EP0240777A2 - Cooling pump for a motor vehicle internal-combustion engine - Google Patents

Cooling pump for a motor vehicle internal-combustion engine Download PDF

Info

Publication number
EP0240777A2
EP0240777A2 EP87103793A EP87103793A EP0240777A2 EP 0240777 A2 EP0240777 A2 EP 0240777A2 EP 87103793 A EP87103793 A EP 87103793A EP 87103793 A EP87103793 A EP 87103793A EP 0240777 A2 EP0240777 A2 EP 0240777A2
Authority
EP
European Patent Office
Prior art keywords
impeller
drive shaft
speed
combustion engine
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87103793A
Other languages
German (de)
French (fr)
Other versions
EP0240777A3 (en
Inventor
Theo Dipl.-Ing. Seufer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP0240777A2 publication Critical patent/EP0240777A2/en
Publication of EP0240777A3 publication Critical patent/EP0240777A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • F04D15/0033By-passing by increasing clearance between impeller and its casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/042Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/20Mounting rotors on shafts

Definitions

  • the invention relates to a coolant pump for a vehicle internal combustion engine according to the preamble of claim 1.
  • the impeller In a known coolant pump of this type (DE-PS 33 29 002), the impeller is displaced as a function of the coolant temperature by means of a bimetal or expansion element acted upon by the coolant. When the coolant temperature is low, the impeller is in an end position in which the width of the gap between the radial blades and the pump housing has its greatest width and the coolant delivery is interrupted. This shortens the warm-up phase of the internal combustion engine. With increasing coolant temperature, the impeller is increasingly displaced, so that the gap width is reduced and an increasing quantity of coolant is conveyed in accordance with the increased cooling requirement of the internal combustion engine.
  • Coolant pumps are also known, the delivery of which can be changed as a function of the speed of the drive shaft, which is generally driven by the internal combustion engine. This ensures that on the one hand at low speeds down to idling the internal combustion engine a sufficient flow rate for heating the vehicle interior is provided and on the other hand at high speeds the flow rate is limited to a value that ensures sufficient cooling of the engine, but at large flow rates existing cavitation risk is eliminated.
  • the speed-dependent regulation of the delivery rate takes place for example there through that the pump drive shaft is driven by the internal combustion engine via a V-belt transmission, the adjustment mechanism of which consists of centrifugal weights, by means of which a translation is carried out quickly at low crankshaft speed and, depending on centrifugal force, a translation is carried out slowly as the crankshaft speed increases (DE-OS 20 27 654, DE- OS 15 76 358).
  • This type of flow control is structurally complex and requires a lot of space, which is usually not available in the confined space in the engine compartment of a motor vehicle.
  • the invention has for its object to provide a coolant pump according to the preamble of claim 1, the flow rate adapts to the different requirements with different numbers of wires with simple means, which thus covers the requirements of the heater when idling, but cuts the delivery rate at high speeds, to avoid cavitation damage.
  • the stated object is achieved in that a device for displacing the impeller as a function of the speed of the drive shaft is provided, in such a way that with increasing rotation number increases the size of the gap between the radial blades and the pump housing.
  • the pump according to the invention is designed such that in the position of the impeller, in which the gap between the radial blades and the pump housing has its smallest width, it promotes an amount of liquid sufficient to heat the vehicle interior at idle speed.
  • the delivery rate increases, but due to the shifting of the impeller now occurring and the associated increase in the width of the gap mentioned, not to the extent that would be the case without impeller shifting, at maximum speed Impeller position is reached, in which just the amount of coolant required for sufficient cooling of the internal combustion engine is promoted.
  • the speed-dependent axial displacement of the impeller could be caused by a centrifugal device.
  • a structurally simpler solution is, however, that the impeller is relatively rotatably and thus relatively slidably connected to the drive shaft via a thread and that a torsion spring is provided between the impeller and the drive shaft, which counteracts the rotation of the impeller relative to the drive shaft.
  • This embodiment takes advantage of the fact that the drive power of a water pump increases approximately with the third power of its drive speed and the drive torque increases with the second power of the drive speed.
  • This combination of the drive torque with the drive speed is used to achieve a clear speed with the aid of the correspondingly designed torsion spring, which counteracts the peripheral force on the pump impeller dependent displacement of the impeller and thus to achieve different pump characteristics depending on the speed.
  • FIG. 1 in which a pump housing 1 is shown, which is closed by a cover 2 and in which a pump impeller 3 is arranged.
  • a drive shaft 4 is mounted, which is driven by the internal combustion engine (not shown) at engine speed and on the shaft end 5 of which a sleeve 6 is rotatably attached, which carries an external thread 7, which has an internal thread 8 in the hub of the impeller 3 Intervention stands.
  • the impeller 3 rotates relative to the drive shaft 4, the impeller 3 is thus axially displaced.
  • This relative rotation is counteracted by a torsion spring 9, one end 10 of which is fixed in a collar 11 of the sleeve 6 and the other end 12 of the impeller 3.
  • the torsion spring 9 is arranged in an annular recess 13 in the impeller 3.
  • the impeller 3 provided with radial blades 15 sucks in the coolant through a channel 14 in the pump housing and conveys it to the consumer through a radial channel 16.
  • the pump interior holding the pump impeller 3 is sealed by means of a mechanical seal 17 between the pump housing cover 2 and the collar 11 of the sleeve 6.
  • the impeller 3 At low speeds of the drive shaft 4, the impeller 3 is in the position which is shown in the lower half of FIG. 1 and in which the gap S between the blades 15 and the wall 18 of the pump housing 1 opposite them is the smallest. As a result, the full width of the blades 15 comes into effect and the greatest possible delivery rate is achieved at the drive speed in question.
  • the drive torque and thus also the circumferential force on the impeller 3 increase. This circumferential force causes the impeller 3 to rotate relative to the drive shaft 4 against the force of the torsion spring 9, as a result of which the thread 7, 8 causes the impeller 3 to move axially to the left takes place and the gap between the radial blades 15 and the pump wall 18 is enlarged.
  • the full width of the radial blades 15 no longer comes into effect and the delivery rate is reduced compared to the position of the impeller 3 shown in the lower half in FIG. 1.
  • the impeller 3 abuts the collar 11 of the sleeve 6 and the gap between the radial blades 15 and the pump wall 18 reaches its maximum value S 1. In this position, the impeller 3 promotes the amount of coolant that is required at the maximum speed for sufficient cooling of the internal combustion engine.
  • the delivery rate characteristic is shown with the smallest gap width and with S1 the delivery characteristic with the largest gap width.
  • the speed-dependent change in the gap width results in a flow rate characteristic that runs on the characteristic S to point A, then from point A via the dashed section a to point B on the characteristic S 1 and from there on the characteristic S 1.
  • the impeller 3 is carried by the torsion spring 9 without rotation, i.e. the drive torque is not greater than the pretension of the torsion spring 9.
  • the impeller can rotate with respect to the drive shaft counter to the action of the spring 9 and it is axially displaced thereby, causing the gap gradually increased until it has reached its greatest width at point B and the impeller 3 according to FIG. 1 is in its left end position.
  • the flow rate increases linearly according to the line S1.
  • the drive speed drops, the reverse process occurs, whereby due to the hysteresis, the conveying characteristic has the dash-dotted curve a ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A coolant pump for a motor vehicle combustion engine has an impeller 3 fitted with radial blades 15 and accommodated in a housing 1, the impeller being connected by means of a thread 7, 8 to the drive shaft 4 so that it can rotate and be displaced axially relative to the latter. Between the impeller 3 and the drive shaft 4 is a torsion spring 9 which counteracts any rotation of the impeller 3 relative to the drive shaft 4 up to a specific drive torque. Should the drive torque exceed this value due to an increase in the speed, the impeller 3 can rotate in relation to the drive shaft 4 and is axially displaced by virtue of the thread 7, 8, the gap S between the radial blades 15 and the pump housing wall 18 being increased and the delivery reduced relative to the speed. This results in a proportionally high delivery at low speeds and a proportionally low delivery at high speeds. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Kühlmittelpumpe für eine Fahrzeug-Brennkraftmaschine gemäß dem Oberbegriff des An­spruchs 1.The invention relates to a coolant pump for a vehicle internal combustion engine according to the preamble of claim 1.

Bei einer bekannten Kühlmittelpumpe dieser Art (DE-PS 33 29 002) erfolgt die Verschiebung des Laufrades in Ab­hängigkeit von der Kühlmitteltemperatur durch ein von dem Kühlmittel beaufschlagtes Bimetall- oder Dehnstoffelement. Bei niedriger Kühlmitteltemperatur befindet sich das Lauf­rad in einer Endstellung, in welcher die Breite des Spaltes zwischen den Radialschaufeln und dem Pumpengehäuse seine größte Breite besitzt und die Kühlmittelförderung unter­brochen ist. Dadurch wird die Warmlaufphase der Brenn­kraftmaschine verkürzt. Bei ansteigender Kühlmittel­temperatur wird das Laufrad zunehmend verschoben, so daß die Spaltbreite verringert und eine ansteigende Kühlmittelmenge entsprechend dem erhöhten Kühlungsbe­darf der Brennkraftmaschine gefördert wird.In a known coolant pump of this type (DE-PS 33 29 002), the impeller is displaced as a function of the coolant temperature by means of a bimetal or expansion element acted upon by the coolant. When the coolant temperature is low, the impeller is in an end position in which the width of the gap between the radial blades and the pump housing has its greatest width and the coolant delivery is interrupted. This shortens the warm-up phase of the internal combustion engine. With increasing coolant temperature, the impeller is increasingly displaced, so that the gap width is reduced and an increasing quantity of coolant is conveyed in accordance with the increased cooling requirement of the internal combustion engine.

Es sind auch Kühlmittelpumpen bekannt, deren Förderung in Abhängigkeit von der Drehzahl der Antriebswelle, die in aller Regel von der Brennkraftmaschine ange­trieben wird, veränderbar ist. Dadurch wird erreicht, daß einerseits bei niedrigen Drehzahlen bis hinab zum Leerlauf der Brennkraftmaschine eine ausreichende Förder­menge für die Heizung des Fahrzeuginnenraumes bereit­gestellt und andererseits bei hohen Drehzahlen die Fördermenge auf einen Wert begrenzt wird, bei dem zwar eine ausreichende Kühlung der Brennkraftmaschine gewähr­leistet, jedoch die bei großen Fördermengen vorhandene Kavitationsgefähr beseitigt ist. Die drehzahlabhängige Regelung der Fördermenge erfolgt beispielsweise da­ durch, daß die Pumpenantriebswelle von der Brennkraft­maschine über ein Keilriemengetriebe angetrieben wird, dessen Verstellmechanismus aus Fliehgewichten besteht, durch die bei niedriger Kurbelwellendrehzahl eine Über­setzung ins Schnelle und mit steigender Kurbelwellendreh­zahl fliehkraftabhängig eine Übersetzung ins Langsame vorgenommen wird (DE-OS 20 27 654, DE-OS 15 76 358). Diese Art der Fördermengenregelung ist konstruktiv aufwendig und benötigt viel Platz, der bei den be­engten Raumverhältnissen im Motorraum eines Kraftfahr­zeuges meist nicht zur Verfügung steht. Es ist auch be­kannt (DE-OS 25 58 319), zur drehzahlabhängigen Ver­änderung der Fördermenge die Schaufeln des Pumpenlauf­rades veränderlich auszubilden, derart, daß die Pumpe bei höherer Drehzahl spezifisch weniger fördert als bei niedrigerer Drehzahl. Die Schaufeln können aus einem elastisch nachgiebigen Material bestehen oder gegen die Kraft einer Feder wegschwenken, um auf diese Weise bei höheren Drehzahlen eine relativ geringere Kühl­mittelmenge zu fördern. Derartige Pumpen sind jedoch konstruktiv sehr aufwendig.Coolant pumps are also known, the delivery of which can be changed as a function of the speed of the drive shaft, which is generally driven by the internal combustion engine. This ensures that on the one hand at low speeds down to idling the internal combustion engine a sufficient flow rate for heating the vehicle interior is provided and on the other hand at high speeds the flow rate is limited to a value that ensures sufficient cooling of the engine, but at large flow rates existing cavitation risk is eliminated. The speed-dependent regulation of the delivery rate takes place for example there through that the pump drive shaft is driven by the internal combustion engine via a V-belt transmission, the adjustment mechanism of which consists of centrifugal weights, by means of which a translation is carried out quickly at low crankshaft speed and, depending on centrifugal force, a translation is carried out slowly as the crankshaft speed increases (DE-OS 20 27 654, DE- OS 15 76 358). This type of flow control is structurally complex and requires a lot of space, which is usually not available in the confined space in the engine compartment of a motor vehicle. It is also known (DE-OS 25 58 319) to design the blades of the pump impeller for changing the delivery rate as a function of the speed, in such a way that the pump specifically delivers less at a higher speed than at a lower speed. The blades can be made of an elastically resilient material or pivot away against the force of a spring, in order in this way to promote a relatively smaller amount of coolant at higher speeds. However, such pumps are structurally very complex.

Der Erfindung liegt die Aufgabe zugrunde, eine Kühl­mittelpumpe entsprechend dem Oberbegriff des Anspruchs 1 zu schaffen, deren Fördermenge sich mit einfachen Mitteln den unterschiedlichen Anforderungen bei verschiedenen Drahzahlen anpaßt, die also im Leerlauf die Anforderungen der Heizung abdeckt, jedoch bei hohen Drehzahlen die Fördermenge beschneidet, um Kavitationsschäden zu ver­meiden.The invention has for its object to provide a coolant pump according to the preamble of claim 1, the flow rate adapts to the different requirements with different numbers of wires with simple means, which thus covers the requirements of the heater when idling, but cuts the delivery rate at high speeds, to avoid cavitation damage.

Die gestellte Aufgabe wird erfindungsgemäß dadurch ge­löst, daß eine Vorrichtung zur Verschiebung des Lauf­rades in Abhängigkeit von der Drehzahl der Antriebswelle vorgesehen ist, und zwar derart, daß mit steigender Dreh­ zahl die Größe des Spaltes zwischen den Radialschaufeln und dem Pumpengehäuse zunimmt.The stated object is achieved in that a device for displacing the impeller as a function of the speed of the drive shaft is provided, in such a way that with increasing rotation number increases the size of the gap between the radial blades and the pump housing.

Die erfindungsgemäße Pumpe wird so ausgelegt, daß sie in der Stellung des Laufrades, in der der Spalt zwischen den Radialschaufeln und dem Pumpengehäuse seine geringste Breite hat, bei Leerlaufdrehzahl eine zur Heizung des Fahrzeuginnenraumes ausreichende Flüssigkeitsmenge fördert. Mit steigender Drehzahl und damit steigendem Kühlmittel­bedarf der Brennkraftmaschine steigt die Fördermenge zwar an, jedoch aufgrund der nun einsetzenden Verschiebung des Laufrades und der damit verbundenen Vergrößerung der Breite des genannten Spaltes nicht in dem Maße, wie dies ohne Laufradverschiebung der Fall wäre, bis bei Höchstdrehzahl eine Laufradstellung erreicht ist, bei der gerade die zur ausreichenden Kühlung der Brennkraftmaschine erforder­liche Kühlmittelmenge gefördert wird.The pump according to the invention is designed such that in the position of the impeller, in which the gap between the radial blades and the pump housing has its smallest width, it promotes an amount of liquid sufficient to heat the vehicle interior at idle speed. With increasing speed and thus increasing coolant requirement of the internal combustion engine, the delivery rate increases, but due to the shifting of the impeller now occurring and the associated increase in the width of the gap mentioned, not to the extent that would be the case without impeller shifting, at maximum speed Impeller position is reached, in which just the amount of coolant required for sufficient cooling of the internal combustion engine is promoted.

Die drehzahlabhängige Axialverschiebung des Laufrades könnte durch eine Fliehkrafteinrichtung bewirkt werden. Eine konstruktiv einfachere Lösung besteht jedoch darin, daß das Laufrad über ein Gewinde relativ drehbar und dadurch relativ verschiebbar mit der Antriebswelle ver­bunden ist und daß zwischen dem Laufrad und der Antriebs­welle eine Torsionsfeder vorgesehen ist, die der Drehung des Laufrades relativ zur Antriebswelle entgegenwirkt.The speed-dependent axial displacement of the impeller could be caused by a centrifugal device. A structurally simpler solution is, however, that the impeller is relatively rotatably and thus relatively slidably connected to the drive shaft via a thread and that a torsion spring is provided between the impeller and the drive shaft, which counteracts the rotation of the impeller relative to the drive shaft.

Diese Ausführung macht sich den Umstand zunutze, daß die Antriebsleistung einer Wasserpumpe etwa mit der dritten Potenz ihrer Antriebsdrehzahl und das Antriebsmoment etwa mit der zweiten Potenz der Antriebsdrehzahl an­steigt. Diese Verknüpfung des Antriebsmoments mit der Antriebsdrehzahl wird dazu benutzt, mit Hilfe der ent­sprechend ausgelegten Torsionsfeder, die der Umfangskraft am Pumpenlaufrad entgegenwirkt, eine eindeutig drehzahl­ abhängige Verschiebung des Laufrades und damit drehzahl­abhängig verschiedene Pumpenkennlinien zu erreichen.This embodiment takes advantage of the fact that the drive power of a water pump increases approximately with the third power of its drive speed and the drive torque increases with the second power of the drive speed. This combination of the drive torque with the drive speed is used to achieve a clear speed with the aid of the correspondingly designed torsion spring, which counteracts the peripheral force on the pump impeller dependent displacement of the impeller and thus to achieve different pump characteristics depending on the speed.

Die Erfindung wird im folgenden unter Bezugnahme auf die Zeichnungen anhand eines Ausführungsbeispiels er­läutert. Es zeigt:

  • Fig. 1 einen Längsschnitt einer Kühlmittelpumpe, wobei das Pumpenlaufrad in der unteren Hälfte der Zeichnung in seiner rechten Endstellung und in der oberen Hälfte der Zeichnung in seiner linken Endstellung dargestellt ist, und
  • Fig. 2 ein Diagramm, in dem die Fördermenge in Ab­hängigkeit von der Antriebsdrehzahl bei ver­schiedenen Spaltbreiten dargestellt ist.
The invention is explained below with reference to the drawings using an exemplary embodiment. It shows:
  • Fig. 1 is a longitudinal section of a coolant pump, the pump impeller in the lower half of the drawing in its right end position and in the upper half of the drawing in its left end position is shown, and
  • Fig. 2 is a diagram in which the delivery rate is shown as a function of the drive speed at different gap widths.

Es sei zunächst auf Fig. 1 Bezug genommen, in der ein Pumpengehäuse 1 dargestellt ist, das durch einen Deckel 2 verschlossen ist und in dem ein Pumpenlaufrad 3 ange­geordnet ist. Im Deckel 2 ist eine Antriebswelle 4 ge­lagert, die durch die nicht dargestellte Brennkraft­maschine mit Motordrehzahl angetrieben wird und auf deren Wellenstummel 5 drehfest eine Hülse 6 angebracht ist, die ein Außengewinde 7 trägt, welches mit einem in der Nabe des Laufrades 3 vorgesehenen Innengewinde 8 in Eingriff steht. Bei einer Drehung des Laufrades 3 relativ zur Antriebswelle 4 wird somit das Laufrad 3 axial verschoben. Dieser Relativdrehung wirkt eine Torsionsfeder 9 entgegen, deren eines Ende 10 in einen Bund 11 der Hülse 6 und deren anderes Ende 12 im Laufrad 3 festgelegt ist. Zur Verringerung des Raumbedarfes ist die Torsionsfeder 9 in einer ring­förmigen Aussparung 13 des Laufrades 3 angeordnet.Reference is first made to FIG. 1, in which a pump housing 1 is shown, which is closed by a cover 2 and in which a pump impeller 3 is arranged. In the cover 2, a drive shaft 4 is mounted, which is driven by the internal combustion engine (not shown) at engine speed and on the shaft end 5 of which a sleeve 6 is rotatably attached, which carries an external thread 7, which has an internal thread 8 in the hub of the impeller 3 Intervention stands. When the impeller 3 rotates relative to the drive shaft 4, the impeller 3 is thus axially displaced. This relative rotation is counteracted by a torsion spring 9, one end 10 of which is fixed in a collar 11 of the sleeve 6 and the other end 12 of the impeller 3. To reduce the space requirement, the torsion spring 9 is arranged in an annular recess 13 in the impeller 3.

Das mit Radialschaufeln 15 versehene Laufrad 3 saugt das Kühlmittel durch einen Kanal 14 im Pumpengehäuse an und fördert es durch einen radialen Kanal 16 zum Verbraucher. Die Abdichtung des das Pumpenlaufrad 3 aufnehmenden Pumpen­innenraumes erfolgt mittels einer Gleitringdichtung 17 zwischen dem Pumpengehäusedeckel 2 und dem Bund 11 der Hülse 6.The impeller 3 provided with radial blades 15 sucks in the coolant through a channel 14 in the pump housing and conveys it to the consumer through a radial channel 16. The pump interior holding the pump impeller 3 is sealed by means of a mechanical seal 17 between the pump housing cover 2 and the collar 11 of the sleeve 6.

Bei niedrigen Drehzahlen der Antriebswelle 4 befindet sich das Laufrad 3 in der Stellung, die in der unteren Hälfte der Fig. 1 dargestellt ist und in welcher der Spalt S zwischen den Schaufeln 15 und der diesen gegenüber­liegenden Wand 18 des Pumpengehäuses 1 am kleinsten ist. Dadurch kommt die volle Breite der Schaufeln 15 zur Wirkung und es wird die größtmögliche Fördermenge bei der betreffenden Antriebsdrehzahl erreicht. Mit steigen­der Antriebsdrehzahl steigt auch das Antriebsmoment und damit auch die Umfangskraft am Laufrad 3. Diese Umfangs­kraft bewirkt eine Verdrehung des Laufrades 3 relativ zur Antriebswelle 4 entgegen der Kraft der Torsions­feder 9, wodurch aufgrund des Gewindes 7, 8 eine axiale Verschiebung des Laufrades 3 nach links erfolgt und der Spalt zwischen den Radialschaufeln 15 und der Pumpen­wand 18 vegrößert wird. Dadurch kommt nicht mehr die volle Breite der Radialschaufeln 15 zur Wirkung und die Fördermenge wird gegenüber der in der unteren Hälfte in Fig. 1 gezeigten Stellung des Laufrades 3 verringert. Bei Höchstdrehzahl liegt das Laufrad 3 an den Bund 11 der Hülse 6 an und der Spalt zwischen den Radialschaufeln 15 und der Pumpenwand 18 erreicht seinen Größtwert S₁. In dieser Stellung fördert das Laufrad 3 die Kühlmittel­menge, die bei Höchstdrehzahl für eine ausreichende Küh­lung der Brennkraftmaschine erforderlich ist.At low speeds of the drive shaft 4, the impeller 3 is in the position which is shown in the lower half of FIG. 1 and in which the gap S between the blades 15 and the wall 18 of the pump housing 1 opposite them is the smallest. As a result, the full width of the blades 15 comes into effect and the greatest possible delivery rate is achieved at the drive speed in question. With increasing drive speed, the drive torque and thus also the circumferential force on the impeller 3 increase. This circumferential force causes the impeller 3 to rotate relative to the drive shaft 4 against the force of the torsion spring 9, as a result of which the thread 7, 8 causes the impeller 3 to move axially to the left takes place and the gap between the radial blades 15 and the pump wall 18 is enlarged. As a result, the full width of the radial blades 15 no longer comes into effect and the delivery rate is reduced compared to the position of the impeller 3 shown in the lower half in FIG. 1. At maximum speed, the impeller 3 abuts the collar 11 of the sleeve 6 and the gap between the radial blades 15 and the pump wall 18 reaches its maximum value S 1. In this position, the impeller 3 promotes the amount of coolant that is required at the maximum speed for sufficient cooling of the internal combustion engine.

In Fig. 2 ist die Abhängigkeit der Fördermenge von der Pumpendrahzahl bei verschiedenen Spaltbreiten darge­stellt. Hierbei ist mit S die Fördermengencharakteristik bei kleinster Spaltbreite und mit S₁ die Förder­charakteristik bei größter Spaltbereite dargestellt. Durch die drehzahlabhängige Veränderung der Spaltbreite ergibt sich eine Fördermengencharakteristik, die auf der Kenn­linie S bis zum Punkt A, dann vom Punkt A über den ge­strichelt eingezeichneten Abschnitt a zum Punkt B auf der Kennlinie S₁ und von da an auf der Kennlinie S₁ verläuft. Bis zum Punkt A wird das Laufrad 3 von der Torsionsfeder 9 ohne Verdrehung mitgenommen, d.h. das An­triebsdrehmoment ist nicht größer als die Vorspannung der Torsionsfeder 9. Steigt nun das Antriebsdrehmoment entsprechend der ansteigenden Drehzahl über diesen Wert, so kann sich das Laufrad gegenüber der Antriebswelle entgegen der Wirkung der Feder 9 drehen und es wird dadurch axial verschoben, wodurch sich der Spalt all­mählich vergrößert, bis er in Punkt B seine größte Breite erreicht hat und das Laufrad 3 gemäß Fig. 1 in seiner linken Endstellung ist. Steigt nun die Antriebs­drehzahl weiter, so erhöht sich die Fördermenge linear entsprechend der Linie S₁. Bei absinkender Antriebs­drehzahl tritt der umgekehrte Vorgang ein, wobei auf­grund der Hysterese die Förderkennlinie den strich­punktiert angezeichneten Verlauf aʹ hat.2 shows the dependence of the delivery rate on the number of pump wires for different gap widths. Here, the delivery rate characteristic is shown with the smallest gap width and with S₁ the delivery characteristic with the largest gap width. The speed-dependent change in the gap width results in a flow rate characteristic that runs on the characteristic S to point A, then from point A via the dashed section a to point B on the characteristic S 1 and from there on the characteristic S 1. Up to point A, the impeller 3 is carried by the torsion spring 9 without rotation, i.e. the drive torque is not greater than the pretension of the torsion spring 9. If the drive torque rises above this value in accordance with the increasing speed, the impeller can rotate with respect to the drive shaft counter to the action of the spring 9 and it is axially displaced thereby, causing the gap gradually increased until it has reached its greatest width at point B and the impeller 3 according to FIG. 1 is in its left end position. Now increases the drive speed, the flow rate increases linearly according to the line S₁. When the drive speed drops, the reverse process occurs, whereby due to the hysteresis, the conveying characteristic has the dash-dotted curve aʹ.

Claims (4)

1. Kühlmittelmpumpe für eine Fahrzeug-Brennkraftmaschine, mit einem in einem Gehäuse angeordneten, mit Radial­schaufeln versehenen Laufrad, das zwecks Veränderung des Spaltes zwischen den Radialschaufeln und der gegenüberliegenden Wand des Pumpengehäuses axial verschiebbar auf einer Antriebswelle angeordnet ist,
dadurch gekennzeichnet,
daß eine Vorrichtung (7, 8) zur Verschiebung des Laufrades (3) in Abhängigkeit von der Drehzahl der Antriebswelle (4) vorgesehen ist, derart, daß mit steigender Drehzahl die Größe des Spaltes (S bzw. S1) zwischen den Radialschaufeln (15) und der Wand (18) des Pumpengehäuses (1) zunimmt.
1. coolant pump for a vehicle internal combustion engine, with an impeller which is arranged in a housing and is provided with radial blades and which is arranged on a drive shaft so as to be axially displaceable in order to change the gap between the radial blades and the opposite wall of the pump housing,
characterized,
that a device (7, 8) for displacing the impeller (3) as a function of the speed of the drive shaft (4) is provided, such that with increasing speed the size of the gap (S or S1) between the radial blades (15) and the wall (18) of the pump housing (1) increases.
2. Kühlmittelpumpe nach Anspruch 1, dadurch gekenn­zeichnet, daß das Laufrad (3) über ein Gewinde (7, 8) relativ drehbar mit der Antriebswelle (4) verbunden ist und daß zwischen dem Laufrad (3) und der An­triebswelle (4) eine Torsionsfeder (9) vorgesehen ist, die einer Drehung des Laufrades (3) relativ zur Antriebswelle (4) entgegenwirkt.2. Coolant pump according to claim 1, characterized in that the impeller (3) via a thread (7, 8) is relatively rotatably connected to the drive shaft (4) and that between the impeller (3) and the drive shaft (4) is a torsion spring (9) is provided which counteracts a rotation of the impeller (3) relative to the drive shaft (4). 3. Kühlmittelpumpe nach Anspruch 2, gekennzeichnet durch einen Anschlag (Bund 11) zur Begrenzung der Axialverschiebung des Laufrades (3).3. Coolant pump according to claim 2, characterized by a stop (collar 11) for limiting the axial displacement of the impeller (3). 4. Kühlmittelpumpe nach Anspruch 2, dadurch gekenn­zeichnet, daß die Torsionsfeder (9) so ausgelegt ist, daß sie bis zu einer vorbestimmten Drehzahl der Antriebswelle (4) eine Mitnahme des Laufrades (3) ohne relative Drehung bewirkt.4. Coolant pump according to claim 2, characterized in that the torsion spring (9) is designed such that it causes entrainment of the impeller (3) without relative rotation up to a predetermined speed of the drive shaft (4).
EP87103793A 1986-04-08 1987-03-16 Cooling pump for a motor vehicle internal-combustion engine Withdrawn EP0240777A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3611708 1986-04-08
DE19863611708 DE3611708A1 (en) 1986-04-08 1986-04-08 COOLANT PUMP FOR A VEHICLE INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0240777A2 true EP0240777A2 (en) 1987-10-14
EP0240777A3 EP0240777A3 (en) 1989-01-11

Family

ID=6298178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87103793A Withdrawn EP0240777A3 (en) 1986-04-08 1987-03-16 Cooling pump for a motor vehicle internal-combustion engine

Country Status (2)

Country Link
EP (1) EP0240777A3 (en)
DE (1) DE3611708A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002659A1 (en) * 1989-08-19 1991-03-07 Robert Bosch Gmbh Heating device for the seating compartment of motor vehicles
FR2681906A1 (en) * 1991-09-27 1993-04-02 Renault Vehicules Ind Centrifugal pump for a combustion engine coolant circuit
FR2704278A1 (en) * 1993-04-23 1994-10-28 Renault Variable-output pump for the cooling circuit of an internal combustion engine
DE10142263C1 (en) * 2001-08-29 2002-10-24 Guenther Beez Variable cooling medium pump for IC engine, has exit flow openings for cooling medium selectively covered via separately operated slider within pump housing
FR2827920A1 (en) * 2001-07-27 2003-01-31 Peugeot Citroen Automobiles Sa Hydraulic pump for automobile engine cooling circuit comprises casing including blade wheel on drive shaft delimiting fluid flow channel between inlet and outlet
DE102005028598B3 (en) * 2005-06-21 2006-10-05 Günther Dipl.-Ing. Beez Controllable coolant pump for internal combustion engine of motor vehicle, has bimetal disk that is fixedly arranged in impeller and fastened adjacent to turned away side of pressure plate and at eccentric tappet
DE102008006451B4 (en) * 2008-01-29 2012-05-16 Audi Ag Coolant pump with integrated control valve for a cooling circuit of an internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4203391A1 (en) * 1992-02-06 1993-08-12 Schaeffler Waelzlager Kg Sealing arrangement for IC engine water pump - has funnel-shaped cap attached to rotor shaft and to pump housing
DE4325627A1 (en) * 1993-07-30 1995-02-02 Behr Gmbh & Co Drive device for a water pump
DE19709484A1 (en) * 1997-03-07 1998-09-10 Hella Kg Hueck & Co Unit for regulating coolant temperature of internal combustion engine in motor vehicle
DE102005056199A1 (en) * 2005-11-25 2006-10-12 Audi Ag Pump for liquid medium, especially for controlling coolant temperature of internal combustion engine, has coolant cooler in coolant circuit, mechanically adjustable control element for adjusting transport performance
DE102010005936A1 (en) * 2010-01-26 2011-07-28 LICOS Trucktec GmbH, 88677 Device for a pump and water pump
DE102010062752A1 (en) * 2010-12-09 2012-06-14 Mahle International Gmbh Cooling agent pump for internal combustion engine, has impeller that is displaceably mounted along axial direction for controlling ejection rate of pump, where annular piston is provided for axial adjustment of impeller
DE102011087141A1 (en) * 2011-11-25 2013-05-29 Behr Thermot-Tronik Gmbh Pump e.g. coolant pump, for use in thermal management module of internal combustion engine of motor car to heat wax extension element, has wax extension element provided in sucking-in region of impeller to control capacity of pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1955549A (en) * 1931-08-21 1934-04-17 John T Janette Combined pump and valve
DE759331C (en) * 1939-09-07 1954-02-22 Auto Union A G Conveyor device for the cooling water, especially for vehicle engines
DE1274447B (en) * 1962-10-27 1968-08-01 Edwin Frank Centrifugal circulation pump
DE3329002C2 (en) * 1983-08-11 1985-08-22 Daimler-Benz Ag, 7000 Stuttgart Coolant pump on an internal combustion engine, in particular for vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1955549A (en) * 1931-08-21 1934-04-17 John T Janette Combined pump and valve
DE759331C (en) * 1939-09-07 1954-02-22 Auto Union A G Conveyor device for the cooling water, especially for vehicle engines
DE1274447B (en) * 1962-10-27 1968-08-01 Edwin Frank Centrifugal circulation pump
DE3329002C2 (en) * 1983-08-11 1985-08-22 Daimler-Benz Ag, 7000 Stuttgart Coolant pump on an internal combustion engine, in particular for vehicles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002659A1 (en) * 1989-08-19 1991-03-07 Robert Bosch Gmbh Heating device for the seating compartment of motor vehicles
FR2681906A1 (en) * 1991-09-27 1993-04-02 Renault Vehicules Ind Centrifugal pump for a combustion engine coolant circuit
FR2704278A1 (en) * 1993-04-23 1994-10-28 Renault Variable-output pump for the cooling circuit of an internal combustion engine
FR2827920A1 (en) * 2001-07-27 2003-01-31 Peugeot Citroen Automobiles Sa Hydraulic pump for automobile engine cooling circuit comprises casing including blade wheel on drive shaft delimiting fluid flow channel between inlet and outlet
DE10142263C1 (en) * 2001-08-29 2002-10-24 Guenther Beez Variable cooling medium pump for IC engine, has exit flow openings for cooling medium selectively covered via separately operated slider within pump housing
DE102005028598B3 (en) * 2005-06-21 2006-10-05 Günther Dipl.-Ing. Beez Controllable coolant pump for internal combustion engine of motor vehicle, has bimetal disk that is fixedly arranged in impeller and fastened adjacent to turned away side of pressure plate and at eccentric tappet
DE102008006451B4 (en) * 2008-01-29 2012-05-16 Audi Ag Coolant pump with integrated control valve for a cooling circuit of an internal combustion engine

Also Published As

Publication number Publication date
EP0240777A3 (en) 1989-01-11
DE3611708A1 (en) 1987-10-22

Similar Documents

Publication Publication Date Title
EP0240777A2 (en) Cooling pump for a motor vehicle internal-combustion engine
DE3029992C2 (en) Fluid friction clutch
DE68911388T2 (en) Refrigeration compressors.
DE2059314C3 (en) Fuel supply system for a gas turbine engine
WO2000042331A1 (en) Hydrodynamic coupling
DE4420841A1 (en) Motor vehicle heater
DE3144495C2 (en) Fluid friction clutch
DE19509978C2 (en) clutch
DE10128059C1 (en) Variable cooling pump, for internal combustion engine, has rotor of electric motor carried by sleeve fitted over reverse rotation blocking device for pump wheel shaft
DE69723060T2 (en) COOLANT PUMP FOR USE IN MOTOR VEHICLES
DE102005028598B3 (en) Controllable coolant pump for internal combustion engine of motor vehicle, has bimetal disk that is fixedly arranged in impeller and fastened adjacent to turned away side of pressure plate and at eccentric tappet
DE2837636A1 (en) Fluid coupling for vehicle fan drive - has cast output member which houses stamped input member and reservoir casing with reed valve to control outlet flow
DE2913574C3 (en) Drive mechanism
DE1284186B (en) Fluid friction clutch
DE2814468A1 (en) VISCOSITY DRIVE, IN PARTICULAR FOR FANS
DE2439256A1 (en) Engine cooling system viscosity clutch - has primary disc with fluid-transporting groove on outer disc surface
DE4302732A1 (en) Valve actuation control system for IC engine - uses hydraulic pressure to control phase difference between camshaft and crankshaft.
DE2845096A1 (en) SPEED CONTROLLER OF A FUEL INJECTION PUMP
DE19709484A1 (en) Unit for regulating coolant temperature of internal combustion engine in motor vehicle
DE3022241A1 (en) Cooling water pump for vehicle engine - has curved blades made of bimetallic material to vary flow to match water temp.
DE2362194B2 (en) LUBRICANT DOSING PUMP
DE3840455C2 (en) Temperature sensitive fluid friction clutch
DE19521926C9 (en) Hydrodynamic coupling
EP0294594A1 (en) Fluid friction clutch
DE1245655B (en) Fluid friction clutch with especially temperature-dependent controlled filling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890712

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEUFER, THEO, DIPL.-ING.