EP0222073A2 - Switch pole for a power circuit breaker - Google Patents

Switch pole for a power circuit breaker Download PDF

Info

Publication number
EP0222073A2
EP0222073A2 EP86111125A EP86111125A EP0222073A2 EP 0222073 A2 EP0222073 A2 EP 0222073A2 EP 86111125 A EP86111125 A EP 86111125A EP 86111125 A EP86111125 A EP 86111125A EP 0222073 A2 EP0222073 A2 EP 0222073A2
Authority
EP
European Patent Office
Prior art keywords
potential
insulating housing
switching chamber
vacuum interrupter
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86111125A
Other languages
German (de)
French (fr)
Other versions
EP0222073A3 (en
Inventor
Klaus Dr.-Ing. Böhme
Michael Dr.-Ing. Digmayer
Heinz Dipl.-Ing. Schneidereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VEB "Otto Buchwitz" Starkstrom-Anlagenbau Dresden
Original Assignee
VEB "Otto Buchwitz" Starkstrom-Anlagenbau Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VEB "Otto Buchwitz" Starkstrom-Anlagenbau Dresden filed Critical VEB "Otto Buchwitz" Starkstrom-Anlagenbau Dresden
Publication of EP0222073A2 publication Critical patent/EP0222073A2/en
Publication of EP0222073A3 publication Critical patent/EP0222073A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/24Means for preventing discharge to non-current-carrying parts, e.g. using corona ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations

Definitions

  • the invention relates to a switch pole for circuit breakers, consisting of a vacuum interrupter and an insulating housing accommodating this interrupter.
  • the switching chamber consists essentially of a fixed and a movable contact rod, both of which each carry a contact piece and two isolators, between which a metal screen is arranged.
  • In the insulating housing there are two axially offset and control electrodes partially encompassing the vacuum chamber, which are each articulated to the potential of the closest contact rod.
  • vacuum interrupters in switching devices, which consist of an evacuated housing with a fixed and a movable contact piece and metal screen.
  • the fixed contact piece is attached to a fixed contact rod, which is led out of the housing in a vacuum-tight manner by an insulator.
  • the movable contact piece is attached to an axially movable contact rod, which is led out vacuum-tight by an insulator and a metal bellows.
  • metal shields lying on free potential are attached between the insulators.
  • control electrodes axially offset in the insulating housing for solid-insulated switch poles in order to prevent partial electrical discharges in the area between the switching chamber and the insulating housing or in the insulating housing itself by avoiding extremely high field strengths locally and to keep small distances by shifting the electrical stress into the To achieve solid insulation.
  • These control electrodes are connected to the potential of the closest connection of the vacuum interrupter.
  • a third control electrode is provided in the area of the shield of the switching chamber in the insulating housing. They are arranged in such a way that they assume an intermediate potential between the connection potential and earth potential (EPa 01 76 665).
  • control electrodes can also cover conductive or semiconducting take that are applied to parts of the insulating housing.
  • the field strength distribution is improved and the insulating material is used more uniformly; the insufficient consideration of the potential of the metal shield of the vacuum interrupter chamber still does not lead to an optimal switching capacity and also does not improve its internal insulating capacity in all switching positions.
  • insufficient information has been given on the level of the intermediate potential and its influence on the voltage distribution and on the switching capacity.
  • the different capacitive influencing of the intermediate potential by the electrodes located nearby z. B. the grounded coating on the outer surface of the insulating housing is not optimally taken into account.
  • the invention is therefore based on the object, a switch pole according to the preamble of claim so that in both switching states “on” and “off” the electrical field strength and the associated risk of partial discharges in sections between Insulation housing and vacuum interrupter chamber reduced to a minimum and in connection with this the influence of neighboring electrodes on the voltage distribution in the vacuum interrupter chamber and their breaking capacity can be almost avoided.
  • a switch pole for circuit breakers consisting of a vacuum interrupter and an insulating housing which accommodates this interrupter -
  • the interrupter essentially consists of a fixed and a movable contact rod, each carrying a contact piece, which in one of two insulators, a metal bellows and a metal screen between the isolators existing vacuum interrupter are solved, according to the invention, in that two control electrodes are axially offset in the insulating housing and the vacuum interrupter is at least partially provided comprehensively and is articulated to the potential of the nearest contact rod.
  • the two control electrodes must either overlap or be so close to one another and / or dimensioned that the metal screen of the vacuum interrupter assumes a potential which, in the state of separated contact pieces, corresponds to approximately half the potential of the voltage-carrying contact piece.
  • the metal screen of the vacuum interrupter should assume at least approximately full potential, while the influence of grounded or live parts outside the control electrodes on the potential of the metal screen should be virtually eliminated.
  • a switch pole is shown in which a complete vacuum switching chamber 1, consisting of an upper fixed switching contact piece 2 with an attached upper fixed contact rod 3, a lower movable switching contact piece 4 with a lower axially movable contact rod 5 and a metal bellows 6, is arranged is.
  • the switch contact pieces 2 and 4 with their contact rods 3 and 5 are located in an airtight and evacuated housing, consisting of an upper insulator 7 and a lower insulator 8 and a metal screen 9 which is at free potential.
  • the vacuum interrupter chamber 1 is accommodated in four insulating bodies 10, 11, 12, 13, which form the insulating housing when inserted or joined together.
  • the insulating bodies 10, 11, 12, 13 carry conductive coatings on parts of their surface as parts of the control electrodes 14, 15, 16.
  • the control electrodes 14, 15 are terminated at one end by an electrode ring 17, while their other end is in each case at another , cup-shaped control electrode 18, 19 is present.
  • the insulating bodies 10, 11, 12, 13 are connected to one another in a dielectrically tight manner by means of an elastic insulating ring 20 via clamping elements.
  • the thickness of the insulating ring 20 is as small as possible in terms of insulation technology; this means that the operating voltage between the two electrode rings 17 or the test voltage can be applied, which corresponds to the off state of the switch.
  • material with high electrical strength is preferably used for the insulating ring 20.
  • switching contact piece 2 and control electrode 14 are at connection potential
  • switching contact piece 4 and control electrode 15, on the other hand are at ground potential. Because of the symmetry of the arrangement, approximately half the connection potential will be established as the intermediate potential. Between switching contact piece 2 or 4 and metal screen 9 (including associated control electrodes 14 or 15 and 16) there is approximately the same potential difference, so that the inevitable field strength-related load reaches its lowest possible value in some sections of the gas gap. Taking into account both switching states, the most advantageous intermediate potential in terms of insulation technology is thus achieved. In Fig.
  • a switch pole is shown in which a complete te vacuum interrupter chamber 1 is housed with its parts in an insulating housing 25 which is pushed over the vacuum interrupter chamber 1, it being irrelevant whether the gas gap between the interrupter chamber 1 and the insulating housing 25 is subsequently poured out with hardening insulating material.
  • switch poles 14 and 15 are so close to one another that there is no capacitive coupling of the adjacent grounded metallic encapsulation or support structure parts 24 or other electrodes with the control electrode 16 located at free potential.
  • Such switch poles can also be accommodated as a three-pole arrangement in a common encapsulation.
  • switch poles of vacuum switches designed according to the invention are preferably suitable for factory-made, fully solid-insulated high-voltage switchgear or transformer stations where there are high requirements with regard to protection against accidental contact and with regard to small-scale and compact construction. It is also possible to use this switch pole in hermetically sealed, gas-insulated or in metal-enclosed, air-insulated switchgear.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

The invention relates to a switch pole for a power circuit breaker which is fitted with a vacuum switching chamber. It is based on an arrangement where the vacuum switching chamber is arranged in an insulating housing. At least two control electrodes are provided in the latter, which surround the vacuum switching chamber and at the same time are pivoted at the potential of the respective adjacent connection of the vacuum switching chamber. The important factor is to make use of potential distribution on the one hand reliably to avoid partial discharges and to maintain the dielectric stress in the dielectric material of the insulating housing within limits, without, on the other hand, adversely affecting the switching capacity of the switching chamber. The invention teaches that the metal screen of the vacuum switching chamber and/or a third control electrode are to be influenced by the design of the two control electrodes such that when the switch is closed they are at full potential and when the switch is open they are at half potential. The arrangement is also suitable for cases where the outer surface of the insulating housing has no earth coating or where a plurality of switch poles are housed in a container which is filled with an insulating gas, e.g. SF6. <IMAGE>

Description

Die Erfindung betrifft einen Schalterpol für Leistungs­schalter, bestehend aus einer Vakuumschaltkammer und einem, diese Schaltkammer aufnehmenden Isoliergehäuse. Die Schalt­kammer besteht im wesentlichen aus einem feststehenden und einem beweglichen Kontaktstab, die beide je ein Kontakt­stück tragen sowie aus zwei Isolatoren, zwischen denen ein Metallschirm angeordnet ist. Im Isoliergehäuse sind zwei axial versetzt und die Vakuumkammer teilweise umfassende Steuerelektroden vorgesehen, die jeweils an das Potential des nächstliegenden Kontaktstabes angelenkt sind.The invention relates to a switch pole for circuit breakers, consisting of a vacuum interrupter and an insulating housing accommodating this interrupter. The switching chamber consists essentially of a fixed and a movable contact rod, both of which each carry a contact piece and two isolators, between which a metal screen is arranged. In the insulating housing there are two axially offset and control electrodes partially encompassing the vacuum chamber, which are each articulated to the potential of the closest contact rod.

Es ist bekannt, in Schaltgeräten Vakuumschaltkammern ein­zusetzen, die aus einem evakuierten Gehäuse mit einem feststehenden und einem beweglichen Kontaktstück und Me­tallschirm bestehen. Das feststehende Kontaktstück ist an einem feststehenden Kontaktstab angebracht, welcher vakuum­dicht durch einen Isolator aus dem Gehäuse herausgeführt ist. Das bewegliche Kontaktstück ist dagegen an einem axial bewegbaren Kontaktstab angebracht, der durch einen Isolator und einen Metallbalgen vakuumdicht herausgeführt ist. Ferner sind auf freiem Potential liegende Metallschir­me zwischen den Isolatoren befestigt. Zwischen der Vakuum­schaltkammer und dem Isoliergehäuse befindet sich entweder Luft (DE-PS 23 22 372) oder der Zwischenraum ist mit Iso­lieröl gefüllt (JP-PS 55-5651). Wird in dem Zwischenraum zwischen Schaltkammer und Isoliergehäuse Luft vorgesehen, so sind trotz feldsteuernder Ausbildung der Anschlußkörper elektrisch hochbeanspruchte Strecken, in denen sich elek­trische Teilentladungen ausbilden können, nicht vermeid­bar. Schalter mit Öl in dem Zwischenraum sind ebenfalls bekannt; sie weisen wieder ähnliche Nachteile wie die so­genannten ölarmen Schalter auf, weil von ihnen Brandge­fahr und eine Gefährdung der Umwelt ausgeht.
Des weiteren ist es bekannt, die komplette Vakuumschalt­kammer in Epoxidharz einzugießen (JP-PS 51-16 620). Dabei ergeben sich jedoch Nachteile, weil Risse sowie Luftspalte und Lufteinschlüsse nicht sicher ausgeschlossen werden können, in denen es dann zur Ausbildung zerstörend wirken­der elektrischer Teilentladungen kommt. Den beschriebenen Vakuumschaltern haftet außerdem der Nachteil an, daß das elektrische Feld in der Vakuumschaltkammer durch geerdete Metallbeläge auf den Isoliergehäusen oder auch durch rela­tiv nahe angeordnete geerdete Bauteile gestört werden kann, wodurch sich das innere Isoliervermögen der Vakuumschalt­kammer sowie deren Ausschaltvermögen ungünstig verändert.
It is known to use vacuum interrupters in switching devices, which consist of an evacuated housing with a fixed and a movable contact piece and metal screen. The fixed contact piece is attached to a fixed contact rod, which is led out of the housing in a vacuum-tight manner by an insulator. The movable contact piece, on the other hand, is attached to an axially movable contact rod, which is led out vacuum-tight by an insulator and a metal bellows. Furthermore, metal shields lying on free potential are attached between the insulators. There is either air (DE-PS 23 22 372) or the intermediate space is filled with insulating oil (JP-PS 55-5651) between the vacuum interrupter and the insulating housing. If air is provided in the space between the switching chamber and the insulating housing, the connecting bodies are in spite of the field-controlling design Electrically highly stressed routes in which partial electrical discharges can form cannot be avoided. Switches with oil in the space are also known; They again have similar disadvantages to the so-called low-oil switches because they pose a fire risk and endanger the environment.
Furthermore, it is known to cast the complete vacuum interrupter in epoxy resin (JP-PS 51-16 620). However, there are disadvantages because cracks and air gaps and air inclusions cannot be reliably excluded, in which the formation of destructive partial electrical discharges then occurs. The vacuum switches described also have the disadvantage that the electrical field in the vacuum interrupter can be disturbed by grounded metal coatings on the insulating housings or by relatively close-grounded components, which adversely changes the internal insulating capacity of the vacuum interrupter and its breaking capacity.

Weiterhin gilt es als bekannt, bei feststoffisolierten Schalterpolen zwei Steuerelektroden axial versetzt im Iso­lierstoffgehäuse anzuordnen, um elektrische Teilentladun­gen im Bereich zwischen Schaltkammer und Isoliergehäuse bzw. im Isoliergehäuse selbst durch Vermeidung von örtlich extrem hohen Feldstärken zu verhindern und geringe Abstän­de durch Verlagerung der elektrischen Beanspruchung in die Feststoffisolation zu erreichen. Diese Steuerelektroden werden an das Potential des jeweils nächstliegenden An­schlusses der Vakuumschaltkammer angelenkt. Ferner ist ge­mäß diesem Vorschlag im Bereich des Schirmes der Schalt­kammer im Isoliergehäuse eine dritte Steuerelektrode vor­gesehen. Ihre Anordnung erfolgt dabei derart, daß sie ein Zwischenpotential zwischen Anschlußpotential und Erdpoten­tial annimmt (EPa 01 76 665). Die Funktion der Steuerelek­troden können auch leitende oder halbleitende Beläge über­ nehmen, die auf Teilen des Isoliergehäuses aufgebracht sind. Durch eine solche Anordnung der Steuerelektroden wird zwar die Feldstärkeverteilung verbessert und der Isolierstoff gleichmäßiger ausgenutzt; die unzureichende Berücksichtigung des Potentials des Metallschirmes der Vakuumschaltkammer führt aber noch immer nicht zu einem optimalen Schaltvermögen und verbessert außerdem nicht in allen Schaltstellungen deren inneres Isoliervermögen. Es werden bisher nicht in ausreichendem Maße Angaben zur Höhe des Zwischenpotentials und dessen Einfluß auf die Span­nungsverteilung sowie auf das Schaltvermögen gemacht. Im Zusammenhang damit wird die unterschiedliche kapaziti­ve Beeinflussung des Zwischenpotentials durch die in der Nähe befindlichen Elektroden z. B. den geerdeten Belag auf der äußeren Oberfläche des Isoliergehäuses nicht optimal berücksichtigt. Daher gelingt es bisher nicht, das isolier­technisch günstigste Zwischenpotential zu erreichen. Die bisherigen Lösungen beachten nämlich nicht konsequent, daß sich am Metallschirm und dritter Steuerelektrode im Schaltzustand "Ein" ein anderes Zwischenpotential ein­stellt, als im Schaltzustand "Aus", wo ein Schaltkontakt auf Erdpotential liegt.
Dadurch liegen zumindest im Schaltzustand "Aus" Abschnitte vor, die elektrisch hoch belastet sind; hinreichende Anga­ben, wie diese Belastungen und die damit verbundene Teil­entladungsgefahr auf ein möglichst niedriges Maß reduziert werden können, wurden bisher nicht gemacht. Es kommt also darauf an, einen Schalterpol gemäß dem Oberbegriff des Pa­tentanspruches isoliertechnisch zu verbessern.
Furthermore, it is known to arrange two control electrodes axially offset in the insulating housing for solid-insulated switch poles in order to prevent partial electrical discharges in the area between the switching chamber and the insulating housing or in the insulating housing itself by avoiding extremely high field strengths locally and to keep small distances by shifting the electrical stress into the To achieve solid insulation. These control electrodes are connected to the potential of the closest connection of the vacuum interrupter. Furthermore, according to this proposal, a third control electrode is provided in the area of the shield of the switching chamber in the insulating housing. They are arranged in such a way that they assume an intermediate potential between the connection potential and earth potential (EPa 01 76 665). The function of the control electrodes can also cover conductive or semiconducting take that are applied to parts of the insulating housing. With such an arrangement of the control electrodes, the field strength distribution is improved and the insulating material is used more uniformly; the insufficient consideration of the potential of the metal shield of the vacuum interrupter chamber still does not lead to an optimal switching capacity and also does not improve its internal insulating capacity in all switching positions. To date, insufficient information has been given on the level of the intermediate potential and its influence on the voltage distribution and on the switching capacity. In connection with this, the different capacitive influencing of the intermediate potential by the electrodes located nearby z. B. the grounded coating on the outer surface of the insulating housing is not optimally taken into account. Therefore, it has so far not been possible to achieve the most intermediate potential in terms of insulation technology. The previous solutions do not consistently observe that a different intermediate potential is set on the metal screen and third control electrode in the "on" switching state than in the "off" switching state, where a switching contact is at ground potential.
As a result, at least in the "off" switching state, there are sections which are highly electrically loaded; Adequate information on how these loads and the associated risk of partial discharge can be reduced to the lowest possible level has not yet been given. It is therefore important to improve a switch pole according to the preamble of the claim.

Der Erfindung liegt mithin die Aufgabe zugrunde, einen Schalterpol gemäß des Oberbegriffes des Patentanspruches so weiterzubilden, daß bei beiden Schaltzuständen "Ein" und "Aus" die elektrische Feldstärke und die damit verbun­dene Gefahr von Teilentladungen in Abschnitten zwischen Isolierstoffgehäuse und Vakuumschaltkammer auf ein Mindest­maß reduziert und im Zusammenhang damit der Einfluß benach­barter Elektroden auf die Spannungsverteilung in der Va­kuumschaltkammer sowie deren Ausschaltvermögen nahezu ver­mieden werden kann.The invention is therefore based on the object, a switch pole according to the preamble of claim so that in both switching states "on" and "off" the electrical field strength and the associated risk of partial discharges in sections between Insulation housing and vacuum interrupter chamber reduced to a minimum and in connection with this the influence of neighboring electrodes on the voltage distribution in the vacuum interrupter chamber and their breaking capacity can be almost avoided.

Diese Aufgabe wird bei einem Schalterpol für Leistungs­schalter, bestehend aus einer Vakuumschaltkammer und einem, diese Schaltkammer aufnehmenden Isoliergehäuse - wobei die Schaltkammer im wesentlichen aus einem feststehenden und einem beweglichen Kontaktstab besteht, die jeweils ein Kontaktstück tragen, die in einer aus zwei Isolatoren, einem Metallbalgen und einem Metallschirm zwischen den Iso­latoren bestehenden Vakuumschaltkammer untergebracht sind, gemäß der Erfindung dadurch gelöst, daß im Isoliergehäuse zwei Steuerelektroden axial versetzt und die Vakuumschalt­kammer wenigstens teilweise umfassend vorgesehen und an das Potential des jeweils nächstliegenden Kontaktstabes ange­lenkt sind. Dabei müssen die beiden Steuerelektroden sich entweder überlappen oder soweit einander angenähert und/­oder so bemessen sein, daß der Metallschirm der Vakuum­schaltkammer ein Potential annimmt, das im Zustand getrenn­ter Kontaktstücke etwa dem halben Potential des an Spannung liegenden Kontaktstückes entspricht. Dagegen soll im Zu­stand geschlossener Kontaktstücke der Metallschirm der Va­kuumschaltkammer wenigstens annähernd volles Potential an­nehmen, hingegen der Einfluß von geerdeten oder unter Span­nung stehenden Teilen außerhalb der Steuerelektroden auf das Potential des Metallschirmes quasi eleminiert sein.This task is carried out in a switch pole for circuit breakers, consisting of a vacuum interrupter and an insulating housing which accommodates this interrupter - the interrupter essentially consists of a fixed and a movable contact rod, each carrying a contact piece, which in one of two insulators, a metal bellows and a metal screen between the isolators existing vacuum interrupter are solved, according to the invention, in that two control electrodes are axially offset in the insulating housing and the vacuum interrupter is at least partially provided comprehensively and is articulated to the potential of the nearest contact rod. The two control electrodes must either overlap or be so close to one another and / or dimensioned that the metal screen of the vacuum interrupter assumes a potential which, in the state of separated contact pieces, corresponds to approximately half the potential of the voltage-carrying contact piece. On the other hand, in the state of closed contact pieces, the metal screen of the vacuum interrupter should assume at least approximately full potential, while the influence of grounded or live parts outside the control electrodes on the potential of the metal screen should be virtually eliminated.

AusführungsbeispielEmbodiment

Das Erfindungskonzept wird im folgenden anhand eines Aus­führungsbeispiels unter Bezugnahme auf die den Patentan­sprüchen angefügten Zeichnungen erläutert.The inventive concept is explained below using an exemplary embodiment with reference to the drawings attached to the claims.

Es zeigen:

  • Fig. 1 einen vollfeststoffisolierten Schalterpol im Längs­schnitt, wo das die Vakuumschaltkammer umschließen­de Isoliergehäuse auf seiner äußeren Oberfläche ei­nen geerdeten leitenden Belag trägt;
  • Fig. 2 einen feststoff-gasisolierten Schalterpol im Längs­schnitt, wo das die Vakuumschaltkammer umschließen­de Isoliergehäuse keinen geerdeten Belag trägt, sich jedoch geerdete Bauteil, z. B. Kapselungs­teile der Schaltanlage in der Nähe des Schalterpols befinden.
Show it:
  • 1 shows a fully solid-insulated switch pole in longitudinal section, where the insulating housing enclosing the vacuum interrupter bears an earthed conductive coating on its outer surface;
  • Fig. 2 shows a solid-gas-insulated switch pole in longitudinal section, where the insulating housing enclosing the vacuum interrupter does not have an earthed coating, but an earthed component, e.g. B. encapsulation parts of the switchgear are located near the switch pole.

In Fig. 1 ist ein Schalterpol gezeigt, in dem eine kom­plette Vakuumschaltkammer 1, bestehend aus einem oberen feststehenden Schaltkontaktstück 2 mit einem daran ange­brachten oberen feststehenden Kontaktstab 3, einem unte­ren beweglichen Schaltkontaktstück 4 mit einem unteren axial bewegbaren Kontaktstab 5 und einem Metallbalgen 6, angeordnet ist. Die Schaltkontaktstücke 2 und 4 mit ihren Kontaktstäben 3 und 5 befinden sich in einem luftdichten und evakuierten Gehäuse, bestehend aus einem oberen Isola­tor 7 und einem unteren Isolator 8 sowie einem auf freiem Potential liegenden Metallschirm 9.
Die Vakuumschaltkammer 1 ist in vier Isolierkörpern 10, 11, 12, 13 untergebracht, die ineinandergesteckt bzw. an­einandergefügt das Isoliergehäuse bilden. Die Isolierkör­per 10, 11, 12, 13 tragen auf Teilen ihrer Oberfläche lei­tende Beläge als Teile der Steuerelektroden 14, 15, 16. Die Steuerelektroden 14, 15 sind an einem Ende durch je einen Elektrodenring 17 abgeschlossen, während ihr ande­res Ende jeweils an einer anderen, becherförmig ausgebil­deten Steuerelektrode 18, 19 anliegt. Die Isolierkörper 10, 11, 12, 13 werden durch einen elastischen Isolierstoffring 20 über Spannelemente dielektrisch dicht miteinander ver­bunden. Die Dicke des Isolierstoffringes 20 ist so gering wie isoliertechnisch möglich bemessen; das bedeutet, daß zwischen beiden Elektrodenringen 17 die Betriebsspannung bzw. die Prüfspannung anliegen kann, was dem Aus-Zustand des Schalters entspricht.
Um den Abstand der beiden Elektrodenringe 17 so gering wie möglich ausführen zu können, kommt für den Isolierstoff­ring 20 bevorzugt Material mit großer elektrischer Festig­keit zum Einsatz. An den Elektrodenringen 17 können auch alle die Maßnahmen Anwendung finden, die in der Hochspan­nungstechnik für die Beeinflussung der Durchschlagsspannung bekannt sind. Damit gelingt es, die beiden Elektrodenringe 17 soweit aneinander anzunähern, daß nahezu jede kapazitive Kopplung der Elektroden z. B. des geerdeten Metallbelages 23 auf der äußeren Oberfläche des Schalterpols zu der auf freiem Potential befindlichen Steuerelektrode 16 unterbun­den ist. Im Schaltzustand "Ein" sind Metallschirm 9 und Steuerelektrode 16 von Elektroden auf Anschlußpotential (Schaltkontaktstück 2, 4 und Steuerelektroden 14, 15) um­geben. Als Zwischenpotential wird sich also nahezu An­schlußpotential einstellen. Dadurch ist der gesamte Gas­spalt von Elektroden auf Anschlußpotential umgeben, so daß Teilentladungen sicher vermieden werden und vorteilhaft nahezu die gesamte feldstärkemäßige Belastung in die Fest­stoffisolation verlagert ist. Im Schaltzustand "Aus" befin­den sich Schaltkontaktstück 2 und Steuerelektrode 14 auf Anschlußpotential, Schaltkontaktstück 4 und Steuerelektrode 15 dagegen auf Erdpotential. Wegen der Symmetrie der Anord­nung wird sich als Zwischenpotential etwa halbes Anschluß­potential einstellen. Zwischen Schaltkontaktstück 2 bzw. 4 und Metallschirm 9 (einschließlich zugehöriger Steuerelek­troden 14 bzw. 15 und 16) stellt sich also etwa die glei­che Potentialdifferenz ein, so daß die in einigen Abschnit­ten des Gasspaltes unvermeidliche feldstärkemäßige Bela­stung ihren niedrigst möglichen Wert erreicht. Damit ist unter Berücksichtigung beider Schaltzustände das isolier­technisch günstigste Zwischenpotential realisiert.
In Fig. 2 ist ein Schalterpol gezeigt, in dem eine komplet­ te Vakuumschaltkammer 1 mit ihren Teilen in einem Isolier­gehäuse 25 untergebracht ist, das über die Vakuumschaltkam­mer 1 geschoben ist, wobei es unerheblich ist, ob der Gas­spalt zwischen Schaltkammer 1 und Isoliergehäuse 25 nach­träglich mit aushärtendem Isolierstoff ausgegossen wird.
In Fig. 1, a switch pole is shown in which a complete vacuum switching chamber 1, consisting of an upper fixed switching contact piece 2 with an attached upper fixed contact rod 3, a lower movable switching contact piece 4 with a lower axially movable contact rod 5 and a metal bellows 6, is arranged is. The switch contact pieces 2 and 4 with their contact rods 3 and 5 are located in an airtight and evacuated housing, consisting of an upper insulator 7 and a lower insulator 8 and a metal screen 9 which is at free potential.
The vacuum interrupter chamber 1 is accommodated in four insulating bodies 10, 11, 12, 13, which form the insulating housing when inserted or joined together. The insulating bodies 10, 11, 12, 13 carry conductive coatings on parts of their surface as parts of the control electrodes 14, 15, 16. The control electrodes 14, 15 are terminated at one end by an electrode ring 17, while their other end is in each case at another , cup-shaped control electrode 18, 19 is present. The insulating bodies 10, 11, 12, 13 are connected to one another in a dielectrically tight manner by means of an elastic insulating ring 20 via clamping elements. The thickness of the insulating ring 20 is as small as possible in terms of insulation technology; this means that the operating voltage between the two electrode rings 17 or the test voltage can be applied, which corresponds to the off state of the switch.
In order to be able to make the distance between the two electrode rings 17 as small as possible, material with high electrical strength is preferably used for the insulating ring 20. All the measures known in high-voltage technology for influencing the breakdown voltage can also be used on the electrode rings 17. This makes it possible to bring the two electrode rings 17 so close to one another that almost any capacitive coupling of the electrodes, for. B. the grounded metal coating 23 on the outer surface of the switch pole to the free control electrode 16 is prevented. In the "on" switching state, the metal screen 9 and control electrode 16 are surrounded by electrodes at the connection potential (switching contact piece 2, 4 and control electrodes 14, 15). As an intermediate potential, there will be almost a connection potential. As a result, the entire gas gap is surrounded by electrodes at connection potential, so that partial discharges are reliably avoided and advantageously almost the entire field strength-related load is shifted into the solid insulation. In the "off" switching state, switching contact piece 2 and control electrode 14 are at connection potential, switching contact piece 4 and control electrode 15, on the other hand, are at ground potential. Because of the symmetry of the arrangement, approximately half the connection potential will be established as the intermediate potential. Between switching contact piece 2 or 4 and metal screen 9 (including associated control electrodes 14 or 15 and 16) there is approximately the same potential difference, so that the inevitable field strength-related load reaches its lowest possible value in some sections of the gas gap. Taking into account both switching states, the most advantageous intermediate potential in terms of insulation technology is thus achieved.
In Fig. 2 a switch pole is shown in which a complete te vacuum interrupter chamber 1 is housed with its parts in an insulating housing 25 which is pushed over the vacuum interrupter chamber 1, it being irrelevant whether the gas gap between the interrupter chamber 1 and the insulating housing 25 is subsequently poured out with hardening insulating material.

Abweichend von der Ausführung gemäß Fig. 1 ist auf der äus­seren Oberfläche des Isoliergehäuses 25 kein geerdeter lei­tender Belag aufgebracht, sondern es befinden sich geerdete metallische Kapselungs- oder Stützkonstruktionsteile 24 in der Nähe, gegenüber denen der Schalterpol mittels eines Isoliergases 26 isoliert ist. Die im Isoliergehäuse 25 ein­gegossenen Steuerelektroden 14 bzw. 15 sind mit dem oberen Schaltkammeranschluß 21 bzw. mit dem unteren Schaltkammer­anschluß 22 auf geeignete Weise z. B. mit Kontaktfedern verbunden. Der auf freiem Potential befindliche Metall­schirm 9 der Vakuumschaltkammer 1 ist über geeignete Kon­taktelemente mit der in das Isoliergehäuse 25 eingegossenen Steuerelektrode 16 verbunden, die auch auf freiem Potential liegt. Die an den Steuerelektroden 14 und 15 befindlichen Elektrodenringe 17 sind soweit aneinander angenähert, daß keine kapazitive Kopplung der benachbarten geerdeten metal­lischen Kapselungs- oder Stützkonstruktionsteile 24 oder anderer Elektroden mit der auf freiem Potential befindli­chen Steuerelektrode 16 vorliegt. Solche Schalterpole sind auch als dreipolige Anordnung in einer gemeinsamen Kapse­lung unterbringbar. Ferner sind derartige erfindungsgemäß ausgestaltete Schalterpole von Vakuumschaltern bevorzugt für fabrikfertige vollfeststoffisolierte Hochspannungs­schaltanlagen oder Transformatorenstationen geeignet, wo hohe Anforderungen bezüglich des Berührungsschutzes und be­züglich kleinräumiger und kompakter Bauweise bestehen. Es besteht weiterhin die Möglichkeit, diesen Schalterpol in hermetisch gekapselten gasisolierten oder in metallgekap­selten luftisolierten Schaltanlagen einzusetzen.1, no grounded conductive coating is applied to the outer surface of the insulating housing 25, but there are grounded metallic encapsulation or support structure parts 24 in the vicinity, from which the switch pole is insulated by means of an insulating gas 26. The control electrodes 14 and 15 cast in the insulating housing 25 are connected to the upper switching chamber connection 21 and to the lower switching chamber connection 22 in a suitable manner, for. B. connected to contact springs. The metal screen 9 of the vacuum interrupter chamber 1, which is at free potential, is connected via suitable contact elements to the control electrode 16 which is cast into the insulating housing 25 and which is also at the free potential. The electrode rings 17 located on the control electrodes 14 and 15 are so close to one another that there is no capacitive coupling of the adjacent grounded metallic encapsulation or support structure parts 24 or other electrodes with the control electrode 16 located at free potential. Such switch poles can also be accommodated as a three-pole arrangement in a common encapsulation. Furthermore, such switch poles of vacuum switches designed according to the invention are preferably suitable for factory-made, fully solid-insulated high-voltage switchgear or transformer stations where there are high requirements with regard to protection against accidental contact and with regard to small-scale and compact construction. It is also possible to use this switch pole in hermetically sealed, gas-insulated or in metal-enclosed, air-insulated switchgear.

Claims (1)

Schalterpol für Leistungsschalter, bestehend aus einer Va­kuumschaltkammer (1) und einem, diese Schaltkammer aufneh­menden Isoliergehäuse (25), wobei die Schaltkammer (1) im wesentlichen aus einem feststehenden und einem beweglichen Kontaktstab (3 und 5) besteht, die jeweils ein Kontakt­stück (2 und 4) tragen und die in einer aus zwei Isolato­ren (7 und 8), einem Metallbalgen (6) und einem Metall­schirm (9) zwischen den Isolatoren (7 und 8) bestehenden Vakuumschaltkammer (1) untergebracht sind, dadurch gekenn­zeichnet, daß im Isoliergehäuse zwei Steuerelektroden (14 und 15) axial versetzt und die Vakuumschaltkammer (1) we­nigstens teilweise umfassend vorgesehen und an das Poten­tial des jeweils nächstliegenden Kontaktstabes (3 und 5) angelenkt sind, wobei die beiden Steuerelektroden (14 und 15) sich entweder überlappen oder soweit einander ange­nähert und/oder so bemessen sind, daß der Metallschirm (9) der Vakuumschaltkammer (1) ein Potential annimmt, das im Zustand getrennter Kontaktstücke (2 und 4) etwa dem halben Potential des an Spannung liegenden Kontaktstückes (2 oder 4) entspricht, während im Zustand geschlossener Kontakt­stücke (2 und 4) der Metallschirm (9) der Vakuumschaltkam­mer (1) wenigstens annähernd volles Potential annimmt, hin­gegen der Einfluß von geerdeten oder unter Spannung stehen­den Teilen (23, 24) außerhalb der Steuerelektroden (14, 15) auf das Potential des Metallschirmes (9) quasi eleminiert ist.Switch pole for circuit breakers, consisting of a vacuum interrupter (1) and an insulating housing (25) accommodating this interrupter, the interrupter (1) consisting essentially of a fixed and a movable contact rod (3 and 5), each with a contact piece (2 and 4) and which are accommodated in a vacuum interrupter (1) consisting of two insulators (7 and 8), a metal bellows (6) and a metal screen (9) between the insulators (7 and 8), characterized in that in the insulating housing two control electrodes (14 and 15) are axially offset and the vacuum interrupter (1) is at least partially comprehensively provided and articulated to the potential of the nearest contact rod (3 and 5), the two control electrodes (14 and 15) either overlapping or as far as possible are approximated and / or dimensioned such that the metal screen (9) of the vacuum interrupter (1) assumes a potential which is in the state of separated contact tücke (2 and 4) corresponds approximately to half the potential of the live contact piece (2 or 4), while in the closed contact pieces (2 and 4) the metal screen (9) of the vacuum interrupter (1) assumes at least approximately full potential, whereas the Influence of grounded or live parts (23, 24) outside the control electrodes (14, 15) on the potential of the metal screen (9) is virtually eliminated.
EP86111125A 1985-10-16 1986-08-12 Switch pole for a power circuit breaker Withdrawn EP0222073A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD281763 1985-10-16
DD28176385A DD241810A1 (en) 1985-10-16 1985-10-16 SWITCHPOL FOR CIRCUIT BREAKER

Publications (2)

Publication Number Publication Date
EP0222073A2 true EP0222073A2 (en) 1987-05-20
EP0222073A3 EP0222073A3 (en) 1988-10-05

Family

ID=5572169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86111125A Withdrawn EP0222073A3 (en) 1985-10-16 1986-08-12 Switch pole for a power circuit breaker

Country Status (2)

Country Link
EP (1) EP0222073A3 (en)
DD (1) DD241810A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009997A1 (en) * 1990-11-21 1992-06-11 Elin Energieversorgung Gesellschaft M. B. H. Vacuum switch pole
EP1056109A1 (en) * 1999-05-28 2000-11-29 Alstom Medium voltage vacuum circuit breaker with a protection housing per pole
WO2002029839A1 (en) * 2000-09-30 2002-04-11 Abb Patent Gmbh Capacitive control of at least one vacuum interrupter chamber
EP1858044A3 (en) * 2006-05-15 2008-02-27 Hitachi, Ltd. Switchgear
DE102007022875A1 (en) * 2007-05-14 2008-11-27 Siemens Ag Housing for vacuum switching tube, has control electrode influencing electrical field outside housing that is coated with non-gaseous insulating substance such that control electrode is arranged within substance
CN111837213A (en) * 2018-03-19 2020-10-27 株式会社日立产机系统 Solid insulation type vacuum switch
EP4177924A1 (en) * 2021-11-04 2023-05-10 Abb Schweiz Ag Vacuum interrupter assembly, switchgear including vacuum interrupter assembly, and method of configuring vacuum interrupter assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE603883C (en) * 1933-03-23 1934-10-10 Bbc Brown Boveri & Cie Switching arrangement
DE2240106A1 (en) * 1971-08-23 1973-03-01 Gen Electric HIGH PERFORMANCE LEAD-THROUGH ENCLOSED VACUUM SWITCH
FR2204873A1 (en) * 1972-11-01 1974-05-24 Meidensha Electric Mfg Co Ltd
DE2322372A1 (en) * 1973-04-30 1974-11-07 Siemens Ag MULTIPOLE VACUUM SWITCHING DEVICE
JPS555651B2 (en) * 1974-05-22 1980-02-08
EP0176665A2 (en) * 1984-09-24 1986-04-09 VEB "Otto Buchwitz" Starkstrom-Anlagenbau Dresden Vacuum switch fully insulated by a solid substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE603883C (en) * 1933-03-23 1934-10-10 Bbc Brown Boveri & Cie Switching arrangement
DE2240106A1 (en) * 1971-08-23 1973-03-01 Gen Electric HIGH PERFORMANCE LEAD-THROUGH ENCLOSED VACUUM SWITCH
FR2204873A1 (en) * 1972-11-01 1974-05-24 Meidensha Electric Mfg Co Ltd
DE2322372A1 (en) * 1973-04-30 1974-11-07 Siemens Ag MULTIPOLE VACUUM SWITCHING DEVICE
JPS555651B2 (en) * 1974-05-22 1980-02-08
EP0176665A2 (en) * 1984-09-24 1986-04-09 VEB "Otto Buchwitz" Starkstrom-Anlagenbau Dresden Vacuum switch fully insulated by a solid substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELEKTRIE, Band 28, Nr. 10, 1974, Seiten 533-538; K. B\HME: "Die optimierten feststoffisolierten 36-kV-Schaltzellen vom Typ ASIF 36" *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009997A1 (en) * 1990-11-21 1992-06-11 Elin Energieversorgung Gesellschaft M. B. H. Vacuum switch pole
EP1056109A1 (en) * 1999-05-28 2000-11-29 Alstom Medium voltage vacuum circuit breaker with a protection housing per pole
FR2794280A1 (en) * 1999-05-28 2000-12-01 Alstom MEDIUM VOLTAGE CIRCUIT BREAKER WITH VACUUM CUTTING COMPRISING A PROTECTION HOUSING BY POLE
WO2002029839A1 (en) * 2000-09-30 2002-04-11 Abb Patent Gmbh Capacitive control of at least one vacuum interrupter chamber
EP1858044A3 (en) * 2006-05-15 2008-02-27 Hitachi, Ltd. Switchgear
US7679023B2 (en) 2006-05-15 2010-03-16 Hitachi, Ltd. Switchgear
US7683286B2 (en) 2006-05-15 2010-03-23 Hitachi, Ltd. Switchgear
DE102007022875A1 (en) * 2007-05-14 2008-11-27 Siemens Ag Housing for vacuum switching tube, has control electrode influencing electrical field outside housing that is coated with non-gaseous insulating substance such that control electrode is arranged within substance
DE102007022875B4 (en) * 2007-05-14 2009-04-09 Siemens Ag Housing for a vacuum interrupter and vacuum interrupter
CN111837213A (en) * 2018-03-19 2020-10-27 株式会社日立产机系统 Solid insulation type vacuum switch
CN111837213B (en) * 2018-03-19 2022-08-26 株式会社日立产机系统 Solid insulation type vacuum switch
EP4177924A1 (en) * 2021-11-04 2023-05-10 Abb Schweiz Ag Vacuum interrupter assembly, switchgear including vacuum interrupter assembly, and method of configuring vacuum interrupter assembly

Also Published As

Publication number Publication date
DD241810A1 (en) 1986-12-24
EP0222073A3 (en) 1988-10-05

Similar Documents

Publication Publication Date Title
EP0744803B1 (en) Isolator switch for metal-clad, high voltage switchgear
DD226690A1 (en) A pole
EP0688071B2 (en) Metal-clad gas-insulated switchgear
DE3230091C2 (en)
EP0744758A2 (en) High-voltage switchgear
EP0678954B1 (en) Metal-clad gas-insulated switch installation
EP0678955B1 (en) Metal-clad gas-insulated switch installation
DE2037234A1 (en) Switching device for high voltages
EP0222073A2 (en) Switch pole for a power circuit breaker
DE20321748U1 (en) Medium-voltage switchgear
EP0678952B1 (en) Disconnector for a metal-clad gas-insulated high voltage switch installation
DE3436173A1 (en) Switching installation
EP3559967B1 (en) Electric switching device
EP0205397A1 (en) Isolating switch for a high-tension gas-insulated metal-clad switchgear
EP1629581B1 (en) Disconnecting switch assembly
EP1683246B1 (en) Medium voltage switchgear
DD241809A1 (en) INSULATING HOUSING FOR A VACUUM CHAMBER
DE19958782B4 (en) Feed-through supports and current transformers for metal-enclosed, air-insulated medium-voltage switchgear
EP3276647B1 (en) Grounding unit for a switching system
DE3718108A1 (en) Vacuum switch
DD236417A1 (en) SWITCH POL WITH AN INSULATING HOUSING CARRYING A GEERDETEN BELAG
WO2004109877A2 (en) Switchgear comprising disconnecting switches integrated into an outdoor bushing
WO2021001124A1 (en) Switchgear
AT351630B (en) ELECTRIC SWITCHING DEVICE
WO2018054849A1 (en) High-voltage switching device and switching system having a high-voltage switching device and method for producing a high-voltage switching device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR LI NL SE

17P Request for examination filed

Effective date: 19881021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19890904

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNEIDEREIT, HEINZ, DIPL.-ING.

Inventor name: BOEHME, KLAUS, DR.-ING.

Inventor name: DIGMAYER, MICHAEL, DR.-ING.