EP0235621A2 - Lance for blowing oxygen - Google Patents

Lance for blowing oxygen Download PDF

Info

Publication number
EP0235621A2
EP0235621A2 EP87101777A EP87101777A EP0235621A2 EP 0235621 A2 EP0235621 A2 EP 0235621A2 EP 87101777 A EP87101777 A EP 87101777A EP 87101777 A EP87101777 A EP 87101777A EP 0235621 A2 EP0235621 A2 EP 0235621A2
Authority
EP
European Patent Office
Prior art keywords
nozzle
conduit
mouth
inner tube
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87101777A
Other languages
German (de)
French (fr)
Other versions
EP0235621A3 (en
EP0235621B1 (en
Inventor
André Bock
Romain Henrion
Jean Liesch
Carlo Heintz
Henri Klein
Jean-François Liesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
Arbed SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arbed SA filed Critical Arbed SA
Priority to AT87101777T priority Critical patent/ATE77839T1/en
Publication of EP0235621A2 publication Critical patent/EP0235621A2/en
Publication of EP0235621A3 publication Critical patent/EP0235621A3/en
Application granted granted Critical
Publication of EP0235621B1 publication Critical patent/EP0235621B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors

Definitions

  • the invention relates to a lance for refining metals or ferroalloys by blowing oxygen from above.
  • an oxygen blowing lance whether it is a lance providing a vertical jet for the refining proper, or a lance comprising in addition for example lateral nozzles providing oblique jets for the post-combustion of carbon monoxide, requires certain calculations which must in particular take account of the following two quantities: the Mach number and the optimum flow rate.
  • the Mach number is a quantity which expresses the impulse, the speed resp. the degree of hardness of the spray.
  • the nozzle of a lance usually comprises a convergent and downstream of the latter a diverging; the Mach number is a function of the ratio of the exit diameters of the diverging point and the neck of the converging point.
  • the optimum flow rate is a function of the inlet pressure of the nozzle and the diameter of the neck of the convergent.
  • the metallurgist may wish to project a soft vertical jet at a high rate onto the refining bath; such a way of blowing is to be recommended during the refining when it is a question of forming a highly oxidized slag. It is just as well imaginable that he wanted to blow a jet of hard vertical oxygen, at reduced flow; this way of proceeding would be indicated with a view to reducing the total volume of oxygen supplied to the converter, with the aim of not oxidizing the slag, while guaranteeing vigorous decarburization of the metal.
  • the aim of the present invention is to create an oxygen blowing lance, the concept of which makes it possible to vary the Mach number and the optimal flow rate, independently of one another while using only a minimum of moving parts.
  • a major advantage of the invention lies in the possibility offered to the steelmaker to vary, as a function of the different refining phases, the quantity of oxygen introduced into the bath while permanently imposing on the jet the optimum speed required.
  • the nozzle 1 supplying the refining oxygen consists of an inner tube 20 which is substantially cylindrical, the lower part 21 of which converges, and an outer tube 3, coaxial with the inner tube 20 and also substantially cylindrical.
  • the mouth 25 of the tube 20 is arranged a few tens of cm set back from the mouth 5 of the nozzle 1.
  • the two tubes have regulating valves 22 respectively 4 making it possible to individually adjust the quantity and the pressure of gas passing through them . Note that these valves are actually arranged much further upstream of the mouths, eg at the heights of the lance mounting brackets.
  • the part 23 in the form of a needle.
  • This part can be moved along the common axis, in the direction of the double arrow 24 using a motor, which can be of the linear step-by-step type (not shown).
  • a motor which can be of the linear step-by-step type (not shown).
  • zone 7 where the interaction between the expanding supersonic central jet 26, leaving the tube 20 and the subsonic annular jet 6, surrounding the central jet, creates conditions equivalent to an effective reduction of the section at the outlet. of tube 3.
  • the inner tube 20 has at its outlet a convergent 21 whose effective section is variable thanks to the adjusted positioning of the part 23 in the shape of a needle. Refining oxygen is blown through this tube, the initial pressure of which is controlled by means of the regulating valve 22.
  • This jet passes through the outlet 25 of the inner tube, the effective outlet section being determined by the position of the needle-shaped part 23, and arrives in the outer tube 3. By entering this tube, the jet 26 is expanded.
  • the outer tube 3 provides an annular jet 6 of oxygen or possibly of air, the flow rate of which is controlled by means of the regulating valve 4 and enveloping the expanded jet 26. Since the phenomena of additional expansion of a supersonic jet and a subsonic jet, the valve 4 must at most be open to a position where the annular jet 6 becomes supersonic; otherwise the operation of the nozzle is no longer ensured. On the other hand, it is necessary to ensure that the static pressure of the jet leaving the nozzle 1 is close to the pressure prevailing in the metallurgical vessel.
  • valve 22 On the other hand is accompanied by an increase in the flow rate and the speed of the gas. We find the starting flow by decreasing with the needle the effective section of the neck 25.
  • the degree of opening of valve 4 is not a variable which can be used as desired. Its primary function is to reduce the source pressure so as to exclude the creation of a supersonic annular jet. Since a subsonic jet has, when leaving a duct, an internal pressure equal to that of the ambient medium, we are free to choose, by means of routine tests, the degree of opening of the valve which allows, for the range of flow rates and speeds of the supersonic jet, an enlargement and an optimal contraction of this jet. Once this position has been determined, the zero of comparator 40 is fixed (see further explanations in relation to FIG. 2). During the various modes of operation of the lance, the degree of opening of the valve 4 changes only slightly.
  • the diagram in fig. 2 is intended to illustrate a process for regulating the operation of the blowing lance according to the invention.
  • the driving elements are the regulating valves 22 and 4, as well as the movement mechanism of the part 23;
  • the measuring elements are the pressure sensor 30, the needle position sensor 31 and the sensor 32 of the temperature of the refining oxygen jet upstream of the converging element 21 as well as the sensor 33 which measures the pressure from the jet to the mouth 5 of the nozzle 1.
  • the two relations (1) and (2) are calculated in the function generators 42 respectively 43.
  • the inputs of the generator 42 are the pressure Pa prevailing in the converter as well as the speed (in fact the Mach Mam number) desired at l mouth 5 of the nozzle 1.
  • the pressure (calculated) Po which should prevail at the inlet of the Laval nozzle, is compared (reference 44) to the actual pressure P measured by the sensor 30 and the difference is applied to the regulator 45 which acts on the valve 22.
  • the generator 43 receives on its inputs the pressure Po which must prevail at the inlet of the Laval nozzle, the nominal flow Qn desired, as well as the temperature To at the inlet of the nozzle of Laval; the calculated section of the neck is compared (reference 46), to the real section of the neck measured using the position sensor 31 and the difference is applied to the regulator 47 which acts on the position of the needle 23.
  • the comparator 40 com shields the jet outlet pressure at the pressure Pa prevailing in the converter and acts on the regulator 41, so as to cancel any pressure difference.
  • the various regulators are advantageously of the "optimal Kalman regulator" type.
  • Fig. 3 is shown schematically a variant of a variable nozzle having no moving part.
  • the cooling system is not shown.
  • the variable position needle is replaced by a coaxial subsonic gas flow 301 injected at a pressure slightly higher than the local static pressure of the central jet.
  • This subsonic "ring" has its source in an annular opening 310 machined in the converging part of the Laval nozzle 306 and connected to a toric chamber 311, pressure equalizer.
  • the chamber 311 is supplied, via the conduit 312, with a pressure which is a function of the size of the desired subsonic ring 301.
  • As the gas it is possible to choose any gas which does not react chemically with the central jet 305 and preferably oxygen or air.
  • the subsonic ring 301 is eliminated, after the passage of the neck, through a porous divergent, the holes 302 in question being machined so as to form a supersonic "filter", (ie they are "transparent" to a subsonic flow and nonexistent for supersonic flow thanks to the properties of supersonic expansion and compression).
  • the quantity of gas which thus joins the annular subsonic jet 303 is small, so as to disturb this jet only in a minor way.
  • the gas forming the annular jet 303 comes from a sample 304 of the central jet 305 upstream of the Laval nozzle 306.
  • the quantity of gas withdrawn is negligible compared to the quantity of gas conveyed by the central jet 305.
  • the pressure at the inlet of the annular Laval nozzle 307 follows the variations in jet pressure central, variations which are strongly dampened by the combined action of the annular Laval nozzle 307 and the cavity 308 acting as an accumulator.
  • the dimensions of the annular Laval nozzle and of the cavity are chosen as a function of the operating range of the supersonic jet, as explained above in relation to the valve 4 (fig. 2); in particular, it is necessary to ensure in the downstream part of the accumulator a static pressure lower than that of the central supersonic jet.
  • range 50 is also shown an example of path 51 scanned during the blowing process, with different operating states 52, 53, 54, 55, corresponding to well-defined refining phases. It appears that instead of implementing a system as shown in FIG. 2, which makes it possible to operate the lance optimally for any operating state included in the range 50, it is also possible, by simple tests, to determine once and for all the few operating states (e.g. 52, ... 55) which is normally needed during ripening and use only these.
  • few operating states e.g. 52, ... 55
  • outer and inner tubes of substantially cylindrical shape. It is quite obvious that any shape (eg oval) allowing to respect Laval relations can be used. Similarly, instead of using a needle or a gaseous "belt", any other means can be used, leading to a change in effective section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Surgical Instruments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A nozzle for the refining of metals by oxygen blasting from above the melt is presented. The nozzle includes a nozzle head having a blast pipe therethrough upstream of the mouth of the nozzle. The blast pipe directs a jet of gas comprised, at least in part, of oxygen, having a supersonic speed onto the melt. The blast pipe includes an inner tube. The lower portion of the inner tube has a throat positioned between a convergent and divergent sections, this lower portion defining a laval nozzle. The blast pipe also includes an outer tube coaxial with the inner tube and having a greater cross section than the inner tube. The mouth of the inner tube is spaced back (downstream) from the mouth of the blast pipe. The inner and outer tubes are each provided with flow control valves, and are connected to sources of pressurized gas. Devices are provided to vary the cross sectional area of the mouth of the inner tube. This device may consist of a needle shaped member, displaceable along the longitudinal axis of the inner tube, with the pointed portion of the needle movable between different positions within the convergent section of the inner tube.

Description

L'invention concerne une lance pour l'affinage de métaux ou de fer­roalliages par soufflage d'oxygène par le haut.The invention relates to a lance for refining metals or ferroalloys by blowing oxygen from above.

La conception d'une lance de soufflage d'oxygène, qu'il s'agisse d'une lance fournissant un jet vertical pour l'affinage proprement dit, ou d'une lance comprenant en plus par exemple des tuyères laté­rales fournissant des jets obliques pour la post-combustion du mon­oxyde de carbone, nécessite certains calculs qui doivent en particu­lier tenir compte des deux grandeurs suivantes: le nombre de Mach et le débit optimum.The design of an oxygen blowing lance, whether it is a lance providing a vertical jet for the refining proper, or a lance comprising in addition for example lateral nozzles providing oblique jets for the post-combustion of carbon monoxide, requires certain calculations which must in particular take account of the following two quantities: the Mach number and the optimum flow rate.

Le nombre de Mach est une grandeur qui exprime l'impulsion, la vi­tesse resp. le degré de dureté du jet. La tuyère d'une lance compor­te habituellement un convergent et en aval de ce dernier un diver­gent; le nombre de Mach est fonction du rapport des diamètres de sortie du divergent et du col du convergent. Le débit optimum est fonction de la pression d'entrée de la tuyère et du diamètre du col du convergent.The Mach number is a quantity which expresses the impulse, the speed resp. the degree of hardness of the spray. The nozzle of a lance usually comprises a convergent and downstream of the latter a diverging; the Mach number is a function of the ratio of the exit diameters of the diverging point and the neck of the converging point. The optimum flow rate is a function of the inlet pressure of the nozzle and the diameter of the neck of the convergent.

Il apparaît que ces deux grandeurs dépendent de la configuration géométrique de la tuyère et ne sont pas variables indépendamment l'une de l'autre. Cela veut dire qu'il n'est pas possible de procé­der à un soufflage à jet dur et débit réduit à l'aide d'une lance conçue pour avoir un débit optimal élevé, ni d'effectuer un souff­lage à jet mou et débit réduit, à l'aide d'une lance conçue pour avoir un débit élevé, sans s'éloigner dans un sens ou dans l'autre des grandeurs optimales liées à la configuration géométrique de la tuyère. Or si l'on essaie de dépasser les limites du point de vue débit et vitesse de sortie, il se crée à l'intérieur du convertis­seur et aux abords de l'enbouchure de la lance des ondes de choc; les caractéristiques du jet se dégradent et l'usure de la lance progresse rapidement.It appears that these two quantities depend on the geometrical configuration of the nozzle and are not variable independently of one another. This means that it is not possible to carry out a hard jet and reduced flow blowing using a lance designed to have a high optimal flow, nor to carry out a soft jet and reduced flow blowing , using a lance designed to have a high flow rate, without moving in one direction or the other of the optimal sizes linked to the geometric configuration of the nozzle. However if one tries to exceed the limits from the point of view of flow and exit speed, it is created inside the converter and around the mouth of the lance of the shock waves; the characteristics of the jet deteriorate and the wear of the lance progresses rapidly.

Le métallurgiste peut désirer projeter sur le bain en voie d'affi­nage un jet vertical mou, à un débit élevé; une telle manière de souffler est à recommander au cours de l'affinage lorsqu'il s'agit de former un laitier fortement oxydé. Il est tout aussi bien imagi­nable qu'il veuille souffler un jet d'oxygène vertical dur, à débit réduit; cettre manière de procéder serait indiquée en vue de réduire le volume total en oxygène fourni au convertisseur, dans le but de ne pas oxyder le laitier, tout en garantissant une décarburation vigoureuse du métal.The metallurgist may wish to project a soft vertical jet at a high rate onto the refining bath; such a way of blowing is to be recommended during the refining when it is a question of forming a highly oxidized slag. It is just as well imaginable that he wanted to blow a jet of hard vertical oxygen, at reduced flow; this way of proceeding would be indicated with a view to reducing the total volume of oxygen supplied to the converter, with the aim of not oxidizing the slag, while guaranteeing vigorous decarburization of the metal.

Le but de la présente invention est de créer une lance de soufflage d'oxygène, dont le concept permet de varier le nombre de Mach et le débit optimal, indépendamment l'un de l'autre tout en n'utilisant qu'un minimum de pièces mobiles.The aim of the present invention is to create an oxygen blowing lance, the concept of which makes it possible to vary the Mach number and the optimal flow rate, independently of one another while using only a minimum of moving parts.

Un critère essentiel à respecter est l'utilisation d'un minimum de moyens mécaniques, c'est-à-dire qu'il faut arriver au but recherché sans avoir à mettre en oeuvre des moyens capables de varier la con­figuration géométrique de sortie de la tuyère. En effet, des moyens mécaniques permettant de varier le diamètre du divergent d'une tuy­ère, ne seraient guère accessibles à des frais abordables.An essential criterion to be respected is the use of a minimum of mechanical means, that is to say that it is necessary to arrive at the desired goal without having to implement means capable of varying the geometric configuration of the outlet of the nozzle. Indeed, mechanical means making it possible to vary the diameter of the diverging portion of a nozzle, would hardly be accessible at affordable costs.

Ce but est atteint par la lance suivant l'invention telle qu'elle est caractérisée dans la revendication principale. Des variantes d'exécution préférentielles sont décrites dans les sous-revendica­tions.This object is achieved by the lance according to the invention as characterized in the main claim. Preferential variant embodiments are described in the subclaims.

Un avantage capital de l'invention réside dans la possibilité offerte à l'aciériste de varier, en fonction des différentes phases d'affinage, la quantité d'oxygène introduite dans le bain tout en imposant en permanence au jet la vitesse optimale requise.A major advantage of the invention lies in the possibility offered to the steelmaker to vary, as a function of the different refining phases, the quantity of oxygen introduced into the bath while permanently imposing on the jet the optimum speed required.

L'invention sera illustrée par la description des dessins, où

  • - la fig.1 montre de manière non-limitative une forme d'exécution possible de la lance suivant l'invention, tandis que
  • - la fig.2 représente un schéma de réglage des différents éléments, de la lance représentée en fig. 1, permettant d'aboutir à la variabilité individuelle du nombre de Mach et du débit optimal.
  • - la fig. 3 montre une autre forme d'exécution possible de la lance suivant l'invention.
  • - la fig.4 montre un exemple de caractéristique vitesse-débit d'un jet d'oxygène.
The invention will be illustrated by the description of the drawings, where
  • - Fig.1 shows in a non-limiting way a possible embodiment of the lance according to the invention, while
  • - Fig.2 shows an adjustment diagram of the different elements, the lance shown in fig. 1, allowing the individual variability of the Mach number and the optimal flow to be obtained.
  • - fig. 3 shows another possible embodiment of the lance according to the invention.
  • - Fig.4 shows an example of speed-flow characteristic of an oxygen jet.

On distingue en fig. 1 une partie d'une tête de lance avec son cir­cuit de refroidissement à l'eau 2. La tuyère 1 fournissant l'oxygène d'affinage se compose d'un tube intérieur 20 sensiblement cylindri­que, dont la partie inférieure 21 est convergente, et d'un tube ex­térieur 3, coaxial au tube intérieur 20 et également sensiblement cylindrique. L'embouchure 25 du tube 20 est disposée de quelques di­zaines de cm en retrait de l'embouchure 5 de la tuyère 1. Les deux tubes présentent des vannes de régulation 22 respectivement 4 per­mettant de régler individuellement la quantité et la pression de gaz les traversant. Notons que ces vannes sont en réalité disposées net­tement plus en amont des embouchures, p.ex à la hauteurs des sup­ports de fixation de la lance. A l'intérieur du tube 20 est disposée la pièce 23 en forme d'aiguille. Cette pièce est déplaçable suivant l'axe commun, dans le sens de la double flèche 24 à l'aide d'un mo­teur, qui peut être du type pas-à-pas linéaire (non représenté). On distingue également la zone 7, où l'interaction entre le jet central supersonique en expansion 26, sortant du tube 20 et du jet annulaire subsonique 6, entourant le jet central, crée des conditions équiva­lant à une réduction effective de la section à la sortie du tube 3.We can see in fig. 1 a part of a lance head with its water cooling circuit 2. The nozzle 1 supplying the refining oxygen consists of an inner tube 20 which is substantially cylindrical, the lower part 21 of which converges, and an outer tube 3, coaxial with the inner tube 20 and also substantially cylindrical. The mouth 25 of the tube 20 is arranged a few tens of cm set back from the mouth 5 of the nozzle 1. The two tubes have regulating valves 22 respectively 4 making it possible to individually adjust the quantity and the pressure of gas passing through them . Note that these valves are actually arranged much further upstream of the mouths, eg at the heights of the lance mounting brackets. Inside the tube 20 is arranged the part 23 in the form of a needle. This part can be moved along the common axis, in the direction of the double arrow 24 using a motor, which can be of the linear step-by-step type (not shown). There is also a distinction between zone 7, where the interaction between the expanding supersonic central jet 26, leaving the tube 20 and the subsonic annular jet 6, surrounding the central jet, creates conditions equivalent to an effective reduction of the section at the outlet. of tube 3.

Ainsi le tube intérieur 20 présente à sa sortie un convergent 21 dont la section effective est variable grâce au positionnement rég­lé de la pièce 23 en forme d'aiguille. Il est soufflé à travers ce tube l'oxygène d'affinage, dont la pression initiale est contrôlée par l'intermédiaire de la vanne de régulation 22. Ce jet passe par la sortie 25 du tube intérieur, la section effective de sortie étant déterminée par la position de la pièce 23 en forme d'aiguille, et arrive dans le tube extérieur 3. En pénétrant dans ce tube, le jet 26 est expansé.Thus the inner tube 20 has at its outlet a convergent 21 whose effective section is variable thanks to the adjusted positioning of the part 23 in the shape of a needle. Refining oxygen is blown through this tube, the initial pressure of which is controlled by means of the regulating valve 22. This jet passes through the outlet 25 of the inner tube, the effective outlet section being determined by the position of the needle-shaped part 23, and arrives in the outer tube 3. By entering this tube, the jet 26 is expanded.

Le tube extérieur 3 fournit un jet 6 annulaire d'oxygène ou éven­tuellement d'air, dont le débit est contrôlé à l'aide de la vanne de régulation 4 et enveloppant le jet expansé 26. Etant donné qu'on profite des phénomènes d'expansion complémentaires d'un jet super­sonique et d'un jet subsonique, la vanne 4 doit au plus être ouverte jusqu'à une position où le jet annulaire 6 devient supersonique; sinon le fonctionnement de la tuyère n'est plus assuré. D'un autre côté il y a lieu d'assurer que la pression statique du jet sortant de la tuyère 1 soit proche de la pression qui règne dans le réci­pient métallurgique. Rappelons que lorsqu'un jet supersonique sort d'une tuyère qui le "guide" latéralement en possédant une pression interne supérieure à la pression du milieu ambiant, il est le siège d'une expansion latérale tellement forte que sa pression interne tombe en dessous de celle du milieu ambiant, qui en retour comprime le jet supersonique: il y a formation d'ondes de choc. Il est vrai que pour la tuyère selon l'invention on peut, dans de faibles proportions, repousser cette contrainte imposée à la pression du jet supersonique à la sortie sans trop perturber sa dynamique. En effet, le jet annulaire subsonique 6 continue à envelopper le jet central 26 supersonique et freine son expansion transversale.The outer tube 3 provides an annular jet 6 of oxygen or possibly of air, the flow rate of which is controlled by means of the regulating valve 4 and enveloping the expanded jet 26. Since the phenomena of additional expansion of a supersonic jet and a subsonic jet, the valve 4 must at most be open to a position where the annular jet 6 becomes supersonic; otherwise the operation of the nozzle is no longer ensured. On the other hand, it is necessary to ensure that the static pressure of the jet leaving the nozzle 1 is close to the pressure prevailing in the metallurgical vessel. Recall that when a supersonic jet comes out of a nozzle which "guides" it laterally, having an internal pressure higher than the pressure of the ambient medium, it is the seat of a lateral expansion so strong that its internal pressure falls below that of the ambient environment, which in turn compresses the supersonic jet: there is formation of shock waves. It is true that for the nozzle according to the invention it is possible, in small proportions, to overcome this constraint imposed on the pressure of the supersonic jet at the outlet without disturbing its dynamics too much. In fact, the subsonic annular jet 6 continues to surround the central supersonic jet 26 and slows down its transverse expansion.

Pour mieux comprendre le fonctionnement, regardons ce qui se passe lorsque pour une position donnée des vannes 4 et 22, l'aiguille 23 est rétractée, de sorte à augmenter la section effective du col 25: Le débit du jet supersonique augmente. A première vue, au regard du fait que dans une tuyère de Laval, à pression initiale constante, le nombre de Mach est fonction du rapport (diamètre de sortie divergent­/diamètre du col du convergent), on pourrait croire que la vitesse du gaz à la sortie diminue. En fait dans une première phase très courte, la vitesse à la sortie diminue effectivement. Conjointement avec la chute de vitesse, la pression interne du jet supersonique augmente, ce qui provoque un élargissement du jet supersonique au dépens du jet annulaire subsonique et la vitesse du gaz super­ sonique reprend une valeur proche de celle observée avant la modifi­cation de la position de l'aiguille.To better understand the operation, let's look at what happens when for a given position of the valves 4 and 22, the needle 23 is retracted, so as to increase the effective section of the neck 25: The flow rate of the supersonic jet increases. At first sight, in view of the fact that in a Laval nozzle, at constant initial pressure, the Mach number is a function of the ratio (diverging outlet diameter / diameter of the neck of the convergent), one might believe that the speed of the gas at the output decreases. In fact in a very short first phase, the speed at the exit actually decreases. In conjunction with the speed drop, the internal pressure of the supersonic jet increases, which causes a widening of the supersonic jet at the expense of the subsonic annular jet and the speed of the super gas. sonic returns to a value close to that observed before the needle position was changed.

Une ouverture de la vanne 22 par contre est accompagnée d'une aug­mentation du débit et de la vitesse du gaz. On retrouve le débit de départ en diminuant à l'aide de l'aiguille la section effective du col 25.An opening of the valve 22 on the other hand is accompanied by an increase in the flow rate and the speed of the gas. We find the starting flow by decreasing with the needle the effective section of the neck 25.

Notons que le degré d'ouverture de la vanne 4 n'est pas une variable dont on peut disposer à sa guise. Sa fonction primordiale est de réduire la pression de source de façon à exclure la création d'un jet annulaire supersonique. Etant donné qu'un jet subsonique possède, en sortant d'un conduit, une pression interne égale à celle du milieu ambiant, on a toute liberté de choisir, à l'aide d'essais de routine, le degré d'ouverture de la vanne qui permet, pour la gamme de débits et de vitesses du jet supersonique, un élargissement et une contraction optimale de cet jet. Une fois qu'on a déterminé cette position, on fixe le zéro du comparateur 40 (voir plus loin explications en rapport avec la figure 2). Au cours des différents modes de fonctionnement de la lance, le degré d'ouverture de la vanne 4 ne change que faiblement.Note that the degree of opening of valve 4 is not a variable which can be used as desired. Its primary function is to reduce the source pressure so as to exclude the creation of a supersonic annular jet. Since a subsonic jet has, when leaving a duct, an internal pressure equal to that of the ambient medium, we are free to choose, by means of routine tests, the degree of opening of the valve which allows, for the range of flow rates and speeds of the supersonic jet, an enlargement and an optimal contraction of this jet. Once this position has been determined, the zero of comparator 40 is fixed (see further explanations in relation to FIG. 2). During the various modes of operation of the lance, the degree of opening of the valve 4 changes only slightly.

Le schéma en fig. 2 est destiné à illustrer un procédé de régulation de la marche de la lance de soufflage suivant l'invention. Les élé­ments-moteurs sont les vannes de régulation 22 et 4, ainsi que le mécanisme de mouvement de la pièce 23; les éléments de mesure sont le capteur 30 de la pression, le capteur 31 de position de l'ai­guille et le capteur 32 de la température du jet d'oxygène d'affi­nage en amont du convergent 21 ainsi que le capteur 33 qui mesure la pression du jet à l'embouchure 5 de la tuyère 1.The diagram in fig. 2 is intended to illustrate a process for regulating the operation of the blowing lance according to the invention. The driving elements are the regulating valves 22 and 4, as well as the movement mechanism of the part 23; the measuring elements are the pressure sensor 30, the needle position sensor 31 and the sensor 32 of the temperature of the refining oxygen jet upstream of the converging element 21 as well as the sensor 33 which measures the pressure from the jet to the mouth 5 of the nozzle 1.

D'après la théorie sur les tuyères de Laval on connaît les relations suivantes:

Figure imgb0001
ou - Po est la pression à l'entrée de la tuyère de Laval (Pa)
- To est la température à l'entrée de la tuyère de Laval (°K)
- Pa est la pression à la sortie de la tuyère de Laval (Pa)
(dans le cas présent, la pression régnant dans le convertisseur)
- k est égal au rapport de la chaleur massique du gaz à pression constante à sa chaleur massique à volume constant i.e. Cp/Cv
- α est le coefficient de vitesse de la tuyère qui exprime les pertes dans la tuyère (cas idéal : α = 1)
-
Figure imgb0002
est la densité du gaz dans les conditions normales i.e. 20°C 1 atmosphère (Kg/Nm³)
- Qn est le débit volumique (Nm³/s) du gaz
- R est la constante individuelle du gaz (R=cp-cv) (J/kg.°K)
- Al est la section effective du col de la tuyère de Laval (m²)
- Mam es le nombre de Mach à l'embouchure.According to the theory on Laval nozzles we know the following relationships:
Figure imgb0001
or - Po is the pressure at the inlet of the Laval nozzle (Pa)
- To is the temperature at the inlet of the Laval nozzle (° K)
- Pa is the pressure at the outlet of the Laval nozzle (Pa)
(in this case, the pressure in the converter)
- k is equal to the ratio of the mass heat of the gas at constant pressure to its mass heat at constant volume ie Cp / Cv
- α is the nozzle speed coefficient which expresses the losses in the nozzle (ideal case: α = 1)
-
Figure imgb0002
is the density of the gas under normal conditions ie 20 ° C 1 atmosphere (Kg / Nm³)
- Qn is the volume flow rate (Nm³ / s) of the gas
- R is the individual gas constant (R = cp-cv) (J / kg. ° K)
- Al is the effective section of the neck of the Laval nozzle (m²)
- Mam is the Mach number at the mouth.

Les deux relations (1) et (2) sont calculées dans les générateurs de fonction 42 respectivement 43. Les entrées du générateur 42 sont la pression Pa régnant dans le convertisseur ainsi que la vitesse (en fait le nombre de Mach Mam) désirée à l'embouchure 5 de la tuyère 1. La pression (calculée) Po, qui devrait régner à l'entrée de la tuyère de Laval, est comparée (référence 44) à la pression réelle P mesurée par le capteur 30 et la différence est appliquée au régula­teur 45 qui agit sur la vanne 22. Le générateur 43 reçoit sur ses entrées la pression Po devant régner à l'entréer de la tuyère de Laval, le débit nominal Qn désiré, ainsi que la température To à l'entrée de la tuyère de Laval; la section calculée du col est com­parée (référence 46), à la section réelle du col mesurée à l'aide du capteur de position 31 et la différence est appliqué au régulateur 47 qui agit sur la position de l'aiguille 23. Le comparateur 40 com­ pare la pression de sortie du jet à la pression Pa régnant dans le convertisseur et agit sur le régulateur 41, de sorte à annuler toute différence de pression. Les différents régulateurs sont avantageuse­ment du type "régulateur optimal de Kalman".The two relations (1) and (2) are calculated in the function generators 42 respectively 43. The inputs of the generator 42 are the pressure Pa prevailing in the converter as well as the speed (in fact the Mach Mam number) desired at l mouth 5 of the nozzle 1. The pressure (calculated) Po, which should prevail at the inlet of the Laval nozzle, is compared (reference 44) to the actual pressure P measured by the sensor 30 and the difference is applied to the regulator 45 which acts on the valve 22. The generator 43 receives on its inputs the pressure Po which must prevail at the inlet of the Laval nozzle, the nominal flow Qn desired, as well as the temperature To at the inlet of the nozzle of Laval; the calculated section of the neck is compared (reference 46), to the real section of the neck measured using the position sensor 31 and the difference is applied to the regulator 47 which acts on the position of the needle 23. The comparator 40 com shields the jet outlet pressure at the pressure Pa prevailing in the converter and acts on the regulator 41, so as to cancel any pressure difference. The various regulators are advantageously of the "optimal Kalman regulator" type.

En Fig. 3 est représentée de manière schématisée une variante d'une tuyère variable ne comportant aucune partie mobile. Le système de refroidissement n'est pas représenté. L'aiguille à position variable est remplacée par un écoulement gazeux coaxial subsonique 301 injec­té à une pression légèrement supérieure à la pression statique locale du jet central. Cet "anneau" subsonique a sa source dans une ouverture annulaire 310 usinée dans la partie convergente de la tuyère de Laval 306 et reliée à une chambre torique 311, égalisa­trice de pression. La chambre 311 est alimentée, par l'intermédiaire du conduit 312, à une pression qui est fonction de l'importance de l'anneau subsonique 301 désirée. Comme gaz on peut choisir n'importe quel gaz ne réagissant pas chimiquement avec le jet central 305 et de préférence de l'oxygène ou de l'air. L'anneau subsonique 301 est éliminé, après le passage du col, à travers un divergent poreux, les trous 302 en question étant usinés de façon à former un "filtre" supersonique, (i.e. ils sont "transparents" à un écoulement sub­sonique et inexistants pour un écoulement supersonique et ce grâce aux propriétés de l'expansion et de la compression supersoniques). La quantité de gaz qui rejoint ainsi le jet subsonique annulaire 303 est faible, de sorte à ne perturber ce jet que de façon mineure.In Fig. 3 is shown schematically a variant of a variable nozzle having no moving part. The cooling system is not shown. The variable position needle is replaced by a coaxial subsonic gas flow 301 injected at a pressure slightly higher than the local static pressure of the central jet. This subsonic "ring" has its source in an annular opening 310 machined in the converging part of the Laval nozzle 306 and connected to a toric chamber 311, pressure equalizer. The chamber 311 is supplied, via the conduit 312, with a pressure which is a function of the size of the desired subsonic ring 301. As the gas, it is possible to choose any gas which does not react chemically with the central jet 305 and preferably oxygen or air. The subsonic ring 301 is eliminated, after the passage of the neck, through a porous divergent, the holes 302 in question being machined so as to form a supersonic "filter", (ie they are "transparent" to a subsonic flow and nonexistent for supersonic flow thanks to the properties of supersonic expansion and compression). The quantity of gas which thus joins the annular subsonic jet 303 is small, so as to disturb this jet only in a minor way.

L'expansion du jet central supersonique 309 jusqu'à la pression ambiante a lieu dans un jet annulaire subsonique 303 dont le débit est limité par une tuyère de Laval annulaire 307 en amont d'une cavité 308 jouant le rôle d'un accumulateur. Cet ensemble constitue essentiellement un système d'asservissement de l'expansion.The expansion of the central supersonic jet 309 to ambient pressure takes place in a subsonic annular jet 303 whose flow is limited by an annular Laval nozzle 307 upstream of a cavity 308 acting as an accumulator. This set essentially constitutes a system for controlling expansion.

Le gaz formant le jet annulaire 303 provient d'un prélèvement 304 du jet central 305 en amont de la tuyère de Laval 306. La quantité de gaz prélevée est négligeable par rapport à la quantité de gaz véhiculée par le jet central 305. La pression à l'entrée de la tuyère de Laval annulaire 307 suit les variations de pression du jet central, variations qui sont fortement amorties par l'action com­binée de la tuyère de Laval annulaire 307 et de la cavité 308 jouant le rôle d'un accumulateur. Les dimensions de la tuyère de Laval annulaire et de la cavité sont choisies en fonction de la plage de fonctionnement du jet supersonique, tel qu'il a été expliqué plus haut en rapport avec la vanne 4 (fig. 2); en particulier il faut assurer dans la partie avale de l'accumulateur une pression statique inférieure à celle du jet central supersonique.The gas forming the annular jet 303 comes from a sample 304 of the central jet 305 upstream of the Laval nozzle 306. The quantity of gas withdrawn is negligible compared to the quantity of gas conveyed by the central jet 305. The pressure at the inlet of the annular Laval nozzle 307 follows the variations in jet pressure central, variations which are strongly dampened by the combined action of the annular Laval nozzle 307 and the cavity 308 acting as an accumulator. The dimensions of the annular Laval nozzle and of the cavity are chosen as a function of the operating range of the supersonic jet, as explained above in relation to the valve 4 (fig. 2); in particular, it is necessary to ensure in the downstream part of the accumulator a static pressure lower than that of the central supersonic jet.

En fig. 4 on distingue les caractéristiques, d'un point de vue débit et vitesse, d'un jet d'oxygène de soufflage réalisable par la lance selon l'invention. En abscisses se trouve le nombre de Mach M et en ordonnées le débit d'oxygène Q en Nm³/min sortant de la tuyère 1. En fonction des dimensions géométriques de la tuyère 1 (section du con­duit en amont de la tuyère, allure du convergent, sections maximales et minimales du col, distance à l'embouchure ... etc.) il existe une plage 50 dans laquelle les modalités de fonctionnement de la lance sont optimales. On peut évidemment sortir de cette plage, p.ex. obtenir un nombre de Mach nettement supérieur à M₂ en augmentant fortement la pression en amont du convergent, mais dans ce cas on aura également des pertes énergétiques élevées (notamment ondes de choc). Dans la plage 50 se trouve également représentée un exemple de chemin 51 balayé lors du processus de soufflage, avec différents états de fonctionnement 52, 53, 54, 55, correspondant à des phases d'affinage bien définies. Il apparaît qu'au lieu de mettre en oeuvre un système tel que représenté sur la fig. 2, qui permet de faire fonctionner la lance de manière optimale pour n'importe quel état de fonctionnement inclu dans la plage 50, on peut également, par de simples essais, déterminer une fois pour toutes les quelques états de fonctionnement (p. ex. 52, ... 55) dont on a normalement besoin au cours de l'affinage et n'utiliser que ceux-ci.In fig. 4 a distinction is made between the characteristics, from a flow and speed point of view, of a blowing oxygen jet that can be produced by the lance according to the invention. On the abscissa is the Mach number M and on the ordinate the oxygen flow rate Q in Nm³ / min leaving the nozzle 1. Depending on the geometric dimensions of the nozzle 1 (section of the duct upstream of the nozzle, shape of the convergent , maximum and minimum sections of the neck, distance to the mouth, etc.) there is a range 50 in which the operating modes of the lance are optimal. One can obviously leave this range, eg obtain a Mach number significantly greater than M Mach by greatly increasing the pressure upstream of the convergent, but in this case there will also be high energy losses (in particular shock waves). In range 50 is also shown an example of path 51 scanned during the blowing process, with different operating states 52, 53, 54, 55, corresponding to well-defined refining phases. It appears that instead of implementing a system as shown in FIG. 2, which makes it possible to operate the lance optimally for any operating state included in the range 50, it is also possible, by simple tests, to determine once and for all the few operating states (e.g. 52, ... 55) which is normally needed during ripening and use only these.

L'invention a été exposée a l'aide de tubes extérieur et intérieur de forme sensiblement cylindrique. Il est bien évident que n'importe quelle forme (p. ex. ovale) permettant de respecter les relations de Laval peut être utilisée. Pareillement au lieu d'utiliser une aiguille ou une "ceinture" gazeuse, on peut utiliser n'importe quel autre moyen aboutissant à un changement de section effective.The invention has been exposed using outer and inner tubes of substantially cylindrical shape. It is quite obvious that any shape (eg oval) allowing to respect Laval relations can be used. Similarly, instead of using a needle or a gaseous "belt", any other means can be used, leading to a change in effective section.

Claims (10)

1. Lance pour l'affinage de métaux ou de ferro-alliages par souff­lage d'oxygène par le haut, dont la tête présente au moins une tuyère guidant des jets de gaz composés au moins en partie d'oxygène, caractérisée en ce que la tuyère se compose d'un conduit intérieur dont la partie inférieure ébauche une tuyère de Laval présentant un convergent, un col ainsi qu'une partie d'un divergent aboutissant à l'embouchure du conduit intérieur et d'un conduit extérieur, coaxial au conduit intérieur, ayant une sec­tion droite supérieure à celle du conduit intérieur et aboutis­sant à l'embouchure de la tuyère, en ce qu'il est prévu des moyens pour changer la section du col du conduit intérieur, en ce que l'embouchure du conduit intérieur est située en retrait de l'embouchure de la tuyère et en ce que le conduit intérieur est muni d'une vanne de régulation de débit et le conduit extérieur de moyens pour limiter la vitesse du gaz à des valeurs subso­niques.1. Lance for refining metals or ferro-alloys by blowing oxygen from above, the head of which has at least one nozzle guiding gas jets composed at least in part of oxygen, characterized in that the nozzle consists of an interior conduit, the lower part of which forms a Laval nozzle having a convergent, a neck as well as part of a divergent pipe leading to the mouth of the interior conduit and an exterior conduit, coaxial with the conduit interior, having a cross section greater than that of the interior conduit and leading to the mouth of the nozzle, in that means are provided for changing the section of the neck of the interior conduit, in that the mouth of the interior conduit is located back from the mouth of the nozzle and in that the inner conduit is provided with a flow control valve and the outer conduit means for limiting the speed of the gas to subsonic values. 2. Lance selon la revendication 1, caractérisée en ce que les moyens pour changer la section du col du conduit intérieur sont consti­tués par une pièce sensiblement en forme d'aiguille déplaçable le long de l'axe du conduit intérieur, la partie aigue de l'aiguille pouvant prendre différentes positions dans le col du conduit intérieur.2. Lance according to claim 1, characterized in that the means for changing the section of the neck of the inner duct consist of a part substantially in the shape of a needle movable along the axis of the inner duct, the acute part of the needle can take different positions in the neck of the inner duct. 3. Lance selon la revendication 1, caractérisée en ce que les moyens pour changer la section du col du conduit intérieur sont consti­tués par une ouverture annulaire prévue dans la partie conver­gente du conduit intérieur et reliée à une source de gaz à pression variable.3. Lance according to claim 1, characterized in that the means for changing the section of the neck of the inner duct consist of an annular opening provided in the converging part of the inner duct and connected to a source of gas at variable pressure. 4. Lance selon la revendication 3, caractérisée en ce que l'ouver­ture annulaire est en plusieurs morceaux séparés par des éléments de paroi du convergent.4. Lance according to claim 3, characterized in that the annular opening is in several pieces separated by wall elements of the convergent. 5. Lance selon la revendication 3, caractérisée en ce qu'il est prévu, dans la partie divergente du conduit intérieur, un "filtre" supersonique, reliant le conduit intérieur au conduit extérieur.5. Lance according to claim 3, characterized in that there is provided, in the divergent part of the inner conduit, a supersonic "filter", connecting the inner conduit to the outer conduit. 6. Lance selon la revendication 5, caractérisée en ce que le "filtre" supersonique est constitué par des évidements usinés dans la paroi de la partie divergente du conduit intérieur.6. Lance according to claim 5, characterized in that the supersonic "filter" is constituted by recesses machined in the wall of the divergent part of the inner duct. 7. Lance selon la revendication 1, caractérisée en ce que les moyens pour limiter la vitesse du gaz dans le conduit extérieur à des valeurs subsoniques sont constitués par une vanne à ouverture variable.7. Lance according to claim 1, characterized in that the means for limiting the speed of the gas in the external conduit to subsonic values consist of a valve with variable opening. 8. Lance selon la revendication 1, caractérisée en ce que les moyens pour limiter la vitesse du gaz dans le conduit extérieur à des valeurs subsoniques sont constitués par une tuyère de Laval annu­laire suivie d'une cavité.8. Lance according to claim 1, characterized in that the means for limiting the speed of the gas in the external conduit to subsonic values consist of an annular Laval nozzle followed by a cavity. 9. Lance selon la revendication 1, caractérisée en ce que l'embou­chure du conduit intérieur est située d'une dizaine de centimètres en retrait de l'embouchure de la tuyère.9. Lance according to claim 1, characterized in that the mouth of the inner conduit is located about ten centimeters back from the mouth of the nozzle. 10. Lance selon la revendication 1, caractérisée en ce que la section droite du tube intérieur vaut au moins 50 % et au plus 90 % de celle du tube extérieur.10. Lance according to claim 1, characterized in that the cross section of the inner tube is at least 50% and at most 90% of that of the outer tube.
EP87101777A 1986-02-25 1987-02-09 Lance for blowing oxygen Expired - Lifetime EP0235621B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87101777T ATE77839T1 (en) 1986-02-25 1987-02-09 OXYGEN BLOWING LANCE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU86322 1986-02-25
LU86322A LU86322A1 (en) 1986-02-25 1986-02-25 OXYGEN BLOWING LANCE

Publications (3)

Publication Number Publication Date
EP0235621A2 true EP0235621A2 (en) 1987-09-09
EP0235621A3 EP0235621A3 (en) 1989-03-15
EP0235621B1 EP0235621B1 (en) 1992-07-01

Family

ID=19730647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87101777A Expired - Lifetime EP0235621B1 (en) 1986-02-25 1987-02-09 Lance for blowing oxygen

Country Status (10)

Country Link
US (1) US4730784A (en)
EP (1) EP0235621B1 (en)
JP (1) JPH0826388B2 (en)
AT (1) ATE77839T1 (en)
AU (1) AU580471B2 (en)
BR (1) BR8700867A (en)
CA (1) CA1323758C (en)
DE (1) DE3780042T2 (en)
ES (1) ES2032762T3 (en)
LU (1) LU86322A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364722A1 (en) * 1988-09-28 1990-04-25 Arbed S.A. Oxygen blast pipe
EP0490101A1 (en) * 1990-12-10 1992-06-17 Arbed S.A. Blast pipe
US6709630B2 (en) 2001-12-03 2004-03-23 The BOC Group, plc. Metallurgical lance and apparatus
WO2010136029A3 (en) * 2009-05-27 2011-07-07 Saar-Metallwerke Gmbh Use of an altitude-compensating nozzle
WO2011120937A3 (en) * 2010-03-31 2012-02-16 Sms Siemag Ag Device for injecting gas into a metallurgical vessel

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911744A (en) * 1987-07-09 1990-03-27 Aga A.B. Methods and apparatus for enhancing combustion and operational efficiency in a glass melting furnace
US6133577A (en) * 1997-02-04 2000-10-17 Advanced Energy Systems, Inc. Method and apparatus for producing extreme ultra-violet light for use in photolithography
DE19755876C2 (en) * 1997-12-04 2000-02-24 Mannesmann Ag Blow lance for treating metallic melts and method for blowing in gases
US6065203A (en) * 1998-04-03 2000-05-23 Advanced Energy Systems, Inc. Method of manufacturing very small diameter deep passages
US6194733B1 (en) 1998-04-03 2001-02-27 Advanced Energy Systems, Inc. Method and apparatus for adjustably supporting a light source for use in photolithography
US6105885A (en) 1998-04-03 2000-08-22 Advanced Energy Systems, Inc. Fluid nozzle system and method in an emitted energy system for photolithography
US6180952B1 (en) 1998-04-03 2001-01-30 Advanced Energy Systems, Inc. Holder assembly system and method in an emitted energy system for photolithography
IT1302798B1 (en) * 1998-11-10 2000-09-29 Danieli & C Ohg Sp INTEGRATED DEVICE FOR THE INJECTION OF OXYGEN AND GASTECNOLOGICS AND FOR THE INSUFFLATION OF SOLID MATERIAL IN
AT411530B (en) * 2002-08-21 2004-02-25 Voest Alpine Ind Anlagen Decarburization of molten stainless steel in a converter involves delivering the treatment gas through an opening below the molten level and blower lances above it, to mix the gas thoroughly through the molten metal
US20090016150A1 (en) * 2007-07-13 2009-01-15 Emile Mimran Ice cream and topping mixing attachment
JP5273125B2 (en) * 2010-11-04 2013-08-28 新日鐵住金株式会社 Molten metal vacuum refining nozzle
CN102643946B (en) * 2012-04-24 2013-11-06 北京科技大学 Converter steelmaking method through power injection dephosphorization by adopting supersonic speed oxygen lance and supersonic speed oxygen lance
DE102012213927A1 (en) 2012-08-07 2013-06-06 Carl Zeiss Smt Gmbh Device for generating gas curtain for deflecting contaminating substances in extreme UV-mask metrological system, has nozzle with nozzle section, where pressure of supersonic-gas flow is not larger than specific percent of ambient pressure
CN107779545A (en) * 2017-10-25 2018-03-09 江阴市弘诺机械设备制造有限公司 A kind of electric furnace arrangement for producing steel wall lance
CN110961044A (en) * 2018-09-30 2020-04-07 中国石油天然气股份有限公司 Nozzle for lifting pipe of catalytic cracking unit and application thereof
CN109680118B (en) * 2019-02-27 2024-02-06 中冶赛迪工程技术股份有限公司 Coaxial double supersonic oxygen flow bundling oxygen gun
KR102263289B1 (en) * 2019-08-02 2021-06-09 주식회사 포스코 Apparatus for adjusting velocity of melter-gasifier tuyere
CN111467722B (en) * 2020-05-21 2023-07-04 南京湛泸科技有限公司 Fire-fighting sand blasting gun tube and design method of molded surface thereof
GB2596317B (en) * 2020-06-24 2023-11-15 Douwe Egberts Bv Variable opening nozzle and beverage preparation machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT174388B (en) * 1951-12-07 1953-03-25 Voest Ag Method and device for the treatment of molten metal covered with slag by blowing gases
AT216032B (en) * 1959-02-20 1961-07-10 Arbed Device for blowing a metal bath from above
US3130252A (en) * 1959-02-20 1964-04-21 Arbed Lances for treatment of metal baths
GB1198112A (en) * 1966-07-27 1970-07-08 Nippon Kokan Kk Method and Apparatus for Making Steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US736473A (en) * 1902-10-24 1903-08-18 Ernest M Arnold Oil-burner.
NL81050C (en) * 1951-03-22 1956-04-16
LU44701A1 (en) * 1962-12-04 1963-12-27
FR2108856A1 (en) * 1970-10-13 1972-05-26 Siderurgie Fse Inst Rech PROCESS FOR THE INTRODUCTION OF AUXILIARY FUELS IN A BLANKET AND TUBE FOR THE IMPLEMENTATION OF THIS PROCESS
US4022447A (en) * 1976-02-23 1977-05-10 United States Steel Corporation Supersonic nozzle for submerged tuyere oxygen steelmaking process
AU543552B2 (en) * 1978-12-26 1985-04-26 Sumitomo Metal Industries Ltd. Gasification of solid carbonaceous materials
SE447675B (en) * 1982-10-15 1986-12-01 Ifm Dev Ab Nozzle for injection injection
JPS59145717A (en) * 1983-02-04 1984-08-21 ユジンヌ・アシエ Oxygen jetting nozzle for jetting stable supersonic speed stream for decarbonizing cast iron, particularly chrome castiron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT174388B (en) * 1951-12-07 1953-03-25 Voest Ag Method and device for the treatment of molten metal covered with slag by blowing gases
AT216032B (en) * 1959-02-20 1961-07-10 Arbed Device for blowing a metal bath from above
US3130252A (en) * 1959-02-20 1964-04-21 Arbed Lances for treatment of metal baths
GB1198112A (en) * 1966-07-27 1970-07-08 Nippon Kokan Kk Method and Apparatus for Making Steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364722A1 (en) * 1988-09-28 1990-04-25 Arbed S.A. Oxygen blast pipe
EP0490101A1 (en) * 1990-12-10 1992-06-17 Arbed S.A. Blast pipe
US6709630B2 (en) 2001-12-03 2004-03-23 The BOC Group, plc. Metallurgical lance and apparatus
WO2010136029A3 (en) * 2009-05-27 2011-07-07 Saar-Metallwerke Gmbh Use of an altitude-compensating nozzle
WO2011120937A3 (en) * 2010-03-31 2012-02-16 Sms Siemag Ag Device for injecting gas into a metallurgical vessel
CN102884207A (en) * 2010-03-31 2013-01-16 Sms西马格股份公司 Vice for injecting gas into a metallurgical vessel
CN102884207B (en) * 2010-03-31 2014-07-09 Sms西马格股份公司 Vice for injecting gas into a metallurgical vessel

Also Published As

Publication number Publication date
JPH0826388B2 (en) 1996-03-13
EP0235621A3 (en) 1989-03-15
CA1323758C (en) 1993-11-02
BR8700867A (en) 1987-12-22
EP0235621B1 (en) 1992-07-01
ES2032762T3 (en) 1993-03-01
JPS62207815A (en) 1987-09-12
LU86322A1 (en) 1987-09-10
AU580471B2 (en) 1989-01-12
AU6925387A (en) 1987-08-27
DE3780042T2 (en) 1992-12-24
ATE77839T1 (en) 1992-07-15
DE3780042D1 (en) 1992-08-06
US4730784A (en) 1988-03-15

Similar Documents

Publication Publication Date Title
EP0235621B1 (en) Lance for blowing oxygen
BE1017673A3 (en) METHOD AND DEVICE FOR PROJECTING PULVERULENT MATERIAL INTO A CARRIER GAS.
EP1016825B1 (en) Combustion method and uses thereof in producing glass and metal
RU2135604C1 (en) Method of top blowing of oxygen-containing gas through metal melt and lance for treatment of metal liquid melt
CA2794247C (en) Device for injecting gas into a metallurgical vessel
JP2009544925A (en) Flame burner and method for flame treatment of metal surface
EP0125198B1 (en) Apparatus for accelerating solid particles
EP0615481A1 (en) Method of supplying laser cutting gas and cutting apparatus implementing such a method.
EP0023172A1 (en) Anti-vibration valve
EP0364722B1 (en) Oxygen blast pipe
FR2841486A1 (en) METHOD FOR ESTABLISHING AT LEAST ONE JET OF COHERENT GAS AND LANCE OF COHERENT JETS
EP0318352B1 (en) Carbon dioxide lance for metallurgy
EP0211295A1 (en) Method and apparatus for pneumatically injecting dosed pulverized solid material into a changing-pressure reactor
CA1042208A (en) Adjustably positionable supersonic nozzle means
EP0046721B1 (en) Nozzle for oxygen-injection lances used in the decarburisation of pig iron, in particular chromium pig iron
EP0234389B1 (en) Tuyere for refining lances
CA1153685A (en) Method and means for dispersing combustion gases in the atmosphere
FR2533015A1 (en) METHOD AND DEVICE FOR INJECTING LIQUEFIED PRESSURIZING GAS INTO CONTAINERS
EP0234388A2 (en) Lance for blowing oxygen
LU87355A1 (en) OXYGEN BLOWING LANCE
EP0165198A2 (en) Lance for accelerating solid particles
Lemanov et al. The effect of intermittency on the transition to turbulence in the jets
FR2797738A1 (en) Electric arc furnace supersonic gas injection process, especially for oxygen injection into a steel-making arc furnace, uses a surrounding gas jet to protect the supersonic gas jet against the ambient atmosphere
BE472735A (en)
FR2540519A2 (en) Nozzle for injecting oxygen in a stabilised supersonic jet for decarburisation of molten metals, and, in particular, molten chromium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19890414

D17P Request for examination filed (deleted)
R17P Request for examination filed (corrected)

Effective date: 19890414

R17P Request for examination filed (corrected)

Effective date: 19890414

17Q First examination report despatched

Effective date: 19910314

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 77839

Country of ref document: AT

Date of ref document: 19920715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3780042

Country of ref document: DE

Date of ref document: 19920806

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87101777.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: PAUL WURTH S.A.

NLS Nl: assignments of ep-patents

Owner name: PAUL WURTH S.A.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010111

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010113

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010116

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010118

Year of fee payment: 15

Ref country code: GB

Payment date: 20010118

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010312

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010319

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020209

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

BERE Be: lapsed

Owner name: S.A. PAUL WURTH

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903

EUG Se: european patent has lapsed

Ref document number: 87101777.8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050209