EP0223991A1 - Process for cooling oxygen injection tuyères in the oxygen treatment of pig iron or steel - Google Patents

Process for cooling oxygen injection tuyères in the oxygen treatment of pig iron or steel Download PDF

Info

Publication number
EP0223991A1
EP0223991A1 EP86113945A EP86113945A EP0223991A1 EP 0223991 A1 EP0223991 A1 EP 0223991A1 EP 86113945 A EP86113945 A EP 86113945A EP 86113945 A EP86113945 A EP 86113945A EP 0223991 A1 EP0223991 A1 EP 0223991A1
Authority
EP
European Patent Office
Prior art keywords
cooling
oxygen
steel
liquid
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86113945A
Other languages
German (de)
French (fr)
Inventor
Eckehard Prof. Dr.-Ing. Förster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neue Hamburger Stahlwerke GmbH
Hamburger Stahlwerke GmbH
Original Assignee
Neue Hamburger Stahlwerke GmbH
Hamburger Stahlwerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neue Hamburger Stahlwerke GmbH, Hamburger Stahlwerke GmbH filed Critical Neue Hamburger Stahlwerke GmbH
Publication of EP0223991A1 publication Critical patent/EP0223991A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4646Cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/24Cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C2005/4626Means for cooling, e.g. by gases, fluids or liquids

Definitions

  • the invention relates generically to a method for cooling oxygen bin blowing nozzles having at least one cooling element in the oxygen treatment of pig iron or steel in a bottom blowing converter, Siemens biartin furnace, electric furnace or in another metallurgical vessel, with the cooling jacket a liquid is passed through and the oxygen injection nozzle is kept at a temperature below 600 ° C.
  • a liquid is passed through and the oxygen injection nozzle is kept at a temperature below 600 ° C.
  • the cooling liquid is water, the disadvantages described occurring. It is not circulated through a heat exchanger, but taken from a storage facility or network and fed to the wastewater.
  • the invention has for its object to carry out the generic method so that an explosion due to penetration of the cooling liquid in the liquid steel in the event of breakage of a bias nozzle can no longer arise and that a sufficient cooling effect is also ensured.
  • the invention teaches that a liquid metal is used as the cooling liquid and this is recirculated in the circuit via a heat exchanger for removing the warm that is taken up in the oxygen injection nozzle.
  • a liquid metal with a boiling point of at least 600 ° C. is used.
  • Liquid metals that can be used as coolants are sodium and potassium and their alloys, as well as lithium or lithium / lead alloys, the temperature when entering the heating jacket is between -10 ° C. and 600 ° C.
  • the cooling can, however, also be carried out as auxiliary cooling with a liquefied metal which already has a temperature of 400 ° C. or more when it enters the cooling jacket.
  • a pump must be used for the circuit. Since the use of a liquid metal as a coolant does not result in the pressure waves resulting in an explosive ejection of the molten steel when a blow-in nozzle breaks, it is not necessary, in the manner described at the outset, to clean the liquid metal through the nickel shell of the oxygen blow-in nozzle, It is also possible to print the liquid metal through the cooling jacket using a pump. This allows a large flow of electricity and thereby intensive cooling.
  • the converter 1 recognizable in the figure has the usual design and lining, Kan recognizes the metal bath 2 and a slag layer 3 as well as in the bottom 4 of the converter 1 a Saubstoff-Eimbisadüse 5, which has a sensing jacket.
  • the blowing in of the oxygen, to which another gas or a processing agent for the melt can be added, is carried out in such a way that a metal bubble 7 with an emulsified slag is obtained via the chlack layer.
  • the cooling liquid which is introduced into the cooling jacket 6 of the oxygen blowing nozzle 5 is a liquid concrete. which in Circulation is pumped over a heat exchanger 8.
  • the pump ⁇ is a pressure pump in the exemplary embodiment. It can also be a singing pump.
  • the heat exchanger 8 is designed in such a way that the heat absorbed in the oxygen injection nozzle is dissipated in the heat exchanger 8.
  • the heat-dissipating heat transfer medium in the heat exchanger 8 is, for example, hater, which is fed in at 10 and discharged at 11.
  • the height of the metal circuit is appropriately arranged so that the pressure of the liquid metal in the gas is only slightly above or below the hydrostatic pressure of the iron bath on the nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

In the process for cooling oxygen injection tuyères, having at least one cooling jacket, in the oxygen treatment of pig iron or steel in a metallurgical vessel, for example a bottom-blowing converter, Siemens-Martin furnace or electric furnace, a cooling fluid is passed through the cooling jacket. The cooling fluid used is a molten metal and this is circulated via a heat exchanger to remove the heat absorbed in the oxygen injection tuyère. <IMAGE>

Description

Die Erfindung bczieht sich gattungsgeniäß auf ein Verfahren zur Kühlung von zumindest einen Kühhlmntol aufweisenden Sauerstoff-Binblasdüsen bei der Sauerstoff-Behandlung von Roheisen oder Stahl in einem bodenblasenden Konverter, Siemens-biartin-Ofen, Elektroofen oder in einer anderen metallurgischen Gefäß, wobei durch den Kühlmantel eine Fllüssigkeit hindurchageführt wird und die Sauerstoff-Einblasüse auf einer Temperatur von unter 600°C gehalten wird. - Im Zusammenhang mit der Sauerstoff-Behandlung von Hoheison oder Stahl ist mit Bezug auf die Erfindung historisch folgendes bemerkenswert:The invention relates generically to a method for cooling oxygen bin blowing nozzles having at least one cooling element in the oxygen treatment of pig iron or steel in a bottom blowing converter, Siemens biartin furnace, electric furnace or in another metallurgical vessel, with the cooling jacket a liquid is passed through and the oxygen injection nozzle is kept at a temperature below 600 ° C. - In connection with the oxygen treatment of Hoheison or steel, the following is historically noteworthy with regard to the invention:

Die Behandlung von flüssigem Eisen, insbesondere Roheisen oder Stahl, n.it Sauerstoff wurde in der Vergangenheit hauptsächlich so durchgeführt. daß Sauerstoff auf das Metallbad aus wassergekühlten Düsen aufgeblasen wurde, die ihrerseits aus Kupfer bestanden. So begann die sogenannte Saverstoofmetallurgie. Schon in der Anfangszeit der Sauersoffnetallurgie war das Aufblasen des Sauerstoffes jedoch nicht unumstritten. so versuchte man schon in den suer Jahren, Sauerstoff von unten direkt in das flüssige Eisen oder in den flüssigen Stahl einzublasen. Dazu arbeitete man mit wassergekühlten Güsen, die wiederum ihrerseits aus Kupfer aufgebaut wurden. Diese wassergekülter inblasdüsen sind insoweit problematisch, als bei einem Bruch der inblasüsen basser in die flüssige Schmelze gedrückt wird, was zu schweren Explosionen führen kann. Um diese Gefahr zu reduzieren, saugte man des Wasser durch die einblasdüsen, das reduzierte jedoch gleichzeitig die Kühlleistung. Andoreiseits weiß man, daß das Einblasen von Sauerstoff von unten in die Schneize hinein beachtliche Vorteile bringt. Die Bedingungen für die Bildung der Kohlenoxidbisen bei der Entkohlung sind wegen Keimildung günstiger. Die Blasgcschwindigkeit kann erhöht werden. Der sogenannte Auswurf kann verringert werden. Sehr wesentlich ist auch, daß dem Sauerstoff Kalk beigegeben werden kann. Dabei wird die metallurgische Hirksamkeit des kals aus verschiedenen Gründen wesentlich verbessert. In abrigen ist vorgeschlagen worden, das Einblasen von Sauorstoff von unten in die Schmelze hinein auch bei Siemens-Martin-Gfen durchzuführen. Hier arbeitete man mit gasgekühlten Düsen. Bei zwei konzentrisch angeordneten Rohren wurde durch das innere Rohr Sauerstoff in die Schmelze eingeführt, durch das äußere Rohr ein Kühlgas, nämlich Erdgas. Diese Verfahrensweise wurde auch auf Konverter übertragen. Man kann so auch Schrott mit Kohle und Sauerstoff einschmelzen. Nichtsdestoweniger bestehen beachtliche Nachteile: Bei Kühlung mit einem Erdgas nimmt die Schmelze Wasserstoff auf, der für die meisten Stahlqualitäten sehr schädlich ist und entweder über eine Vakuumentgasung oder über ein spülen mit Argon entfernt werden muB. Der Brdgasverbrauch verursacht nicht unerhebliche zusätzliche Kosten. Dat über hinaus brennen die Einblasdüsen gelegentlich unkontrolliert ab, was zu Durchbrüchen des metallur gischen Gefäßes führen kann.The treatment of liquid iron, especially pig iron or steel, with oxygen has mainly been carried out in the past. that oxygen was blown onto the metal bath from water-cooled nozzles, which in turn consisted of copper. So began the so-called Saverstoof Metallurgy. However, the inflation of oxygen was not uncontroversial even in the early days of oxygen-free metallurgy. Thus, in the early years, attempts were made to blow oxygen directly into the liquid iron or liquid steel from below. To do this, they worked with water-cooled geese, which in turn were built from copper. These water-cooled injection nozzles are problematic inasmuch as if the injection nozzles break, they are pressed more deeply into the liquid melt, which can lead to serious explosions. To reduce this risk, the water was sucked through the injection nozzles, but this also reduced the cooling capacity. On the other side, it is known that blowing oxygen into the cutting edge from below brings considerable advantages. The conditions for the formation of carbon oxides during decarburization are more favorable because of the nucleation. The blowing speed can be increased. The so-called ejection can be reduced. It is also very important that lime can be added to the oxygen. The metallurgical effectiveness of kals is significantly improved for various reasons. In others it has been proposed to blow in oxygen from below to carry out the smelting also at Siemens-Martin-Gfen. Here one worked with gas-cooled nozzles. In two concentrically arranged tubes, oxygen was introduced into the melt through the inner tube, and a cooling gas, namely natural gas, was introduced through the outer tube. This procedure was also applied to converters. You can also melt scrap with coal and oxygen. Nevertheless, there are considerable disadvantages: When cooling with natural gas, the melt absorbs hydrogen, which is very harmful to most steel grades and must be removed either by vacuum degassing or by flushing with argon. The consumption of natural gas causes considerable additional costs. In addition, the injection nozzles occasionally burn out in an uncontrolled manner, which can lead to breakthroughs in the metallurgical vessel.

Im Bahmen des (aus der Praxis) bekannten gattungsgemäßen Verfahrens ist die Kühlflüssigkeit Wasser, wobei die beschriebenen Nachteile auftreten. Es wird nicht im Kreislauf über einen wärmetauscher geführt, sondern einem Speicher oder Netz entnommen und dem Abwasser zugefürt.Within the scope of the generic method known from practice, the cooling liquid is water, the disadvantages described occurring. It is not circulated through a heat exchanger, but taken from a storage facility or network and fed to the wastewater.

Der Erfindung liegt die Aufgabe zugrunde, das gattungsgemäße Verfahren so zu führen, daß eine Explosion durch Eindringen der Kühlflüssigkeit in den flüssigen Stahl bei Bruch einer Einbiasdüse nicht mehr auftieten kann und daß außerden eine ausreichende Kühlwirkung sichergestellt ist.The invention has for its object to carry out the generic method so that an explosion due to penetration of the cooling liquid in the liquid steel in the event of breakage of a bias nozzle can no longer arise and that a sufficient cooling effect is also ensured.

Zur Lösung dieser Aufgabe lehrt die Erfindung, daß als Kühlflüssigkeit ein flüssiges Metall verwendet und dieses im Kreislauf über einen Warmetauscher zur Abfuhr der in der Sauerstoff-Einblasdüse aufgenommenen warme umgepunpt wird.To achieve this object, the invention teaches that a liquid metal is used as the cooling liquid and this is recirculated in the circuit via a heat exchanger for removing the warm that is taken up in the oxygen injection nozzle.

Nach bevorzugter Rusführungsform wir ein Flüssigmetall mit Siedepunkt von zomindest 600°C verwendet. Als Kühlmittel verwendbare Flüssigmetalle sind Natrium und Kalium sowie deren Legierungen sowie Lithiun: oder Lithium/Blei-Legierungen, wobei die Tenmperatur bei Eintritt in den huhlmpantel zwischen -10°C und 600°C liegt. Die Kühlung kann aber auch als Beibkühlung mit sinem verflüssigten Metall durchgeführt worden, welches bei Eintritt in den Kühlmantel bereits eine Temperatur von 400°C oder mehr aufweist.According to the preferred embodiment, a liquid metal with a boiling point of at least 600 ° C. is used. Liquid metals that can be used as coolants are sodium and potassium and their alloys, as well as lithium or lithium / lead alloys, the temperature when entering the heating jacket is between -10 ° C. and 600 ° C. The cooling can, however, also be carried out as auxiliary cooling with a liquefied metal which already has a temperature of 400 ° C. or more when it enters the cooling jacket.

Für die Kreislaufführnng muß mit einer Pumpe gearbeitet werden. Da oei Verwendung eines flüssigen Metalles als Kühlmittel bei Eintritt eines Einblasdüsenbruches die entstehenden Uruckwellen nicht zu einem explosionsartigen Auswerfen der Stahlschmelze führen, ist es nicht erforderlich, in der eingangs beschriebenen Art und weise das Flüssiga ctall gleichsan durch den nuhimantel der Sauerstoff-Einblasdüse zu saupen, Es besteht vielmehr auch die Möglichkeit, das flüssige Metall mit Billf einer Pumpe durch den Kühlmantel zu drucken. Das erlaubt einen grofieren engestrom und auch dadurch eine intensive Kühlung.A pump must be used for the circuit. Since the use of a liquid metal as a coolant does not result in the pressure waves resulting in an explosive ejection of the molten steel when a blow-in nozzle breaks, it is not necessary, in the manner described at the outset, to clean the liquid metal through the nickel shell of the oxygen blow-in nozzle, It is also possible to print the liquid metal through the cooling jacket using a pump. This allows a large flow of electricity and thereby intensive cooling.

In folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung ausführlicher erläutert. Die einzige Figur zeigt einen Konverter, der eine Sauerstoffblasdüse sufweist, welche für das erfindungsgamäße Verfahren eingerichtet ist.In the following, the invention will be explained in more detail with reference to a drawing showing only one embodiment. The single figure shows a converter which has an oxygen blowing nozzle which is set up for the method according to the invention.

Der in der Figur erkennbare Konverter 1 besitzt die übliche Gestaltung und eine übliche Auskleidung, Kan erkennt das Metallbad 2 und eine Schlackenschicht 3 sovie im boden 4 des konverters 1 eine Saubi- stoff-Eimbisadüse 5, die einen Fühlmantele aufweist. Das Einblasen des Sauerstoffes, dem ein anderes Gas oder ein Eehandlungsmuttel für die Schmelze beigegeben sein kann, erfolgt so, daß sien über den, chlackenspiagel gleichsem ein Matallsprudel 7 mit enulgierter Schlacke iffdet. Die Kuhlflüssigkeit, die in den kühlmantel 6 der Sauerstoffbinblasdüse 5 eingeführt wird, ist ein flüssiges betall. welches im Kreislauf über einen wärrmatauscher 8 umgepumpt wird. Die Pumpe θ ist im Ausführungsbeispiel eine Druckpumpe. Sie kann auch eine Sangpumpe sein. Der Wärmetauscher 8 ist so ausgelegt, daß im Wärme- tauscher 8 eine Abfuhr der in der Sauerstoff-Einissdüss aufgenommenen Warme erfolgt. Der wärmeabführende Wärmeträger im wärmeaustauscher 8 ist beispielsweise Hasser, welches bei 10 zugeführt und bei 11 abgeführt wird. Der N'etallkreislauf wird in seiner Höhe zweckmäßig so angcordnet, daß der Uruck des Flüssigmatalls in der Güse nur wenig über oder unter dem hydrostatischen Druck des Eisenbades auf der Füse liegt.The converter 1 recognizable in the figure has the usual design and lining, Kan recognizes the metal bath 2 and a slag layer 3 as well as in the bottom 4 of the converter 1 a Saubstoff-Eimbisadüse 5, which has a sensing jacket. The blowing in of the oxygen, to which another gas or a processing agent for the melt can be added, is carried out in such a way that a metal bubble 7 with an emulsified slag is obtained via the chlack layer. The cooling liquid which is introduced into the cooling jacket 6 of the oxygen blowing nozzle 5 is a liquid concrete. which in Circulation is pumped over a heat exchanger 8. The pump θ is a pressure pump in the exemplary embodiment. It can also be a singing pump. The heat exchanger 8 is designed in such a way that the heat absorbed in the oxygen injection nozzle is dissipated in the heat exchanger 8. The heat-dissipating heat transfer medium in the heat exchanger 8 is, for example, hater, which is fed in at 10 and discharged at 11. The height of the metal circuit is appropriately arranged so that the pressure of the liquid metal in the gas is only slightly above or below the hydrostatic pressure of the iron bath on the nozzle.

Claims (6)

1. Verfahren zur Kühlung von zumindest einen Kühlmantel aufweisenden Sauerstoff-Einblasdüsen bei der Sauerstoff-Behandlung von Boheisen oder Stahl in einem bodenblasenden Konverter, Siernens-Martin-Ofen, Elektroofen oder anderem metallurgischen Gefäß,
wobei durch den Kühlmantel eine Kühlflüssigkoit hindurchgoführc wird,
und die Sauerstoff-Einblasdüse auf einer Temperatur von unter 600 °C gehalten wird, dadurch gekennzeichnet, daß als Kühlflüssigkeit ein flüssiges Metall verwendet und dieses im Kreislauf über einen Wärmetauscher zur Abfuhr der in der Sauerstoff-Einblasdüse aufgenommenen Wärme umgepumpt wird.
1. A method for cooling oxygen injection nozzles having at least one cooling jacket in the oxygen treatment of iron or steel in a bottom-blowing converter, Siernens-Martin furnace, electric furnace or other metallurgical vessel,
wherein a cooling liquid is passed through the cooling jacket,
and the oxygen injection nozzle is kept at a temperature of below 600 ° C, characterized in that a liquid metal is used as the cooling liquid and this is pumped around in a circuit via a heat exchanger for removing the heat absorbed in the oxygen injection nozzle.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Flüssigrnetall mit Siedepunkt über 600 *C verwendet wird.2. The method according to claim 1, characterized in that a liquid metal with a boiling point above 600 * C is used. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Flüssigmetall Natrium oder Kalium und/oder deren Legierungen verwendet wird.3. The method according to claim 2, characterized in that sodium or potassium and / or their alloys is used as the liquid metal. 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Flüssigmetall Lithium oder eine Lithium/Blei-Legierung verwendet wird.4. The method according to claim 2, characterized in that lithium or a lithium / lead alloy is used as the liquid metal. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Kühlung als Heißkühlung mit einem verflüssigten Metall durchgeführt wird, welches bei Eintritt in den Kühlmantel eine Temperatur von 400 °C oder mehr aufweist.5. The method according to claim 1, characterized in that the cooling is carried out as a hot cooling with a liquefied metal which has a temperature of 400 ° C or more when entering the cooling jacket. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das flüssige Metall mit Hilfe einer Pumpe durch den Kühlmantel geführt wird.6. The method according to any one of claims 1 to 5, characterized in that the liquid metal is passed through the cooling jacket with the aid of a pump.
EP86113945A 1985-11-27 1986-10-08 Process for cooling oxygen injection tuyères in the oxygen treatment of pig iron or steel Withdrawn EP0223991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3541909 1985-11-27
DE3541909A DE3541909C1 (en) 1985-11-27 1985-11-27 Process for cooling oxygen injection nozzles during the oxygen treatment of pig iron or steel

Publications (1)

Publication Number Publication Date
EP0223991A1 true EP0223991A1 (en) 1987-06-03

Family

ID=6286983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86113945A Withdrawn EP0223991A1 (en) 1985-11-27 1986-10-08 Process for cooling oxygen injection tuyères in the oxygen treatment of pig iron or steel

Country Status (13)

Country Link
EP (1) EP0223991A1 (en)
JP (1) JPS62196315A (en)
KR (1) KR870005102A (en)
CN (1) CN86107834A (en)
AU (1) AU6466386A (en)
BR (1) BR8605740A (en)
CS (1) CS262680B2 (en)
DD (1) DD250722A5 (en)
DE (1) DE3541909C1 (en)
FI (1) FI864322A (en)
HU (1) HU195257B (en)
PL (1) PL262478A1 (en)
ZA (1) ZA867898B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302405A2 (en) * 1987-08-01 1989-02-08 Kawasaki Jukogyo Kabushiki Kaisha Pouring device of molten-metal-containing vessel
WO1992007965A1 (en) * 1990-10-31 1992-05-14 Minproc Technology, Inc Metallurgical lance
EP0834579A1 (en) * 1996-09-27 1998-04-08 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Cooling system for electrodes in D.C. electric arc furnaces
WO1999022032A1 (en) * 1997-10-24 1999-05-06 Mcgill University Inclined heat pipe lance or tuyere with controllable heat extraction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10252276C1 (en) * 2002-11-11 2003-10-30 Rhi Ag Wien Metallurgical melting apparatus used as an electric furnace comprises a refractory ceramic lining through which extends a nozzle arrangement for introducing a fluid into a molten metal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE763565C (en) * 1938-10-11 1951-12-20 Otto Dr-Ing Lellep Liquid-cooled base for converter
DE1103366B (en) * 1958-01-25 1961-03-30 Steinmueller Gmbh L & C Process for cooling highly stressed parts in metallurgical or chemical furnaces
GB880784A (en) * 1958-02-12 1961-10-25 Steinmueller Gmbh L & C Improvements relating to the high-temperature cooling of industrial furnaces
US3744780A (en) * 1972-01-07 1973-07-10 Applied Techn Corp Method of treating molten material by use of a lance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE763565C (en) * 1938-10-11 1951-12-20 Otto Dr-Ing Lellep Liquid-cooled base for converter
DE1103366B (en) * 1958-01-25 1961-03-30 Steinmueller Gmbh L & C Process for cooling highly stressed parts in metallurgical or chemical furnaces
GB880784A (en) * 1958-02-12 1961-10-25 Steinmueller Gmbh L & C Improvements relating to the high-temperature cooling of industrial furnaces
US3744780A (en) * 1972-01-07 1973-07-10 Applied Techn Corp Method of treating molten material by use of a lance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302405A2 (en) * 1987-08-01 1989-02-08 Kawasaki Jukogyo Kabushiki Kaisha Pouring device of molten-metal-containing vessel
EP0302405A3 (en) * 1987-08-01 1990-05-23 Kawasaki Jukogyo Kabushiki Kaisha Pouring device of molten-metal-containing vessel
WO1992007965A1 (en) * 1990-10-31 1992-05-14 Minproc Technology, Inc Metallurgical lance
US5350158A (en) * 1990-10-31 1994-09-27 Mincorp Limited Metallurgical lance and method of cooling the lance
EP0834579A1 (en) * 1996-09-27 1998-04-08 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Cooling system for electrodes in D.C. electric arc furnaces
US5889809A (en) * 1996-09-27 1999-03-30 Danieli & C. Officine Meccaniche Spa Cooling system for electrodes in D.C. electric arc furnaces
WO1999022032A1 (en) * 1997-10-24 1999-05-06 Mcgill University Inclined heat pipe lance or tuyere with controllable heat extraction

Also Published As

Publication number Publication date
HUT43650A (en) 1987-11-30
CS262680B2 (en) 1989-03-14
CN86107834A (en) 1987-05-27
DE3541909C1 (en) 1987-06-11
KR870005102A (en) 1987-06-04
BR8605740A (en) 1987-08-25
AU6466386A (en) 1987-06-04
CS861586A2 (en) 1988-08-16
JPH0137447B2 (en) 1989-08-07
JPS62196315A (en) 1987-08-29
PL262478A1 (en) 1987-10-05
FI864322A0 (en) 1986-10-24
ZA867898B (en) 1987-06-24
FI864322A (en) 1987-05-28
DD250722A5 (en) 1987-10-21
HU195257B (en) 1988-04-28

Similar Documents

Publication Publication Date Title
DD301971A9 (en) Method and apparatus for treating a liquid with a treatment gas
DE3616868C2 (en) Process for the extraction of non-ferrous metals
EP0223991A1 (en) Process for cooling oxygen injection tuyères in the oxygen treatment of pig iron or steel
DE2406480A1 (en) METHOD OF REFINING STEEL
DE2042811A1 (en) Melting process for decarburizing steel
US3754892A (en) Continuous method of steel making
DE60100659T2 (en) METHOD FOR TREATING ELECTRIC OVEN SLAGS
EP0010647B1 (en) Method and apparatus for producing steel from iron ore powder by direct reduction
DE19502302A1 (en) Means for the desulfurization of molten iron
JPH05195030A (en) Two-area countercurrent smelting equipment system
DE1433534A1 (en) Process for the production of alloy steel
AT234739B (en) Process for performing metallurgical processes in hearth furnaces
DE2543659C3 (en) Blast furnace wind shape
DE1292683B (en) Process for the production of corrosion-resistant steels
AT222372B (en) Process for removing suspended oxides from molten metal
DE2810458A1 (en) Production of ferrovanadium alloys - from slags with reduced vanadium loss
DE2937303A1 (en) UNIT WITH BLOWING NOZZLES, CALLED LANCK HEAD FOR BLOWING GASES, ON OR IN A BATH OF MOLTEN METAL
US1817935A (en) Pyrometallurgical copper refining
US1291656A (en) Method of recovering manganese steel.
DD261378A5 (en) HUETTENWERK AND PROCESS FOR OPERATING SUCH A HUTCH WORK
ATE231924T1 (en) VESSEL WITH WATER COOLING FOR THE VACUUM TREATMENT OF LIQUID STEEL
DD298432A5 (en) METHOD FOR THE DISPOSAL OF FILTER PIPES
DE1182436B (en) Process for removing suspended oxides from molten metal
DE5152A (en) Process for dephosphorization of iron by treating it in the liquid state with liquid haloid salts of the alkaline earth metals with the exclusion of the air and all oxidizing agents, as well as making use of the by-products occurring in the process
EP0061987A1 (en) Process and apparatus for treating molten metals in the framework of metallurgical processing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19890417

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19890520

R18W Application withdrawn (corrected)

Effective date: 19890520

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FOERSTER, ECKEHARD, PROF. DR.-ING.