des solutions stabilisées dans lesquelles se trouvent des particules de silice en partie hydratées, ces particules colloïdales sont des polymères dont l'évolution a été stoppée mais peut être débloquée par acidification par exemple.
- . solution gélifiée ou gel : c'est une solution homogène, de viscosité variable qui va d'une solution qui s'écoule à une masse figée, selon l'avancement de la polymérisation.
- . vitrification adjuvant: this is all the constituents of the final glass other than the constituents originating from nuclear waste and except B and Si. This adjuvant therefore does not contain active nuclear elements. In the AVM process, it is included in a glass frit; in the process which is the subject of the invention, it is an aqueous solution,
- . final glass: This is the glass in which nuclear waste is immobilized,
- . soil: it is a solution of orthosilicic acid; this unstable evolves by polymerizing. Commercial soils, such as Ludox R (from Pont de Nemours), are stabilized solutions in which partially hydrated silica particles are found, these colloidal particles are polymers whose evolution has been stopped but can be released by acidification for example.
- . gelled solution or gel: it is a homogeneous solution, of variable viscosity which goes from a flowing solution to a fixed mass, according to the progress of the polymerization.
On connaît une voie pour préparer les gels en milieu aqueux dite méthode sol-gel consistant à utiliser un sol dans l'eau et à le déstablisier en modifiant le pH provoquant ainsi la gélification de cette solution.A way is known for preparing the gels in an aqueous medium known as the sol-gel method, consisting in using a sol in water and in de-establishing it by modifying the pH, thus causing this solution to gel.
Les publications s'y référant sont :
- ZARZYCKI J. - JI of Materials Science 17 (1982) p 3371-3379
- JABRA R. - Revue de Chimie Minérale, t.16, 1979, p 245-266
- PHALIPPOU J. - Verres et Réfractaires, Vol. 35, No. 6, Nov. Déc. 1981.
- ZARZYCKI J. - JI of Materials Science 17 (1982) p 3371-3379
- JABRA R. - Revue de Chimie Minérale, t.16, 1979, p 245-266
- PHALIPPOU J. - Glasses and Refractories, Vol. 35, No. 6, Nov. Dec. nineteen eighty one.
La littérature décrit la préparation d'un verre Si02-B203 par la méthode sol-gel :
- - addition d'une solution de Ludox amenée à pH : 2 à une solution aqueuse de tétraborate d'ammonium aqueux amenée aussi à pH : 2
- - mélange sous agitation pendant 1 heure (avec ajout éventuel d'ammonique pour amener le milieu à pH : 3,5 très favorable à la gélification) si la solution obtenue est exempte de précipitation ou de floculation, elle est considéré comme un gel satisfaisant
- - séchage 8 heures à 100°C puis 15 h à 175°C sous vide de 0,1 mm Hg
- - pressage à chaud (450 bars-500 à 900° - 15 min à 5 heures) pour densifier et vitrifier (la fusion est un autre moyen).
- - addition of a Ludox solution brought to pH: 2 to an aqueous solution of aqueous ammonium tetraborate also brought to pH: 2
- - mixing with stirring for 1 hour (with possible addition of ammonia to bring the medium to pH: 3.5 very favorable for gelling) if the solution obtained is free of precipitation or flocculation, it is considered to be a satisfactory gel
- - drying 8 hours at 100 ° C then 15 h at 175 ° C under vacuum of 0.1 mm Hg
- - hot pressing (450 bars-500 at 900 ° - 15 min to 5 hours) to densify and vitrify (fusion is another means).
Jusqu'à présent, seuls ont été préparés des verres binaires ou ternaires par cette méthode parce que la multiplicité des cations présents rend difficile le contrôle de la gélification et même son obtention.Until now, only binary or ternary glasses have been prepared by this method because the multiplicity of cations present makes it difficult to control gelation and even to obtain it.
Ainsi, pour élaborer un verre de même composition que la fritte de verre utilisée dans le procédé de vitrification actuel, il faudrait :
- B203, Si02, A1203, Na20, ZnO, CaO, Li20, Zr02
- B 2 0 3 , Si0 2 , A1 2 0 3 , Na 2 0, ZnO, CaO, Li 2 0, Zr0 2
le bore rend très difficile la gélification (dans le procédé HITACHI décrit plus loin, le bore est rajouté d'ailleurs après formation du gel) notamment du fait de la grande insolubilité de nombreux composés du bore et favorise la recristallisation dans les gels mixtes l'aluminium favorise la précipitation au détriment de la gélification, ce qui s'oppose au résultat cherché le sodium, le calcium et le zirconium entraînent la formation de cristaux constituant ultérieurement des points fragiles pouvant entraîner des destructions locales.boron makes gelation very difficult (in the HITACHI process described below, boron is added moreover after gel formation), in particular due to the high insolubility of many boron compounds and promotes recrystallization in mixed gels. aluminum promotes precipitation at the expense of gelling, which is opposed to the desired result sodium, calcium and zirconium lead to the formation of crystals which later constitute fragile points which can cause local destruction.
La multiplicité des composants conduit donc l'homme de l'art à s'interroger sur la façon de les introduire et leur ordre d'introduction.The multiplicity of components therefore leads those skilled in the art to question how to introduce them and their order of introduction.
La complexité des composants au niveau du procédé de vitrification, avec à la fois ceux
- - de l'adjuvant de vitrification (AI203, Na20, ZnO, CaO, Li2C, Zr02) plus B203 et Si02
- - de la solution de PF à vitrifier (une vingtaine de cations différents) a conduit les industriels à développer sur la base des gels deux procédés :
- - vitrification aid (AI 2 0 3 , Na 2 0, ZnO, CaO, Li 2 C, Zr0 2 ) plus B 2 0 3 and Si0 2
- - PF solution to be vitrified (around twenty different cations) has led manufacturers to develop two processes on the basis of gels:
1) Westinghouse et le US Department of Energy ont développé un procédé de vitrification de solutions actives avec préparation de gels mais en milieu alcoolique (alcogels) - Brevets US 4 430 257 et US 4 422 965 - 1) Westinghouse and the US Department of Energy have developed a vitrification process for active solutions with preparation of gels but in alcoholic medium (alcogels) - US Patents 4,430,257 and US 4,422,965 -
Leur procédé peut se résumer ainsi :
- - mélange et hydrolyse des constituants inactifs du gel en milieu alcool-eau, les constituants étant introduits sous forme X(OR)n
par ex.: Si(OR)4, B(OR)3...,R étant un radical organique ou un proton - - élimination de l'azéotrope eau-alcool et obtention d'un gel sec
- - addition de la solution de déchets nucléaires (le composé final contenant 30-40% au maximum en déchets) ajustée à pH : 4 à 6
- - séchage
- - fusion
- - mixing and hydrolysis of the inactive constituents of the gel in an alcohol-water medium, the constituents being introduced in X (OR) n form
e.g. Si (OR) 4 , B (OR) 3 ..., R being an organic radical or a proton - - elimination of the water-alcohol azeotrope and obtaining a dry gel
- - addition of the nuclear waste solution (the final compound containing 30-40% maximum waste) adjusted to pH: 4 to 6
- - drying
- - merger
Le gel préparé à partir de composés X(OR)n en milieu alcoolique peut être obtenu plus facilement car on ne se heurte pas aux problèmes de solubilité et de plus l'effet peptisant de l'eau à haute température est éliminé par emploi de l'alcool.The gel prepared from compounds X (OR) n in an alcoholic medium can be obtained more easily because there is no problem of solubility and moreover the peptizing effect of water at high temperature is eliminated by using l 'alcohol.
Inconvénient majeur d'un tel procédé : le milieu alcoolique sujet à incendie, explosion... d'où la nécessité d'éliminer l'alcool avant introduction des déchets nucléaires, ce qui oblige à une opération supplémentaire peu pratique à mettre en oeuvre.Major drawback of such a process: the alcoholic environment subject to fire, explosion ... hence the need to eliminate the alcohol before the introduction of nuclear waste, which requires an additional operation that is impractical to implement.
2) Le procédé HITACHI dans lequel le gel est obtenu à partir de la solution de PF dans une solution de silicate de sodium, le bore (sous forme B203) n'étant rajouté qu'après gélification, ce qui oblige à effectuer une calcination du gel à au moins 600°C pendant le temps nécessaire (3 h, cité comme exemple) à la diffusion du bore dans la matrice silicate pour former la structure borosilicatée, l'homogénéité du produit restant un problème.2) The HITACHI process in which the gel is obtained from the solution of PF in a solution of sodium silicate, the boron (in the form B 2 0 3 ) being added only after gelation, which requires carrying out calcination of the gel at least 600 ° C. for the time necessary (3 h, cited as an example) for the diffusion of boron in the silicate matrix to form the borosilicate structure, the homogeneity of the product remaining a problem.
Publication: UETAKE N. - Nuclear Technology, Vol. 67, Nov. 1984.Publication: UETAKE N. - Nuclear Technology, Vol. 67, Nov. 1984.
La demanderesse a développé un procédé d'immobilisation des déchets nucléaires, qui ne présente pas les inconvénients des procédés Westinghouse et Hitachi, et dans lequel une matrice borosilicatée est préparée en milieu aqueux, les déchets nucléaires sont ultérieurement ajoutés à ladite matrice à un stade quelconque de son traitement, ce mélange étant ensuite traité thermiquement pour obtenir un verre borosilicaté.The Applicant has developed a method for immobilizing nuclear waste, which does not have the drawbacks of the Westinghouse and Hitachi processes, and in which a borosilicate matrix is prepared in an aqueous medium, the nuclear waste is subsequently added to said matrix at any stage of its treatment, this mixture then being heat treated to obtain a borosilicate glass.
Ce procédé présente donc les avantages de travailler en milieu aqueux et d'ajouter le bore au moment même de la formation de la matrice gélifiée, le bore participant donc à la structure de la matrice gélifiée, pour cela dite borosilicatée.This process therefore has the advantages of working in an aqueous medium and of adding boron at the same time as the formation of the gelled matrix, the boron therefore participating in the structure of the gelled matrix, for this so-called borosilicate.
Le procédé objet de l'invention est caractérisé en ce que la matrice borosilicatée est préparée par mélange de:
- - un précurseur de gel à base de silice
- - une solution aqueuse concentrée d'un composé boré
- - une solution concentrée aqueuse de l'adjuvant de vitrification;
- - a silica-based gel precursor
- - a concentrated aqueous solution of a boron compound
- - a concentrated aqueous solution of the vitrification aid;
dans les proportions correspondant à la composition du verre final, moins les déchets, sous agitation avec un fort taux de cisaillement, à une température comprise entre 20 et 80°C, (65-70°C de préférence) à un pH acide (compris entre 2, 5 et 3, 5 de préférence) de façon à former une solution gélifiée, ladite matrice inactive est traitée thermiquement et les déchets nucléaires sont ajoutés à un quelconque stade dudit traitement pour former par fusion le verre final borosilicaté contenant lesdits déchets.in the proportions corresponding to the composition of the final glass, minus the waste, with stirring with a high shear rate, at a temperature between 20 and 80 ° C, (65-70 ° C preferably) at an acidic pH (included between 2, 5 and 3, 5 preferably) so as to form a gelled solution, said inactive matrix is heat treated and nuclear waste is added at any stage of said treatment to form by fusion the final borosilicate glass containing said waste.
Dans l'exposé du procédé, on appellera précurseur de gel une substance contenant des particules de silice, éventuellement partiellement hydrolysée, se présentant soit à l'état de poudre qui,mise en solution acide,peut produire un sol, soit directement sous forme d'un sol.In the description of the process, a substance containing silica particles, possibly partially hydrolyzed, which is either in the form of a powder which, when dissolved in acid, can produce a sol, or directly in the form of a gel, will be called a gel precursor. 'a floor.
Des précurseurs de gel vendus dans le commerce et avantageusement utilisés dans le procédé peuvent être, par exemple, un sol tel que le Ludox R (du Pont de Nemours) ou bien l'Aérosil R (Degussa) qui est formé par hydrolyse en phase gazeuse de tétrachlorure de silicium. En milieu acide, l'Aérosil conduit à un sol puis à une masse gélifiée ferme.Gel precursors sold commercially and advantageously used in the process can be, for example, a soil such as Ludox R (from Pont de Nemours) or Aerosil R (Degussa) which is formed by hydrolysis in the gas phase of silicon tetrachloride. In an acidic environment, the Aerosil leads to a soil then to a firm gelled mass.
Le Ludox est amené en solution tel quel,I'Aérosil par contre peut être employé soit directement sous forme de poudre introduite dans le mélange (selon la technologie employée notamment à l'agitation) soit en solution.The Ludox is brought into solution as it is, the Aerosil on the other hand can be used either directly in the form of powder introduced into the mixture (depending on the technology used in particular for stirring) or in solution.
Par ailleurs, le précurseur de gel peut consister en un mélange de précurseur de gel, par exemple dans une même opération la silice sera amenée par du Ludox et de l'Aérosil.Furthermore, the gel precursor can consist of a mixture of gel precursor, for example in the same operation the silica will be supplied by Ludox and Aerosil.
Le précurseur de gel est placé, en milieu aqueux acide, suivant le procédé objet de l'invention, de sorte qu'il se trans-forme en une solution gélifiée par polymérisation à partir des liaisons Si-OH-.The gel precursor is placed, in an acidic aqueous medium, according to the process which is the subject of the invention, so that it is transformed into a gelled solution by polymerization from the Si-OH- bonds.
Le bore nécessaire pour former la structure borosilicatée est amené par la solution aqueuse d'un composé boré suffisamment soluble. Ce peut être par exemple le tétraborate d'ammonium (TBA) qui présente une solubilité satisfaisante entre 50 et 80°C (environ 300 g/I soit 15,1 % B203). De préférence, la solution est élaborée et utilisée à 65-70°C. L'acide borique peut tout aussi bien convenir : solubilité de 130 g/I à 65° soit 6,5 % B203..The boron necessary to form the borosilicate structure is supplied by the aqueous solution of a boron compound which is sufficiently soluble. It may for example be ammonium tetraborate (TBA) which has a satisfactory solubility between 50 and 80 ° C (about 300 g / I or 15.1% B 2 0 3 ). Preferably, the solution is prepared and used at 65-70 ° C. Boric acid may just as well be suitable: solubility of 130 g / I at 65 °, ie 6.5% B203 ..
Les solutions utilisées (composé boré et adjuvant de vitrification) sont des solutions préparées concentrées dans le but de fabriquer rapidement un gel et de minimiser la quantité d'eau à évaporer, ainsi que l'expliciteront la description et les exemples. Il est difficile de donner une limite exacte en concentration pour chacun des composés, mais on peut raisonnablement situer la concentration des solutions à au moins 75 % de la concentration de saturation.The solutions used (boron compound and vitrification aid) are concentrated prepared solutions with the aim of rapidly manufacturing a gel and minimizing the amount of water to be evaporated, as will be explained in the description and the examples. It is difficult to give an exact concentration limit for each of the compounds, but the concentration of the solutions can reasonably be situated at least 75% of the saturation concentration.
Pour préparer la solution de l'adjuvant, il convient d'employer des composés contennant les éléments voulus qui soient solubles dans l'eau, à la température du procédé, qui soient compatibles entre eux, qui ne rajoutent pas inutilement d'autres ions et dont les ions ne participant pas à la structure du verre final sont facilement éliminés par chauffage. Ce sont par exemple des solutions de nitrates lorsque des solutions de PF nitriques sont traitées. Les composés solides sont dissous de préférence dans la quantité minimale d'eau de façon à minimiser les volumes traités et les quantités d'eau à évaporer.To prepare the solution of the adjuvant, it is necessary to use compounds containing the desired elements which are soluble in water, at the process temperature, which are compatible with each other, which do not unnecessarily add other ions and whose ions not participating in the structure of the final glass are easily removed by heating. They are, for example, nitrate solutions when nitric FP solutions are treated. The solid compounds are preferably dissolved in the minimum quantity of water so as to minimize the volumes treated and the quantities of water to be evaporated.
Les proportions dans lesquelles ces solutions sont préparées (à l'exception des solutions de déchets) et mélangées dépendent de la formulation du verre final désirée. On peut considérer que les éléments constitutifs du verre ne sont pratiquement pas volatilisés et que la composition du verre final obtenue correspond pratiquement à celle du mélange élaboré. Dans les exemples, une formulation de verre acceptable est indiquée. La composition qualitative et quantitative de l'adjuvant de vitrification est adaptée en fonction de la composition du verre final et de celle de la solution de déchets à traiter.The proportions in which these solutions are prepared (with the exception of waste solutions) and mixed depend on the formulation of the final glass desired. It can be considered that the constituent elements of the glass are practically not volatilized and that the composition of the final glass obtained practically corresponds to that of the mixture produced. In the examples, an acceptable glass formulation is indicated. The qualitative and quantitative composition of the vitrification aid is adapted according to the composition of the final glass and that of the waste solution to be treated.
Le mélange est effectué entre 20 et 80°C. La solution concentrée du composé boré est maintenue pour éviter la précipitation entre 50 et 80°C. Les autres solutions sont élaborées à température ambiante. Il est alors possible soit de mélanger les solutions à la température à laquelle elles sont élaborées ou amenées, soit de porter toutes les solutions à une température plus élevée.The mixing is carried out between 20 and 80 ° C. The concentrated solution of the boron compound is maintained to avoid precipitation between 50 and 80 ° C. The other solutions are developed at room temperature. It is then possible either to mix the solutions at the temperature at which they are prepared or brought, or to bring all the solutions to a higher temperature.
Ce dernier cas présente l'avantage suivant. Après que le mélange a eu lieu et que la solution gélifiée a commencé à se former, la polymérisation (la gélification) se développe pendant un temps dit de maturation. L'élévation de température la favorise. On a donc tout avantage à élaborer le mélange entre 50°C et 80°C. La maturation de la solution gélifiée a lieu, dans le procédé objet de l'invention, pendant le séchage, à 100-1 050C de préférence.The latter has the following advantage. After mixing has taken place and the gelled solution has started to form, the polymerization (gelling) takes place during a so-called maturation time. The rise in temperature favors it. It is therefore very advantageous to prepare the mixture between 50 ° C. and 80 ° C. The maturation of the gelled solution takes place, in the process which is the subject of the invention, during drying, at 100-1 050 ° C.
Les solutions des constituants du verre présentent des pH différents : le précurseur de gel en solution est alcalin (Ludox) ou acide (Aérosil en solution nitrique), la solution d'adjuvant de vitrification acide, la solution du composé boré acide (acide borique) ou alcalin (TBA).The solutions of the glass constituents have different pH values: the gel precursor in solution is alkaline (Ludox) or acid (Aerosil in nitric solution), the solution of acid vitrification adjuvant, the solution of the acidic boron compound (boric acid) or alkaline (TBA).
Dans le procédé ici décrit le pH du mélange doit être inférieur à 7 et de préférence compris entre 2,5 et 3,5. Un ajustement du pH peut si nécessaire être entrepris.In the process described here, the pH of the mixture must be less than 7 and preferably between 2.5 and 3.5. An adjustment of the pH can be undertaken if necessary.
Pour les solutions employées, on a :
Dans le procédé objet de l'invention, le mélange des composants a lieu en amenant simultanément ces composants et en les agitant avec "un fort taux de cisaillement". Ces composants peuvent être amenés séparément ou éventuellement groupés lorsqu'ils ne réagissent pas entre eux.In the process which is the subject of the invention, the mixing of the components takes place by simultaneously bringing these components together and agitating them with "a high rate of shear". These components can be brought separately or possibly grouped when they do not react with each other.
On qualifie de fort taux de cisaillement une agitation délivrée par un dispositif tournant à au moins 500 tr/min et de préférence 2000 tr/min et pour laquelle l'épaisseur de la couche agitée (distance entre la pale d'agitation et la paroi de la zone de mélange) ne dépasse pas 10 % du diamètre de la pale.A high shear rate is defined as agitation delivered by a device rotating at at least 500 rpm and preferably 2000 rpm and for which the thickness of the agitated layer (distance between the agitation blade and the wall of the mixing zone) does not exceed 10% of the diameter of the blade.
Ce dispositif peut être une turbine, par exemple, pour application à l'échelle industrielle. Les essais en laboratoire avec un mixer ou un agitateur mécanique dans un bécher étroit ont montré une capacité de mélange suffisante.This device can be a turbine, for example, for application on an industrial scale. Laboratory tests with a mixer or mechanical stirrer in a narrow beaker have shown sufficient mixing capacity.
Dans la procédé objet de l'invention, un avantage important non obtenu antérieurement par les autres techniques de gélification est que de grandes quantités de gel peuvent être préparées sans difficulté. Avec une turbine, sans être à la limite on a atteint 40 kg/h de gel très facilement.In the process which is the subject of the invention, an important advantage not previously obtained by the other gelling techniques is that large amounts of gel can be prepared without difficulty. With a turbine, without being at the limit we reached 40 kg / h of gel very easily.
Par mélange, il est obtenu une solution dite solution gélifiée, sa viscosité et sa texture évoluant dans le temps et allant d'une solution fluide à un gel.By mixing, a solution called a gelled solution is obtained, its viscosity and its texture changing over time and going from a fluid solution to a gel.
Lors du mélange avec un fort taux de cisaillement le phénomène de thixotropie a lieu, la viscosité est abaissée, une dispersion homogène des particules se produit. Hors agitation, ce mélange voit sa viscosité augmenter, les ions prisonniers dans la structure ne peuvent plus réagir, la structure se bloque.When mixing with a high shear rate, the thixotropy phenomenon takes place, the viscosity is lowered, a homogeneous dispersion of the particles occurs. Without agitation, this mixture sees its viscosity increase, the ions trapped in the structure can no longer react, the structure is blocked.
La matrice borosilicatée inactive ainsi obtenue sous forme d'une solution gélifiée est ensuite traitée thermiquement, les déchets nucléaires étant ajoutés à un quelconque stade dudit traitement.The inactive borosilicate matrix thus obtained in the form of a gelled solution is then heat treated, the nuclear waste being added at any stage of said treatment.
Différentes possibilités pour inclure les déchets nucléaires vont maintenant être examinées.Different possibilities for including nuclear waste will now be examined.
Le procédé peut être appliqué à divers types de déchets nucléaires solides et/ou liquides. Il convient particulièrement bien à la vitrification des solutions de PF seules ou avec d'autres effluents actifs, par exemple la solution sodée de lavage du tributylphosphate utilisé pour l'extraction de l'uranium et du plutonium, la solution sodée de lavage pouvant elle-même être traitée seule par ce procédé.The method can be applied to various types of solid and / or liquid nuclear waste. It is particularly suitable for the vitrification of FP solutions alone or with other active effluents, for example the sodium washing solution of tributylphosphate used for the extraction of uranium and plutonium, the sodium washing solution possibly being even be treated alone by this process.
Les solutions de PF sont des solutions nitriques issues du retraitement des combustibles, elles contiennent un grand nombre d'éléments sous des formes chimiques diverses et une certaine quantité d'insolubles. Un exemple de composition est donné plus loin.FP solutions are nitric solutions resulting from the reprocessing of fuels, they contain a large number of elements in various chemical forms and a certain amount of insolubles. An example of composition is given below.
L'effluent sodé est à base de carbonate de sodium et contient des produits de dégradation du tributylphosphate (TBP) entraînés par le lavage (exemple 2). Il faut tenir compte de la forte teneur en sodium de cet effluent pour déterminer la composition de la matrice borosilicatée.
ler cas : les déchets nucléaires en solution sont ajoutés à une matrice borosilicatée inactive dont le volume a été réduit.The soda effluent is based on sodium carbonate and contains degradation products of tributylphosphate (TBP) caused by washing (example 2). The high sodium content of this effluent must be taken into account when determining the composition of the borosilicate matrix.
Case 1: nuclear waste in solution is added to an inactive borosilicate matrix whose volume has been reduced.
La solution gélifiée obtenue par mélange des constituants dans les conditions décrites est soumise à un séchage, entre 100 et 200°C à 100-105°C de préférence. Pendant cette opération, l'eau s'évapore et le volume est réduit. Il est possible, pour la suite du procédé soit de faire un séchage poussé de façon à pouvoir obtenir un produit solide friable, soit de simplement se contenter d'une réduction de volume - plus rapidement obtenue - de 25 à 75 % du volume initial de façon à obtenir une pâte.The gelled solution obtained by mixing the constituents under the conditions described is subjected to drying, between 100 and 200 ° C at 100-105 ° C preferably. During this operation, the water evaporates and the volume is reduced. It is possible, for the remainder of the process either to carry out a thorough drying so as to be able to obtain a friable solid product, or to simply be satisfied with a reduction in volume - more rapidly obtained - of 25 to 75% of the initial volume of way to get a paste.
La matrice de volume réduit obtenue est dispersée et mélangée sous agitation avec la solution des déchets nucléaires à traiter. Il peut être intéressant de faire le mélange à une température comprise entre 60 et 100°C pour réduire le volume d'eau tout en effectuant un mélange.The reduced volume matrix obtained is dispersed and mixed with stirring with the solution of nuclear waste to be treated. It may be advantageous to mix at a temperature between 60 and 100 ° C to reduce the volume of water while mixing.
Selon un autre mode de réalisation, la matrice séchée est introduite dans le calcinateur, la solution des déchets est amenée simultanément à ce calcinateur, le mélange a lieu dans le calcinateur qui tourne autour de son axe longitudinal. Le produit obtenu est envoyé directement au four de fusion.According to another embodiment, the dried matrix is introduced into the calciner, the waste solution is brought simultaneously to this calciner, the mixing takes place in the calciner which rotates around its longitudinal axis. The product obtained is sent directly to the melting furnace.
Quel que soit le mode de réalisation, le procédé présente les mêmes caractéristiques : préparation de la matrice-séchage-addition des déchets-traitement thermique allant d'une température de séchage à une température de fusion (séchage-calcination-fusion).Whatever the embodiment, the process has the same characteristics: preparation of the matrix-drying-addition of waste-heat treatment going from a drying temperature to a melting temperature (drying-calcination-melting).
Le mélange obtenu est séché si nécessaire (entre 100 et 200°C à 100-105°C de préférence) en étuve par exemple, un séchage sous vide est aussi possible. Après séchage, une calcination est ensuite effectuée entre 300 et 500°C (350 à 400°C de préférence) durant laquelle l'eau finit de s'évaporer et les nitrates se décomposent en partie.The mixture obtained is dried if necessary (between 100 and 200 ° C at 100-105 ° C preferably) in an oven for example, drying under vacuum is also possible. After drying, a calcination is then carried out between 300 and 500 ° C (350 to 400 ° C preferably) during which the water finishes evaporating and the nitrates decompose in part.
La calcination peut se faire soit dans un calcinateur classique (du type de celui utilisé dans le procédé AVM) soit dans un four de fusion type ceramic melter par exemple.The calcination can be carried out either in a conventional calciner (of the type used in the AVM process) or in a melting furnace of the ceramic melter type for example.
On termine toujours la décomposition des nitrates pendant la fusion, à l'entrée du four, le produit passe rapidement de sa température de calcination à sa température de fusion, c'est la zone dite d'introduction - ensuite dans la zone dite d'affinage où il est à une tempérautre légèrement supérieure à celle de fusion puis à la température de coulée. Une valeur intéressante se situe entre 1035°C et 1100°C pour laquelle la viscosité du verre comprise entre 200 poises et 80 poises permet la coulée du verre dans de bonnes conditions.We always finish the decomposition of nitrates during melting, at the entrance of the oven, the product quickly passes from its calcination temperature to its melting temperature, this is the so-called introduction zone - then in the so-called refining where it is at a temperature slightly higher than that of melting and then at the casting temperature. An interesting value is between 1035 ° C and 1100 ° C for which the viscosity of the glass between 200 poises and 80 poises allows the casting of the glass in good conditions.
La température de fusion du mélange dépend de la composition dudit mélange. En effet, le sodium améliore la fusibilité des verres mais il a par contre l'inconvénient d'abaisser leur résistance à la lixiviation .The melting temperature of the mixture depends on the composition of said mixture. Sodium improves the fusibility of glasses, but it does have the disadvantage of lowering their resistance to leaching.
Aussi pour immobiliser les déchets nucléaires, le CEA a élaboré une formulation du verre remplissant les conditions de sûreté nucléaire et pouvant être traité par les techniques verrières connues selon la voie dite des oxydes.Also to immobilize nuclear waste, the CEA has developed a formulation of glass that meets the nuclear safety conditions and can be treated by known glass techniques according to the so-called oxide route.
Lorsqu'un mélange ayant la formulation du CEA est préparée en milieu aqueux par la voie dite des gels, on observe que les temps d'affinage sont inférieurs à ceux nécesssaires dans la voie dite des oxydes. Il est alors possible d'augmenter les débits du four.When a mixture having the CEA formulation is prepared in an aqueous medium by the so-called gels route, it is observed that the ripening times are less than those necessary in the so-called oxides route. It is then possible to increase the oven flow rates.
Par ailleurs, le procédé objet de l'invention permet de vitrifier des déchets variés, en particulier des déchets riches en sodium, car la composition de la matrice borosilicatée est ajustée au type de déchets traités. Ainsi pour des déchets riches en sodium une matrice borosilicatée pauvre en sodium (ou même sans sodium) est préparée ainsi que le montreront les exemples.Furthermore, the process which is the subject of the invention makes it possible to vitrify various wastes, in particular wastes rich in sodium, since the composition of the borosilicate matrix is adjusted to the type of wastes treated. Thus for sodium-rich waste a borosilicate matrix low in sodium (or even without sodium) is prepared as will be shown in the examples.
Ainsi la formulation élaborée par le CEA et qui donne toutes satisfactions peut être aisément obtenue avec divers déchets, d'autres formulations qui seraient acceptables pourraient tout aussi bien être préparées.Thus the formulation worked out by the CEA and which gives all satisfactions can be easily obtained with various wastes, other formulations which would be acceptable could just as easily be prepared.
Les étapes séchage-calcination-fusion décrites correspondent à des traitements thermiques dans des zones de température déterminées. Il est bien évident que des traitements thermiques similaires dans d'autres dispositifs conviennent, de même en général toute technique d'élaboration de verre à partir du gel. 2ème cas : les déchets nucléaires en solution sont ajoutés à une matrice borosilicatée calcinéeThe drying-calcination-melting steps described correspond to heat treatments in certain temperature zones. It is obvious that similar heat treatments in other devices are suitable, as is generally any technique for making glass from the gel. 2nd case: nuclear waste in solution is added to a calcined borosilicate matrix
La matrice borosilicatée sous forme de solution gélifiée est séchée (entre 100 et 200°C, à 100-105°C de préférence) puis calcinée entre 300 et 500°C, température inférieure à 400°C préférée, dans des dispositifs similaires à ceux décrits pour le ler cas.The borosilicate matrix in the form of a gelled solution is dried (between 100 and 200 ° C, preferably at 100-105 ° C) and then calcined between 300 and 500 ° C, temperature below 400 ° C preferred, in devices similar to those described for the 1st case.
Avec une température de calcination inférieure ou égale à 400°C un gel friable est obtenu, ce qui facilite sa dispersion dans la solution de déchets, de plus ce gel présente dans cette zone une surface spécifique maximale, en effet dès 400°C le frittage commence et referme la porosité.With a calcination temperature less than or equal to 400 ° C. a friable gel is obtained, which facilitates its dispersion in the waste solution, moreover this gel has in this zone a maximum specific surface, indeed from 400 ° C. sintering begins and closes the porosity.
La matrice calciné obtenue est dispersée et mélangée à la solution des déchets à traiter.The calcined matrix obtained is dispersed and mixed with the solution of the waste to be treated.
De même que précédemment, il est intéressant d'opérer à plus de 60°C, 100-105°C de préférence, de façon à sécher pendant le mélange.As before, it is advantageous to operate at more than 60 ° C, preferably 100-105 ° C, so as to dry during mixing.
Cette opération de mélange de la matrice calcinée à la solution des déchets peut être effectuée dans un réacteur ou bien dans le calcinateur lui-même. Dans ce dernier cas, le calcinateur est alimenté par la solution des PF et la matrice calcinée séparément amenés dans les proportions souhaitées. Dès lors, l'opération a lieu à près de 200°C à l'entrée du calcinateur pour évoluer vers 400°C.This operation of mixing the calcined matrix with the waste solution can be carried out in a reactor or else in the calciner itself. In the latter case, the calciner is supplied with the solution of the FPs and the calcined matrix separately brought into the desired proportions. From then on, the operation takes place at around 200 ° C at the entrance to the calciner to progress to around 400 ° C.
Dans le réacteur, un dispositif d'agitation permet de mélanger les substances, dans le calcinateur c'est sa propre rotation autour de son axe longitudinal qui assure le mélange.In the reactor, a stirring device makes it possible to mix the substances, in the calciner it is its own rotation around its longitudinal axis which ensures the mixing.
Le mélange obtenu (matrice calcinée + déchets) est soumis à un traitement thermique (séchage, calcination, fusion) dans les conditions déjà décrites pour former un verre. 3ème cas : les déchets sont sous forme solideThe mixture obtained (calcined matrix + waste) is subjected to a heat treatment (drying, calcination, fusion) under the conditions already described to form a glass. 3rd case: the waste is in solid form
Il a été traité le cas où à la matrice borosilicatée calcinée étaient ajoutés les déchets nucléaires en solution. Il est tout aussi concevable d'apporter les déchets sous forme solide, calcinat par exemple.The case where nuclear waste solution was added to the calcined borosilicate matrix. It is equally conceivable to bring the waste in solid form, calcinate for example.
Ce procédé présente l'avantage de pouvoir être mis en oeuvre immédiatement dans les chaînes actuelles de production en permettant l'adaptation de l'adjuvant de vitrification au déchet traité (comme le montrera l'exemple 3).This process has the advantage of being able to be implemented immediately in current production chains by allowing the adaptation of the vitrification adjuvant to the treated waste (as will be shown in Example 3).
Il est également possible d'ajouter les déchets sous forme solide, calcinat par exemple, à la matrice séchée.It is also possible to add the waste in solid form, calcinate for example, to the dried matrix.
Les exemples suivants permettront d'illustrer l'invention.The following examples will illustrate the invention.
A l'échelle du laboratoire, une solution de PF a été simulée à partir d'une composition type d'une solution réelle de PF de la manière suivante :
Le groupe 1 représente les éléments inactifs de la solution des PF et le groupe 2 simule les éléments actifs de cette même solution et les insolubles.Group 1 represents the inactive elements of the FP solution and group 2 simulates the active elements of this same solution and the insolubles.
Zr02 et Mo restent solides, ils simulent les insolubles en suspension contenus dans la solution. La quantité totale d'eau ajoutée est de 2,972 g. La solution simulée de PF a un pH : 1,3.Zr0 2 and Mo remain solid, they simulate the insoluble materials in suspension contained in the solution. The total amount of water added is 2.972 g. The simulated FP solution has a pH: 1.3.
La composition de verre final à obtenir est :
Dans la composition centésimale présentée il faut tenir compte de la présence de Na et Ni dans les oxydes actifs (groupe 2 de la solution de PF définie plus haut).In the percentage composition presented, account must be taken of the presence of Na and Ni in the active oxides (group 2 of the FP solution defined above).
Ainsi on prépare la solution de l'adjuvant de vitrification en fonction de la composition du verre à obtenir et de celle de la solution de déchets à traiter.Thus the solution of the vitrification aid is prepared according to the composition of the glass to be obtained and that of the waste solution to be treated.
Pour cet exemple, la solution d'adjuvant de vitrification est préparée comme suit :
Chacun des composés est dissous dans le minimum d'eau, soit au total 640 g d'eau à 65°C ; pH : 0,6.Each of the compounds is dissolved in the minimum amount of water, ie a total of 640 g of water at 65 ° C; pH: 0.6.
L'agent précurseur est le Ludox AS40 : 40 % Si02 - 60 % H20
- 0 des particules : 21 nm
- d25°C : 1,30 -
- pH 9,3 utilisé à température ambiante
- 0 of particles: 21 nm
- d25 ° C: 1.30 -
- pH 9.3 used at room temperature
La solution TBA : (NH4)20,2B203,4H20, 265,2 g dissous dans 663 g d'eau à 65°C - pH : 9,2.The TBA solution: (NH 4 ) 2 0.2B 2 0 3 , 4H 2 0, 265.2 g dissolved in 663 g of water at 65 ° C - pH: 9.2.
On utilise une turbine classique comportant une zone de mélange de faible volume dans laquelle tourne une hélice à plusieurs pales de sorte qu'un mélange avec un fort taux de cisaillement soit produit. Elle tourne dans cet exemple à 2000 tr/min.A conventional turbine is used comprising a mixing zone of small volume in which a propeller with several blades rotates so that a mixture with a high rate of shear is produced. In this example, it rotates at 2000 rpm.
La turbine utilisée pour les essais est fabriquée par la Société STERMA, la zone de mélange a un volume de 1 cm3 et l'épaisseur de la couche agitée est de l'ordre du mm.The turbine used for the tests is manufactured by the company STERMA, the mixing zone has a volume of 1 cm 3 and the thickness of the agitated layer is of the order of mm.
Les solutions arrivent séparément et simultanément à la turbine :
Ainsi 36,5 kg/h de matrice borosilicatée sont préparés. 1,7 kg sont étalés sur une plaque avec une épaisseur moyenne de 2 cm puis mis en étuve 48 heures à 100-105°C- 0,6 kg de matrice sèche est obtenu.Thus 36.5 kg / h of borosilicate matrix are prepared. 1.7 kg are spread on a plate with an average thickness of 2 cm and then placed in an oven for 48 hours at 100-105 ° C. 0.6 kg of dry matrix is obtained.
Dans un récipient de 3 1 muni d'un agitateur mécanique tournant sont placés 1,6 1 de solution simulée de PF, la matrice séchée est versée régulièrement tout en agitant.1.6 1 of simulated FP solution are placed in a 3 l container fitted with a rotating mechanical agitator, the dried matrix is poured regularly while stirring.
Le mélange obtenu est agité environ 30 min puis séché à 100-105°C en étuve, sur plaque, calciné 2 h à 400°C et enfin fondu 5 h à 1050°C. Le verre obtenu (0,5 kg) obéit aux critères d'acceptabilité.The mixture obtained is stirred for approximately 30 min then dried at 100-105 ° C in an oven, on a plate, calcined for 2 hours at 400 ° C and finally melted for 5 hours at 1050 ° C. The glass obtained (0.5 kg) obeys acceptability criteria.
Dans les essais, on a défini un verre de bonne qualité comme étant un verre homogène, ne présentant pas d'infondus et de bulles et de plus ne montrant pas en surface des traces de molybdate.In the tests, a glass of good quality was defined as being a homogeneous glass, not presenting unfonders and bubbles and moreover not showing on the surface traces of molybdate.
En effet, le molybdate provenant des solutions de PF pose un problème majeur : une partie du Mo actif a tendance à se séparer de la solution et sédimenter de sorte que cette phase n'est pas dispersée complètement dans le mélange donc elle n'est pas incluse en totalité dans la solution gélifiée. De plus, le molybdène lorsqu'il diffuse mal se présente à la surface du verre sous forme de traces de molybdate jaunes et visibles qui sont considérées comme un indice de moindre qualité du verre.Indeed, the molybdate coming from FP solutions poses a major problem: part of the active Mo tends to separate from the solution and sediment so that this phase is not completely dispersed in the mixture therefore it is not fully included in the gelled solution. In addition, molybdenum when it diffuses badly appears on the surface of the glass in the form of traces of yellow and visible molybdate which are considered to be an index of lower quality of the glass.
L'analyse chimique du verre obtenu montre par ailleurs que les composants ne se sont pratiquement pas volatilisés, de sorte qu'on peut considérer que la composition des mélanges (matrice borosilicatée puis matrice + déchets) correspond pratiquement à celle du verre final.The chemical analysis of the glass obtained also shows that the components have practically not volatilized, so that one can consider that the composition of the mixtures (borosilicate matrix then matrix + waste) practically corresponds to that of the final glass.
3,7 kg de la matrice borosilicatée issue de la turbine (préparation selon l'exemple 1) sont séchés 20 heures à 100-105°C sur des plaques en étuve. Ils sont ensuite placés dans un four dans lequel on élève graduellement en 2 heures la température jusqu'à 350°C et on calcine 2 h à 350°C. Le produit obtenu est friable et se présente sous forme de fragments de quelques mm de diamètre (2-3 mm en moyenne).3.7 kg of the borosilicate matrix from the turbine (preparation according to example 1) are dried for 20 hours at 100-105 ° C on plates in an oven. They are then placed in an oven in which the temperature is gradually raised over 2 hours to 350 ° C and calcined for 2 hours at 350 ° C. The product obtained is brittle and is in the form of fragments a few mm in diameter (2-3 mm on average).
La matrice calcinée (1 kg) et broyée (= 300 - 400 µ) est dispersée dans la solution de PF (3 kg) sous simple agitation (agitateur magnétique 30-45 min). Le mélange est calciné 4 h à 400°C après étuvage 34 h à 120°C, puis fondu à 1125°C.The calcined (1 kg) and ground matrix (= 300 - 400 µ) is dispersed in the FP solution (3 kg) with simple stirring (magnetic stirrer 30-45 min). The mixture is calcined for 4 hours at 400 ° C. after baking for 34 hours at 120 ° C., then melted at 1125 ° C.
Une introduction de 40 min et un affinage sur 1 h conduisent à un verre de bonne qualité.An introduction of 40 min and a refining over 1 hour lead to a good quality glass.
Cet essai est relatif au traitement de l'effluent sodé de lavage ultérieurement acidifié.This test relates to the treatment of subsequently acidified washing soda effluent.
Actuellement, dans le procédé de vitrification (AVM) à partir des oxydes, il n'est pas facile de traiter cet effluent seul.Currently, in the vitrification process (AVM) from oxides, it is not easy to treat this effluent alone.
En effet, ce procédé AVM utilise l'adjuvant de vitrification dans une forme de fritte de verre solide, une composition connue est :
- Si02 55-60 % en poids
- B2O3 16-18 % en poids
- Al2O3 6-7 % en poids
- Na20 6-7 % en poids
- CaO 4,5-6 % en poids
- ZnO 2,5-3,5 % en poids
- Li20 2-3
- Si0 2 55-60% by weight
- B 2 O 3 16-18% by weight
- Al 2 O 3 6-7% by weight
- Na 2 0 6-7% by weight
- CaO 4.5-6% by weight
- ZnO 2.5-3.5% by weight
- Li 2 0 2-3
Si on utilisait cette composition pour vitrifier l'effluent sodé, on se trouverait devant un verre très riche en sodium.If we used this composition to vitrify the soda effluent, we would be in front of a glass very rich in sodium.
On pourrait penser diminuer la teneur en sodium de la fritte de verre et même l'amener à zéro pour que le verre final (fritte + calcinat d'effluent sodé) ait une teneur en sodium acceptable (9 à 11 % en poids). Mais alors, on se trouve devant la difficulté posée par l'élaboration et la fusion d'un verre pauvre en sodium (et par voie de conséquence plus riche en silice).One could think of reducing the sodium content of the glass frit and even bringing it to zero so that the final glass (frit + calcine of soda effluent) has an acceptable sodium content (9 to 11% by weight). But then, we are faced with the difficulty posed by the development and fusion of a glass low in sodium (and consequently richer in silica).
La présente invention permet de fabriquer avec l'effluent sodé un verre borosilicaté ayant une composition proche de celle donnant toute satisfaction dans le procédé AVM. En outre, la température d'affinage peut être nettement abaissée ou les temps d'affinage raccourcis.The present invention makes it possible to manufacture a borosilicate glass with the soda effluent having a composition close to that giving any satisfaction in the AVM process. In addition, the ripening temperature can be significantly lowered or the ripening times shortened.
Pour les essais, on a donc simulé une solution sodée avec 100 g Na2CO3 dans un litre d'eau. La solution de TBA : 312 g/I TBA, 4H20. La solution d'acide borique : 130 g/I (6,5 % B203) - pH = 2,7.For the tests, a sodium solution was therefore simulated with 100 g Na 2 CO 3 in one liter of water. The TBA solution: 312 g / I TBA, 4H 2 0. The boric acid solution: 130 g / I (6.5% B 2 0 3 ) - pH = 2.7.
Pour obtenir un verre ayant une composition proche de celui obtenu par le procédé AVM, on prépare la solution d'adjuvant de vitrification suivante pour un litre de solution aqueuse :
- Al(NO3)3,9H2O 209,0 g
- Ca(NO3)2,3H2O 98,5 g
- LiNOs 53,7 g
- Zn(NO3)2,6H2O 49,7 g
- Fe(NO3)3,6H2O 73,5 g
- Mn(NO3)3,6H2O 18,2 g
- Ba(NO3)2 5,5 g
- Co(NO3)2,6H2O 11,3 g
- Sr(N03)2 4,1 g
- CsN03 8,0 g
- Y(NC3)3,4H2O 71,0 g
- Na2MoO4,2H2O 16,6 g
- Phosphate monoammonique 2,8 g
- Al (NO 3 ) 3 , 9H 2 O 209.0 g
- Ca (NO 3 ) 2 , 3H 2 O 98.5 g
- LiNOs 53.7 g
- Zn (NO 3 ) 2 , 6H 2 O 49.7 g
- Fe (NO 3 ) 3 , 6H 2 O 73.5 g
- Mn (NO 3 ) 3 , 6H 2 O 18.2 g
- Ba (NO 3 ) 2 5.5 g
- Co (NO 3 ) 2 , 6H 2 O 11.3 g
- Sr (N03) 2 4.1 g
- CsN0 3 8.0 g
- Y (NC 3 ) 3 , 4H 2 O 71.0 g
- Na 2 MoO 4, 2H 2 O 16.6 g
- Monoammonium phosphate 2.8 g
Dans cette solution, on a introduit les composants Fe, Mn...phosphate de façon à obtenir un verre final de composition proche de celle donnée dans les exemples précédents.In this solution, the components Fe, Mn ... phosphate were introduced so as to obtain a final glass with a composition close to that given in the previous examples.
Par contre, au lieu d'utiliser comme précurseur de gel le Ludox AS40, on prendra l'Aérosil R commercialisé par la firme DEGUSSA. Le précurseur de gel est constitué en versant peu à peu sous agitation l'Aérosil dans de l'eau acidifiée par HNO33N (pH : 2,5) de façon à obtenir une solution à 150 g de silice par litre.On the other hand, instead of using Ludox AS40 as a gel precursor, we will take the Aerosil R marketed by the company DEGUSSA. The gel precursor is formed by gradually pouring, with stirring, the Aerosil into water acidified with 3N HNO 3 (pH: 2.5) so as to obtain a solution of 150 g of silica per liter.
On dispose de 3 pompes à membranes que l'on a réglées au préalable pour obtenir les débits souhaités.There are 3 diaphragm pumps that have been adjusted beforehand to obtain the desired flow rates.
On envoie par les pompes simultanément les solutions suivantes dans un mixer à grande vitesse (capacité 1,5 litre) aux débits et températures indiqués :
- Les débits réglés sont :
- . Solution TBA.......0,57 l/h 65°C ou bien solution H3BO3 1,25 l/h 65°C
- . Solution adjuvant ..1,15 l/h 65°C
- . Solution Aérosil...2 I/h 20°C
- The debits set are:
- . TBA solution ....... 0.57 l / h 65 ° C or H 3 BO 3 solution 1.25 l / h 65 ° C
- . Adjuvant solution. 1.15 l / h 65 ° C
- . Aerosil solution ... 2 I / h 20 ° C
La matrice borosilicatée obtenue sous forme de solution gélifiée est séchée 24 h à 105°C puis calcinée 3 h à 350°C. On sort du four des particules solides présentant une grande surface spécifique, variant d'un essai à l'autre mais toujours proche de 50m2/g. Après refroidissement, on verse ces particules dans l'effluent à traiter et on agite 2 h. Il se forme une masse gélatineuse que l'on sèche à 105°, calcine à 400°C et enfin fond à 1150°C.The borosilicate matrix obtained in the form of a gelled solution is dried for 24 hours at 105 ° C. and then calcined for 3 hours at 350 ° C. Solid particles having a large specific surface are removed from the oven, varying from one test to another but always close to 50m 2 / g. After cooling, these particles are poured into the effluent to be treated and stirred for 2 h. A gelatinous mass is formed which is dried at 105 ° , calcined at 400 ° C and finally melts at 1150 ° C.
Une analyse chimique donne la composition moyenne suivante :
- SiO2 45,6 %
- B2O3 14 %
- Na20 10 %
- Al2O3 4,9 %
- Ca04%
- Li20 2%
- Fe203 2,9 %
- MnO2 0,95 %
- BaO 0,55%
- CaO 0,5 %
- CS20 1 %
- SrO 0,35 %
- Y2O3 4 %
- MoO3 2 %
- P205 0,3%
- SiO 2 45.6%
- B 2 O 3 14%
- Na 2 0 10%
- Al 2 O 3 4.9%
- Ca04%
- Li 2 0 2%
- Fe 2 0 3 2.9%
- MnO 2 0.95%
- BaO 0.55%
- CaO 0.5%
- CS 2 0 1%
- SrO 0.35%
- Y 2 O 3 4%
- MoO 3 2%
- P 2 0 5 0.3%
Dans un mixer de 2 1 on amène simultanément en 1/2 h :
- . solution TBA à 15 % B2O3 0,75 l/h ou bien solution H3BO3 à 6,5 % B2O3 1,7 l/h
- . solution Aérosil à 150 g Si02/< 1,3 I/h
- . solution Adjuvant à 12% oxydes 0,75 l/h.
- . 15% TBA solution B 2 O 3 0.75 l / h or H 3 BO 3 solution at 6.5% B 2 O 3 1.7 l / h
- . Aerosil solution at 150 g Si0 2 / <1.3 I / h
- . Adjuvant solution at 12% oxides 0.75 l / h.
1,4 kg de mélange sont obtenus, séchés à 100-105°C en étuve sur plaque, puis calcinés 3 h à 350° et enfin fondus.1.4 kg of mixture are obtained, dried at 100-105 ° C in an oven on a plate, then calcined for 3 hours at 350 ° and finally melted.
320 g de cette matrice calcinée inactive sont ajoutés à 135 g de calcinat de PF et mélangés grossièrement. Il faut 2 h de fusion à 1100°C pour obtenir 300 g de verre de composition voulue (celle des exemples 1 et 2).320 g of this inactive calcined matrix are added to 135 g of FP calcinate and roughly mixed. It takes 2 h of melting at 1100 ° C. to obtain 300 g of glass of the desired composition (that of Examples 1 and 2).
Cet exemple montre que l'on peut préparer un gel calciné ayant la même composition que la fritte de verre utilisée dans le procédé AVM.This example shows that one can prepare a calcined gel having the same composition as the glass frit used in the AVM process.
On veut vitrifier un mélange solution PF + effluent sodé.We want to vitrify a mixture of PF + soda effluent solution.
Pour ce faire on prépare une matrice calcinée ayant une composition semblable à la fritte de verre du procédé AVM sauf pour le sodium : la teneur en oxyde de sodium est abaissée de 7% à 2,6 %.To do this, a calcined matrix is prepared having a composition similar to the glass frit of the AVM process except for sodium: the sodium oxide content is reduced from 7% to 2.6%.
La solution d'adjuvant de vitrification aura la composition suivante :
On utilisera pour compléter la matrice
- - comme source de silice : le Ludox AS 40
- - comme source de bore : une solution d'acide borique contenant 130,5 g pour 1000 g d'eau, maintenue à 60°C.
- - as a source of silica: Ludox AS 40
- - as a source of boron: a boric acid solution containing 130.5 g per 1000 g of water, maintained at 60 ° C.
On envoie simultanément avec trois pompes les débits suivants à la turbine
- solution d'adjuvant de vitrification : 5 kg/h
- solution de Ludox : 9,5 kg/h
- solution d'acide borique : 5,8 kg/h
- vitrification aid solution: 5 kg / h
- Ludox solution: 9.5 kg / h
- boric acid solution: 5.8 kg / h
On récupère en une heure pratiquement 20 kg d'un gel que l'on sèche sur plaque en étuve à 100-105°C puis que l'on calcine à 400°C (avec élévation progressive de la température et palier à 200°C).Almost 20 kg of a gel are recovered in one hour, which is dried on a plate in an oven at 100-105 ° C and then calcined at 400 ° C (with gradual rise in temperature and leveling out at 200 ° C ).
On obtient une masse solide composée de morceaux irréguliers de quelques cm3. On broie pour régulariser, et on tamise à 2,5 mm.We obtain a solid mass composed of irregular pieces of a few cm 3 . It is ground to regularize, and sieved to 2.5 mm.
Une analyse de ce produit calcinée donne
- Si02 61,6 (% en poids)
- B2O3 19 (% en poids)
- Na20 2,7 (% en poids)
- A1203 4,5 (% en poids)
- ZnO 3,4 (% en poids)
- CaO 5,5 (% en poids)
- Li20 0,75 (% en poids)
- Si0 2 61.6 (% by weight)
- B 2 O 3 19 (% by weight)
- Na 2 0 2.7 (% by weight)
- A1 2 0 3 4.5 (% by weight)
- ZnO 3.4 (% by weight)
- CaO 5.5 (% by weight)
- Li 2 0 0.75 (% by weight)
On peut constater que cette analyse est très proche de la formulation de la fritte type utilisée dans le procédé AVM pour tous les constituants, sodium excepté.It can be seen that this analysis is very close to the formulation of the standard frit used in the AVM process for all the constituents, except sodium.
Le rapport silice sur anhydride borique est égal à 3,244 dans la formule théorique et à 3,242 dans le gel calciné.The silica to boric anhydride ratio is equal to 3.244 in the theoretical formula and to 3.242 in the calcined gel.
Le rapport silice sur alumine est égal à 13,75 dans la formulation théorique et à 13,69 dans le gel calciné.The silica to alumina ratio is 13.75 in the theoretical formulation and 13.69 in the calcined gel.
Par contre le repport silice/sodium est égal à 8,407 dans la formulation théorique et à 22,82 dans le gel calciné.On the other hand, the silica / sodium ratio is equal to 8.407 in the theoretical formulation and to 22.82 in the calcined gel.
La teneur en sodium est de 7 % dans la formule théorique et de 2,7 % dans le gel calciné.The sodium content is 7% in the theoretical formula and 2.7% in the calcined gel.
Cela permet de traiter en vitrification un mélange solution de PF + effluent sodé en conservant une teneur normale en sodium pour le verre final comme le montre la suite de l'exemple.This makes it possible to treat a vitrification mixture of PF solution + soda effluent while maintaining a normal sodium content for the final glass as shown in the following example.
A 10 litres de la solution simulant les PF (telle que décrite dans l'exemple 1), on rajoute 2500 g d'une solution de nitrate de sodium à 100 g/kg simulant l'effluent sodé. (On utilise le nitrate de sodium car la solution simulant les PF ne contient pas, contrairement à la réalité, d'acide nitrique libre).To 10 liters of the solution simulating the FPs (as described in Example 1), 2500 g of a sodium nitrate solution at 100 g / kg are added simulating the sodium effluent. (Sodium nitrate is used because the solution simulating FP does not, unlike reality, contain free nitric acid).
On sèche à 105°C sur plat en étuve puis on calcine dans un petit four à 400°C, obtenant une poudre à grains de quelques millimètres qui représentent le calcinat de (PF + effluent sodé) et que nous appelons calcinat.It is dried at 105 ° C on a dish in an oven and then calcined in a small oven at 400 ° C, obtaining a grain powder of a few millimeters which represent the calcinate of (PF + soda effluent) and which we call calcinate.
On mélange soigneusement à sec 375 g dudit calcinat à 1000 g du gel calciné.375 g of said calcinate are thoroughly mixed in the dry with 1000 g of the calcined gel.
On charge en plusieurs fois dans un creuset placé dans un four régulé à 1100°C. Une fusion complète de 5 heures est suivie d'une coulée. On observe de très légères marbrures en surface correspondant sans doute à des traces de molybdate mais tout à fait acceptables.It is loaded several times into a crucible placed in an oven regulated at 1100 ° C. A complete fusion of 5 hours is followed by a pouring. Very slight mottling is observed on the surface, no doubt corresponding to traces of molybdate, but quite acceptable.
Une analyse montre que le verre contient 10,2 % Na20 pour 46 % de silice soit un rapport silice sur sodium de 4,5 alors que ce rapport est égal à 4,56 dans la formulation type du verre final.An analysis shows that the glass contains 10.2% Na 2 0 for 46% of silica, ie a silica to sodium ratio of 4.5 whereas this ratio is equal to 4.56 in the standard formulation of the final glass.
Cet exemple montre la possibilité de fabriquer à volonté un gel calciné ayant une composition difficile à obtenir sous forme de fritte de verre, et en particulier la possibilité de fabriquer un gel calciné pauvre en sodium permettant de vitrifier en même temps la solution des PF et l'effluent sodé.This example shows the possibility of producing at will a calcined gel having a composition which is difficult to obtain in the form of a glass frit, and in particular the possibility of manufacturing a calcined gel low in sodium making it possible to vitrify at the same time the solution of the FPs and the soda effluent.
Dans les essais présentés, les solutions concentrées ont été préparées, certaines sont même proches de la saturation, ce pour ne pas augmenter les temps de séchage, les volumes de liquide à manipuler. On peut être amené, sans dommage pour le procédé, à diluer plus ces solutions, en particulier pour des questions de pompage et d'écoulements.In the tests presented, the concentrated solutions have been prepared, some are even close to saturation, so as not to increase the drying times and the volumes of liquid to be handled. It may be necessary, without damage to the process, to further dilute these solutions, in particular for pumping and flow issues.
Le procédé développé par la demanderesse est donc différent des procédés antérieurement décrits notamment le procédé Westinghouse.The process developed by the applicant is therefore different from the processes previously described, in particular the Westinghouse process.
La demanderesse pense qu'elle a réussi à préparer en milieu aqueux une matrice borosilicatée prête à être employée pour la traitement des déchets nucléaires de par les solutions employées et le mode d'agitation mis en oeuvre.The Applicant believes that it has succeeded in preparing in an aqueous medium a borosilicate matrix ready to be used for the treatment of nuclear waste by the solutions used and the method of agitation used.
L'agitation avec un fort taux de cisaillement permet d'obtenir un mélange thixotropique et l'homogénéité. Dès que l'agitation cesse, la viscosité augmente et la polymérisation se développe rapidement bloquant ainsi les ions avant qu'ils ne réagissent (précipitation, sédimentation par exemple).Agitation with a high shear rate makes it possible to obtain a thixotropic mixture and homogeneity. As soon as the agitation ceases, the viscosity increases and the polymerization develops rapidly, thus blocking the ions before they react (precipitation, sedimentation for example).
Le procédé objet de l'invention présente un avantage important lors de son exploitation industrielle en milieu nucléaire : la matrice est préparée en milieu inactif, de sorte que toute cette partie du procédé se situe hors des contraintes rigides et indispensables à observer en milieu actif, les technologies classiques de l'industrie chimique sont employables telles quelles.The process which is the subject of the invention has an important advantage during its industrial exploitation in a nuclear environment: the matrix is prepared in an inactive environment, so that this whole part of the process is outside the rigid constraints which are essential to observe in an active environment, conventional technologies in the chemical industry can be used as they are.
De plus, la deuxième partie du procédé (traitement thermique avec introduction des déchets) peut utiliser pratiquement telles quelles les lignes de production actuelles déjà installées et travaillant avec les oxydes.In addition, the second part of the process (heat treatment with introduction of waste) can use virtually as is the current production lines already installed and working with oxides.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT87400752T ATE58446T1 (en) | 1986-04-08 | 1987-04-06 | PROCESS FOR THE MANUFACTURE OF RADIOACTIVE WASTE CONTAINING BOROSILICATE GLASS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8605010 | 1986-04-08 | ||
FR8605010A FR2596910A1 (en) | 1986-04-08 | 1986-04-08 | PROCESS FOR THE PREPARATION OF A BOROSILICATE GLASS CONTAINING NUCLEAR WASTE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0241365A1 EP0241365A1 (en) | 1987-10-14 |
EP0241365B1 true EP0241365B1 (en) | 1990-11-14 |
Family
ID=9334018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87400752A Expired - Lifetime EP0241365B1 (en) | 1986-04-08 | 1987-04-06 | Process for preparing a borosilicate glass containing nuclear wastes |
Country Status (7)
Country | Link |
---|---|
US (1) | US4797232A (en) |
EP (1) | EP0241365B1 (en) |
JP (1) | JP2532087B2 (en) |
AT (1) | ATE58446T1 (en) |
CA (1) | CA1332503C (en) |
DE (1) | DE3766144D1 (en) |
FR (1) | FR2596910A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3811185A1 (en) * | 1988-03-31 | 1989-10-12 | Fraunhofer Ges Forschung | METHOD FOR THE PRODUCTION OF CONDENSATION PRODUCTS PROCESSABLE TO GLASS |
JPH0695155B2 (en) * | 1990-03-15 | 1994-11-24 | 動力炉・核燃料開発事業団 | Highly radioactive waste treatment method |
US7108808B1 (en) * | 1990-04-18 | 2006-09-19 | Stir-Melter, Inc. | Method for waste vitrification |
US7120185B1 (en) | 1990-04-18 | 2006-10-10 | Stir-Melter, Inc | Method and apparatus for waste vitrification |
JP2551879B2 (en) * | 1991-06-13 | 1996-11-06 | 動力炉・核燃料開発事業団 | Reduction method of vitrification of highly radioactive waste |
US5205864A (en) * | 1991-12-20 | 1993-04-27 | Westinghouse Electric Corp. | Inorganic based strippable coatings for isolating hazardous materials and method for making and using the same |
US5319669A (en) * | 1992-01-22 | 1994-06-07 | Stir-Melter, Inc. | Hazardous waste melter |
JP2989508B2 (en) * | 1995-02-28 | 1999-12-13 | 核燃料サイクル開発機構 | Vitrification of high-level radioactive liquid waste |
US6145343A (en) | 1998-05-02 | 2000-11-14 | Westinghouse Savannah River Company | Low melting high lithia glass compositions and methods |
US6329563B1 (en) * | 1999-07-16 | 2001-12-11 | Westinghouse Savannah River Company | Vitrification of ion exchange resins |
US7503594B2 (en) * | 2003-09-09 | 2009-03-17 | Westinghouse Savannah River Company | Expanding hollow metal rings |
US7550645B2 (en) * | 2004-02-23 | 2009-06-23 | Geomatrix Solutions, Inc. | Process and composition for the immobilization of radioactive and hazardous wastes in borosilicate glass |
CN101448752B (en) | 2006-03-20 | 2012-05-30 | 地理矩阵解决方案公司 | Process and composition for the immobilization of high alkaline radioactive and hazardous wastes in silicate-based glasses |
US20080161629A1 (en) * | 2007-01-03 | 2008-07-03 | Oleg Naljotov | Radioactive waste processing |
JP4406451B2 (en) * | 2007-09-20 | 2010-01-27 | 株式会社Ihi | Glass melting method for high-level radioactive liquid waste |
US9245655B2 (en) | 2012-05-14 | 2016-01-26 | Energysolutions, Llc | Method for vitrification of waste |
US10364176B1 (en) * | 2016-10-03 | 2019-07-30 | Owens-Brockway Glass Container Inc. | Glass precursor gel and methods to treat with microwave energy |
EP3927670B1 (en) * | 2019-02-20 | 2024-09-04 | Corning Incorporated | Iron- and manganese-doped tungstate and molybdate glass and glass-ceramic articles |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US32107A (en) * | 1861-04-16 | William m | ||
GB1050818A (en) * | 1963-09-17 | 1900-01-01 | ||
DE2611689C3 (en) * | 1976-03-19 | 1979-01-11 | Kernforschungsanlage Juelich Gmbh, 5170 Juelich | Process for confining radioactive fission products |
DE2657265C2 (en) * | 1976-12-17 | 1984-09-20 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Process for the solidification of radioactive waste liquids from the reprocessing of nuclear fuel and / or breeding material in a matrix made of borosilicate glass |
US4424149A (en) * | 1980-06-20 | 1984-01-03 | Kraftwerk Union Aktiengesellschaft | Method for ultimate disposition of borate containing radioactive wastes by vitrification |
US4376070A (en) * | 1980-06-25 | 1983-03-08 | Westinghouse Electric Corp. | Containment of nuclear waste |
US4377507A (en) * | 1980-06-25 | 1983-03-22 | Westinghouse Electric Corp. | Containing nuclear waste via chemical polymerization |
US4422965A (en) * | 1980-08-11 | 1983-12-27 | Westinghouse Electric Corp. | Nuclear waste encapsulation in borosilicate glass by chemical polymerization |
JPS6046394B2 (en) * | 1981-07-06 | 1985-10-15 | 工業技術院長 | Method for solidifying high-level radioactive waste liquid using glass |
US4472510A (en) * | 1982-12-23 | 1984-09-18 | Dow Corning Corporation | Carbon-containing monolithic glasses and ceramics prepared by a sol-gel process |
USRE32107E (en) | 1982-12-23 | 1986-04-08 | Dow Corning Corporation | Carbon-containing monolithic glasses and ceramics prepared by a sol-gel process |
US4664895A (en) * | 1984-07-10 | 1987-05-12 | Westinghouse Electric Corp. | High concentration boric acid solidification process |
-
1986
- 1986-04-08 FR FR8605010A patent/FR2596910A1/en not_active Withdrawn
-
1987
- 1987-04-06 AT AT87400752T patent/ATE58446T1/en not_active IP Right Cessation
- 1987-04-06 DE DE8787400752T patent/DE3766144D1/en not_active Expired - Fee Related
- 1987-04-06 EP EP87400752A patent/EP0241365B1/en not_active Expired - Lifetime
- 1987-04-06 US US07/035,051 patent/US4797232A/en not_active Expired - Lifetime
- 1987-04-08 CA CA000534190A patent/CA1332503C/en not_active Expired - Fee Related
- 1987-04-08 JP JP62084893A patent/JP2532087B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA1332503C (en) | 1994-10-18 |
JP2532087B2 (en) | 1996-09-11 |
JPS63106599A (en) | 1988-05-11 |
EP0241365A1 (en) | 1987-10-14 |
FR2596910A1 (en) | 1987-10-09 |
DE3766144D1 (en) | 1990-12-20 |
ATE58446T1 (en) | 1990-11-15 |
US4797232A (en) | 1989-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0241365B1 (en) | Process for preparing a borosilicate glass containing nuclear wastes | |
EP0241364B1 (en) | Process for immobilizing nuclear wastes in a borosilicate glass | |
EP1904411B1 (en) | Method for confining a substance by vitrification | |
Barry et al. | The structure of a glass-io nomer cement and its relationship to the setting process | |
EP0319398A1 (en) | Device for storing radioactive or toxic wastes in cement, and process for producing it | |
WO2010076288A2 (en) | Alumino-borosilicate glass for confining radioactive liquid effluents, and method for processing radioactive effluents | |
CN114566303B (en) | Preparation method of modified diopside glass solidified body containing molybdenum-containing radioactive waste | |
EP2717270B1 (en) | Matrix for immobilising radioactive waste including at least alkaline salts and method for immobilising said radioactive waste in order to obtain the immobilisation matrix | |
JPH0241859B2 (en) | ||
EP0234647B1 (en) | Process for making vitreous metallic oxides | |
FR2678761A1 (en) | BLOCK CONTAINING CONTAMINATED ION EXCHANGE RESINS AND PROCESS FOR PREPARING THE SAME. | |
EP3873683B1 (en) | Method for conditioning an acid waste by cementation | |
EP3065140B1 (en) | Method for dissolving a metal and use for packaging said metal in a geopolymer | |
EP1383137A1 (en) | Process of immobilising metallic sodium in glass | |
JP2007510532A (en) | Improved sol-gel method, product obtained by the method, and method for storing nuclear material using the product | |
EP2374135A2 (en) | Method for processing a nitrous aqueous liquid effluent by calcination and vitrification | |
EP0550332B1 (en) | Inorganic resins and process for their preparation | |
FR3053257A1 (en) | METHOD FOR IMMOBILIZING A WASTE COMPRISING MERCURY | |
JP3668360B2 (en) | Method for producing glass by sol-gel method | |
EP1851179A2 (en) | Making a solid material from an alkaline hydroxide | |
JPS61256928A (en) | Production of glass | |
FR3129091A1 (en) | METHOD FOR PREPARING A SILICOTITANATE MATERIAL WITH A SITINAKITE STRUCTURE USED FOR THE DECONTAMINATION OF AN AQUEOUS EFFLUENT | |
CN106396011A (en) | Modified graphite particle electrode with electrocatalytic carbazole removal function and preparation method | |
CN1380263A (en) | Method for dispersing optical active ions in glass | |
FR2691386A1 (en) | A method of reducing the harmfulness of particulate or ionic wastes. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19880411 |
|
17Q | First examination report despatched |
Effective date: 19891108 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19901114 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19901114 Ref country code: AT Effective date: 19901114 |
|
REF | Corresponds to: |
Ref document number: 58446 Country of ref document: AT Date of ref document: 19901115 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3766144 Country of ref document: DE Date of ref document: 19901220 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19910225 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940418 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19940430 Year of fee payment: 8 |
|
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 87400752.9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950407 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87400752.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000408 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20000413 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000511 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010505 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010505 |
|
BERE | Be: lapsed |
Owner name: SOC. GENERALE POUR LES TECHNIQUES NOUVELLES SGN Effective date: 20010430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040423 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050406 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050406 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060426 Year of fee payment: 20 |