EP0221514A2 - Method of producing a grid pattern incorporating a phase jump on the surface of a substrate - Google Patents

Method of producing a grid pattern incorporating a phase jump on the surface of a substrate Download PDF

Info

Publication number
EP0221514A2
EP0221514A2 EP86115089A EP86115089A EP0221514A2 EP 0221514 A2 EP0221514 A2 EP 0221514A2 EP 86115089 A EP86115089 A EP 86115089A EP 86115089 A EP86115089 A EP 86115089A EP 0221514 A2 EP0221514 A2 EP 0221514A2
Authority
EP
European Patent Office
Prior art keywords
substrate
exposure
photosensitive surface
photoresist layer
interference field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86115089A
Other languages
German (de)
French (fr)
Other versions
EP0221514B1 (en
EP0221514A3 (en
Inventor
Gerhard Dipl.-Phys. Heise
Ulrich Dipl.-Phys. Wolff
Richard Dr. Matz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0221514A2 publication Critical patent/EP0221514A2/en
Publication of EP0221514A3 publication Critical patent/EP0221514A3/en
Application granted granted Critical
Publication of EP0221514B1 publication Critical patent/EP0221514B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/90Methods

Definitions

  • the invention relates to a method for producing a lattice structure with a phase jump on a surface of a substrate according to the preamble of patent claim 1.
  • DFB lasers In order to achieve high data rates on long transmission paths, special semiconductor lasers are required for optical communications technology, which emit in a single longitudinal oscillation mode even at high modulation frequencies.
  • a fundamentally suitable type of laser with distributed feedback (DFB lasers, DFB is the abbreviation for "d istributed f eed b ack), in which the feedback of the light in the laser resonator not by two mirrors but by the entire laser structure superimposed
  • a DFB laser oscillates not only in one mode, but in two modes, but single-mode light emission can be enforced, among other things, by dividing the lattice structure into two sub-gratings, the phase of which is half a grating constant, ie one
  • phase shift DFB laser is described, for example, in HA: Haus, CV Shank: Antisymmetric Taper of Distributed Feedback Laser, IEEE J. Quant. Electr. QE-12 (1976) pp. 532-539.
  • Lattice structures for DFB lasers are today predominantly made by holographic lithography, ie by exposure of a photoresist layer applied to the surface of the laser substrate made of semiconductor material in an optical interference field, developing the layer and etching of the surface covered with the developed photoresist layer, a relief-like lattice structure having a spatial frequency corresponding to the spatial frequency of the interference field being formed in the surface of the substrate.
  • the remaining steps of laser production take place in a known manner.
  • the optical interference field is generated by optically superimposing two coherent light waves.
  • Electron beam recorders are currently used to produce lattice structures with phase jump (see, for example, K. Se certificationdjo et al: 1.5 ⁇ m phase-shifted DFB lasers for single-mode operation, Electr. Lett. 20 (1984) pp. 80-81) or holographic Lithography method with combined use of positive and negative photoresist (see K. Utaka et al: ⁇ / 4-shifted InGaAsP / InP DFB lasers by simultaneous holographic exposure of positive and negative photoresist, Electr. Lett. 20 (1984) p 1008-1010).
  • the object of the invention is to provide a particularly simple method for producing a grating structure with a phase shift, in particular grating structures for DFB lasers.
  • the method according to the invention then differs from the currently usual holographic lithography for producing a lattice structure without a phase shift for DFB lasers essentially only by superimposed exposure of the photoresist layer in at least two optical interference fields of different spatial frequencies.
  • the method according to the invention can be used according to claim 2 in photoresist technology, but also according to claim 3 in a maskless laser-active etching technique (see, for example, RM Lum, FW Ostermayer Jr., PA Kohl, AM Glass, AA Ballman in Appl. Phys. Lett. 47 ( 3), Aug. 1985, pp. 269-271).
  • the photosensitive surface of the substrate i.e. the photoresist layer or the surface of the substrate in contact with the etching liquid is double-exposed in an interference field, the spatial frequency K of the interference field being changed by a small amount 2 ⁇ K between the individual exposures.
  • the exposure function of the total exposure is given by This is an exposure function with the spatial frequency K modulated with the modulation function sin ⁇ K ⁇ Z.
  • the exposed photoresist layer is developed and the lattice structure is transferred into the semiconductor material of the substrate by etching.
  • the remaining steps of laser production are also carried out in a known manner.
  • L ⁇ K L opt ⁇ K is preferably chosen to be about 4.6.
  • the substrate is denoted by 1, its surface by 11, and a solder which has fallen onto the surface 11 by S.
  • the plane of incidence in which the optically superimposed light waves are incident is the plane of the drawing in all FIGS. 2 to 5.
  • the photosensitive surface of the substrate 1 consists of a photoresist layer 2 applied to the surface 11.
  • two coherent plane waves 2, 3 incident from different directions R 1 and R 2 overlap in front of the photoresist layer 2 and form an interference field 34, which generates 2 parallel interference strips that run perpendicular to the plane of the drawing on this photoresist layer.
  • the spatial frequency K of these interference fringes can be largely adjusted by the angle of incidence of the plane waves and their wavelength.
  • the angle of incidence of the plane shaft 3 or 4 is known to be given by the angle ⁇ 1 or ⁇ 2 measured between the assigned direction R 1 or R 2 and the plumb line S.
  • the photoresist 2 is exposed to these interference fringes for a sufficient exposure time.
  • the angle of incidence ⁇ 1 and / or ⁇ 2 of the plane waves 3 and 4 is changed. This is done most simply by rotating the substrate about an axis M perpendicular to the plane of incidence, for example in the direction of the arrow R3, in which case the changed angles of incidence are given by ⁇ 1 + ⁇ and ⁇ 2 - ⁇ .
  • This automatically changes the Spatial frequency K of the interference fringes on the photoresist layer 2.
  • the required change in the spatial frequency ⁇ K can be set by the amount of the angle ⁇ by which the rotation takes place.
  • the position of the axis of rotation M is relatively uncritical.
  • this distance d is increased or also reduced for the second exposure by shifting in the direction R7 parallel to the perpendicular S, for example.
  • the required spatial frequency change ⁇ K can be set by changing the distance ⁇ d.
  • the substrate 1 is firmly connected to a plane mirror Sp arranged at an angle ⁇ of, for example, 90 °.
  • a plane wave 8 falls on both the photoresist layer 2 and on the mirror Sp.
  • the mirror Sp reflects the portion 18 of the plane wave 8 that hits it, for example half, in the direction of the photoresist layer 2.
  • the spatial frequency change ⁇ K for the second exposure can be set simply by rotating substrate 1 and mirror Sp together about an axis M ', for example in the direction of arrow R9.
  • the required change in spatial frequency .DELTA.K can be set by the amount of the angle .gamma. By which it is rotated.
  • the position of the axis of rotation M ' is relatively uncritical.
  • the photosensitive surface of the substrate 1 consists of its surface 11 itself, which is in contact with an etching liquid 20 that can be activated by exposure. Otherwise, the entire arrangement according to FIG. 5 corresponds to the arrangement according to FIG. 4, the corresponding elements having the same reference numerals . In contrast to FIG. 4, the arrangement according to FIG. 5 is enclosed in a transparent cuvette 10 containing the etching liquid 20.
  • the incident laser light 8 triggers a chemical reaction directly in the substrate material on the surface 11 of the substrate 1.
  • the lattice resulting from the superposition of these two lattices has an average lattice constant ⁇ which is modulated sinusoidally with the period ⁇ .
  • etchants All liquids and gases known for laser-active etching can be used as etchants.
  • a mixture of one part of H2SO4, one part of H2O2 and 10 parts of H2O can be used, for example is suitable for a substrate material made of InP.
  • the same optical arrangement for exposure can be used for the production of the lattice structures by laser-active etching and the production by means of photoresist.
  • the arrangement according to FIG. 2 or FIG. 3 can also be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Es wird ein Verfahren zur Erzeugung einer Gitterstruktur mit Phasensprung auf einer Oberfläche eines Substrats durch Belichtung einer fotoempfindlichen Oberfläche in einem optischen Interferenzfeld beschrieben, wobei die fotoemp­findliche Oberfläche doppelt belichtet und zwischen den beiden Belichtungen die Ortsfrequenz des Interferenzfeldes um einen kleinen Betrag verändert wird. Die fotoempfindli­che Oberfläche kann eine auf das Substrat aufgebrachte Fotolackschicht sein. Nach dem Entwickeln der belichteten Schicht wird die Gitterstruktur durch Ätzen erzeugt. Die Struktur kann auch direkt durch laseraktiviertes Ätzen erzeugt werden, wobei die fotoempfindliche Oberfläche aus der mit einem Ätzmittel in Kontakt stehenden Substratober­fläche besteht, an dier die Ätzreaktion durch Belichtung aktivierbar ist.

Figure imgaf001
A method for producing a lattice structure with a phase jump on a surface of a substrate by exposure of a photosensitive surface in an optical interference field is described, the photosensitive surface being exposed twice and the spatial frequency of the interference field being changed by a small amount between the two exposures. The photosensitive surface can be a photoresist layer applied to the substrate. After the exposed layer has been developed, the lattice structure is produced by etching. The structure can also be produced directly by laser-activated etching, the photosensitive surface consisting of the substrate surface in contact with an etching agent, on which the etching reaction can be activated by exposure.
Figure imgaf001

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung einer Gitterstruktur mit Phasensprung auf einer Oberfläche eines Substrats nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing a lattice structure with a phase jump on a surface of a substrate according to the preamble of patent claim 1.

Für die optische Nachrichtentechnik werden zur Erzielung hoher Datenraten auf langen Übertragungsstrecken spezielle Halbleiterlaser benötigt, die auch bei hoher Modulations­frequenz in einem einzigen longitudinalen Schwingungsmodus emittieren. Ein grundsätzlich geeigneter Typ ist der Laser mit verteilter Rückkopplung (DFB-Laser, DFB ist die Abkür­zung für "distributed feedback), bei dem die Rückkopplung des Lichtes im Laser-Resonator nicht durch zwei Spiegel sondern durch ein der ganzen Laserstruktur überlagertes Reflexionsgitter erfolgt. Im allgemeinen schwingt aber ein DFB-Laser nicht nur in einem Modus, sodern in zwei Moden. Einmodige Lichtemission läßt sich jedoch erzwingen, unter anderem durch Aufteilung der Gitterstruktur in zwei Teil­gitter, deren Phase gegeneinander um eine halbe Gitterkon­stante, d.h. um ein Viertel der Lichtwellenlänge, verscho­ben ist. Solche DFB-Laser mit Phasensprung werden bei­spielsweise in H.A: Haus, C.V. Shank: Antisymmetric Taper of Distributed Feedback Laser, IEEE J. Quant. Electr. QE-12 (1976) S. 532-539 beschrieben.In order to achieve high data rates on long transmission paths, special semiconductor lasers are required for optical communications technology, which emit in a single longitudinal oscillation mode even at high modulation frequencies. A fundamentally suitable type of laser with distributed feedback (DFB lasers, DFB is the abbreviation for "d istributed f eed b ack), in which the feedback of the light in the laser resonator not by two mirrors but by the entire laser structure superimposed In general, however, a DFB laser oscillates not only in one mode, but in two modes, but single-mode light emission can be enforced, among other things, by dividing the lattice structure into two sub-gratings, the phase of which is half a grating constant, ie one Such a phase shift DFB laser is described, for example, in HA: Haus, CV Shank: Antisymmetric Taper of Distributed Feedback Laser, IEEE J. Quant. Electr. QE-12 (1976) pp. 532-539.

Gitterstrukturen für DFB-Laser werden heute zum überwiegen­den Teil durch holografische Lithografie, d.h. durch Be­lichtung einer auf der Oberfläche des Lasersubstrats aus Halbleitermaterial aufgebrachten Fotolackschicht in einem optischen Interferenzfeld, Entwickeln der Schicht und Ätzen der mit der entwickelten Fotolackschicht bedeckten Ober­fläche erzeugt, wobei in der Oberfläche des Substrats eine reliefartige Gitterstruktur mit einer der Ortsfrequenz des Interferenzfeldes entsprechenden Ortsfrequenz entsteht. Die übrigen Schritte der Laserherstellung erfolgen in bekannter Weise.Lattice structures for DFB lasers are today predominantly made by holographic lithography, ie by exposure of a photoresist layer applied to the surface of the laser substrate made of semiconductor material in an optical interference field, developing the layer and etching of the surface covered with the developed photoresist layer, a relief-like lattice structure having a spatial frequency corresponding to the spatial frequency of the interference field being formed in the surface of the substrate. The remaining steps of laser production take place in a known manner.

Das optische Interferenzfeld wird durch optische Überlage­rung zweier kohärenter Lichtwellen erzeugt. Dabei entstehen aber nur einfache Gitterstrukturen ohne Phasensprung.The optical interference field is generated by optically superimposing two coherent light waves. However, this results in only simple lattice structures without a phase jump.

Zur Erzeugung von Gitterstrukturen mit Phasensprung werden derzeit Elektronenstrahlschreiber eingesetzt (siehe bei­speilsweise K. Sekartedjo et al: 1, 5 µm phase-shifted DFB lasers for single-mode operation, Electr. Lett. 20 (1984) S. 80-81) oder holografische Lithografie-Verfahren mit kombiniertem Einsatz von Positiv- und Negativ-Fotolack (siehe K. Utaka et al: λ/4-shifted InGaAsP/InP DFB lasers by simultaneous holographic exposure of positive and nega­tive photoresist, Electr. Lett. 20 (1984) S. 1008-1010).Electron beam recorders are currently used to produce lattice structures with phase jump (see, for example, K. Sekartedjo et al: 1.5 µm phase-shifted DFB lasers for single-mode operation, Electr. Lett. 20 (1984) pp. 80-81) or holographic Lithography method with combined use of positive and negative photoresist (see K. Utaka et al: λ / 4-shifted InGaAsP / InP DFB lasers by simultaneous holographic exposure of positive and negative photoresist, Electr. Lett. 20 (1984) p 1008-1010).

Im erstgenannten Fall wird ein sehr kostspieliger Elektro­nenstrahlschreiber benötigt, im zweitgenannten Fall han­delt es sich um ein technologisch aufwendiges Verfahren, das bei der Laserproduktion hohe Ausfallraten erwarten läßt.In the former case, a very expensive electron beam recorder is required; in the latter case, it is a technologically complex process that can lead to high failure rates in laser production.

In beiden Fällen ist die Gitterstrukturherstellung zeit­raubend.In both cases, lattice structure fabrication is time consuming.

Aufgabe der Erfindung ist es, ein besonders einfaches Ver­fahren zur Erzeugung einer Gitterstruktur mit Phasensprung, insbesondere von Gitterstrukturen für DFB-Laser anzugeben.The object of the invention is to provide a particularly simple method for producing a grating structure with a phase shift, in particular grating structures for DFB lasers.

Diese Aufgabe wird ausgehend von einem Verfahren der ein­gangs genannten Art durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst.This object is achieved on the basis of a method of the type mentioned at the outset by the features specified in the characterizing part of patent claim 1.

Das erfindungsgemäße Verfahren unterscheidet sich danach von der derzeit üblichen holografischen Lithografie zur Herstellung einer Gitterstruktur ohne Phasensprung für DFB-Laser im wesentlichen lediglich durch eine überlager­te Belichtung der Fotolackschicht in wenigstens zwei opti­schen Interferenzfeldern unterschiedlicher Ortsfrequenz.The method according to the invention then differs from the currently usual holographic lithography for producing a lattice structure without a phase shift for DFB lasers essentially only by superimposed exposure of the photoresist layer in at least two optical interference fields of different spatial frequencies.

Das erfindungsgemäße Verfahren kann gemäß Anspruch 2 in Fotolacktechnik , aber auch gemäß Anspruch 3 in einer Technik des maskenlosen laseraktiven Ätzens (siehe bei­spielsweise R. M. Lum, F. W. Ostermayer Jr., P.A. Kohl, A.M. Glass, A.A. Ballman in Appl. Phys. Lett. 47 (3), Aug. 1985, S. 269-271) ausgeführt werden.The method according to the invention can be used according to claim 2 in photoresist technology, but also according to claim 3 in a maskless laser-active etching technique (see, for example, RM Lum, FW Ostermayer Jr., PA Kohl, AM Glass, AA Ballman in Appl. Phys. Lett. 47 ( 3), Aug. 1985, pp. 269-271).

Drei besonders zweckmäßige Durchführungsmöglichkeiten des erfindungsgemäßen Verfahrens gehen aus den Unteransprüchen 4 bis 6 hervor.Three particularly expedient ways of carrying out the method according to the invention emerge from subclaims 4 to 6.

Die Erfindung wird beispielhaft in der folgenden Beschrei­bung anhand der Figuren erläutert. Von den Figuren zeigen:

  • Figur 1 eine bestimmte Belichtungsfunktion B(Z) zur Er­zeugung einer Gitterstruktur eines DFB-Lasers, wobei die auf diese Funktion bezogene minimale Länge Lmin, optimale Länge Lopt und maximale Länge Lmax des Lasers angegeben sind,
  • Figur 2 die Belichtung einer Fotolackschicht auf der Ober­fläche des Substrats in dem optischen Interferenz­feld zweier optisch überlagerter ebener kohärenter Lichtwellen;
  • Figur 3 die Belichtung der Fotolackschicht auf der Ober­fläche des Substrats in dem Interferenzfeld zweier optisch überlagerter divergenter kohärenter Lichtwellen,
  • Figur 4 die Belichtung der Fotolackschicht auf der Ober­fläche des Substrats in dem Interferenzfeld einer ebenen Lichtwelle und einem mit dieser optisch überlagerten und von einem Spiegel umgelenkten Anteil dieser Welle, und
  • Figur 5 die Belichtung einer mit einer durch Belichtung aktivierbaren Ätzflüssigkeit in Kontakt stehen­den Oberfläche des Substrats in dem Interferenzfeld einer ebenen Lichtwelle und einem mit dieser opti­sch überlagerten und von einem Spiegel umgelenkten Anteil dieser Welle.
The invention is explained by way of example in the following description with reference to the figures. From the figures show:
  • 1 shows a specific exposure function B (Z) for generating a lattice structure of a DFB laser, the minimum length L min , optimal length L opt and maximum length L max of the laser relating to this function being indicated,
  • FIG. 2 shows the exposure of a photoresist layer on the surface of the substrate in the optical interference field of two optically superimposed, plane, coherent light waves;
  • FIG. 3 shows the exposure of the photoresist layer on the surface of the substrate in the interference field of two optically superimposed divergent coherent light waves,
  • 4 shows the exposure of the photoresist layer on the surface of the substrate in the interference field of a plane light wave and a portion of this wave optically superimposed on it and deflected by a mirror, and
  • 5 shows the exposure of a surface of the substrate which is in contact with an etching liquid which can be activated by exposure in the interference field of a plane light wave and a portion of this wave which is optically superimposed on it and deflected by a mirror.

Im folgenden wird beispielhaft angenommen, daß die foto­empfindliche Oberfläche des Substrats, d.h. die Foto­lackschicht bzw. die mit der Ätzflüssigkeit in Kontakt stehende Oberfläche des Substrats, in einem Interferenzfeld doppelbelichtet wird, wobei zwischen den einzelnen Belich­tungen die Ortsfrequenz K des Interferenzfeldes um einen kleinen Betrag 2ΔK verändert wird.In the following it is assumed, for example, that the photosensitive surface of the substrate, i.e. the photoresist layer or the surface of the substrate in contact with the etching liquid is double-exposed in an interference field, the spatial frequency K of the interference field being changed by a small amount 2ΔK between the individual exposures.

Die Belichtungsfunktion B₁(Z) der ersten Belichtung, d.h. die Ortsabhängigkeit der Lichtintensität in Z-Richtung auf der fotoempfindlichen Schicht betrage beispielsweise etwa
B₁(Z) = B₀ (1 + sin (K + ΔK)Z). (1)
Die Belichtungsfunktion der zweiten Belichtung betrage
B₂(Z) = B₀ (1 - sin (K - ΔK)Z). (2)
Die Belichtungsfunktion der Gesamtbelichtung ist gegeben durch

Figure imgb0001
Dies ist eine Belichtungsfunktion mit der Ortsfrequenz K moduliert mit der Modulationsfunktion sin ΔK·Z. Der Vor­ zeichenwechsel der Modulationsfunktion an den Stellen ΔK·Z = N·π läßt sich auch als Phasensprung der modulier­ten Funktion an dieser Z-Werten interpretieren:
Figure imgb0002
The exposure function B₁ (Z) of the first exposure, ie the location dependence of the light intensity in the Z direction on the photosensitive layer, for example, is approximately
B₁ (Z) = B₀ (1 + sin (K + ΔK) Z). (1)
The exposure function of the second exposure is
B₂ (Z) = B₀ (1 - sin (K - ΔK) Z). (2)
The exposure function of the total exposure is given by
Figure imgb0001
This is an exposure function with the spatial frequency K modulated with the modulation function sin ΔK · Z. The before The change in the sign of the modulation function at the points ΔK · Z = N · π can also be interpreted as a phase jump of the modulated function at these Z values:
Figure imgb0002

Die Belichtungsfunktion B(Z) ist also eine Gitterfunktion mit Phasensprüngen in Abstand ΔZ = π /ΔK.The exposure function B (Z) is therefore a grating function with phase jumps at a distance ΔZ = π / ΔK.

Die belichtete Fotolackschicht wird entwickelt und die Gitterstruktur durch Ätzen in das Halbleitermaterial des Substrats übertragen. Die übrigen Schritte der Laserher­stellung erfolgen ebenfalls in bekannter Weise.The exposed photoresist layer is developed and the lattice structure is transferred into the semiconductor material of the substrate by etching. The remaining steps of laser production are also carried out in a known manner.

Die Länge L des Lasers wird so gewählt, daß ein Phasen­sprung in die Mitte des Lasers fällt, und daß L nicht größer als die Periode Lmax = 2π /ΔK der Modulations­funktion sinΔK·Z wird; auf der anderen Seite soll die maximale Modulationstiefe des Gitters noch im Laser erreicht werden, also L nicht kleiner sein als die halbe Periode Lmin der Modulationsfunktion, also

Figure imgb0003
gelten.The length L of the laser is chosen so that a phase jump falls in the middle of the laser and that L does not become larger than the period L max = 2π / ΔK of the modulation function sinΔK · Z; on the other hand, the maximum modulation depth of the grating should still be achieved in the laser, that is, L should not be less than half the period L min of the modulation function, that is
Figure imgb0003
be valid.

Vorzugsweise wird das Produkt L·K = Lopt·K etwa 4,6 gewählt.The product L · K = L opt · K is preferably chosen to be about 4.6.

Für eine vorgegebene Laserlänge L von beispielsweise etwa 500 µm ergibt sich daraus für die Ortsfrequenzveränderung 2ΔK/2π zwischen den beiden Belichtungen ein Wert von etwa drei Linien/mm.For a given laser length L of, for example, approximately 500 μm, this results in a value of approximately three lines / mm for the spatial frequency change 2ΔK / 2π between the two exposures.

Im folgenden werden drei zweckmäßige und vorteilhafte Aus­führungsformen der Doppelbelichtung der fotoempfindlichen Oberfläche des Substrats anhand der Figuren 2 bis 5 be­schrieben.Three expedient and advantageous embodiments of the double exposure of the photosensitive surface of the substrate are described below with reference to FIGS. 2 to 5.

In diesen Figuren ist das Substat mit 1, dessen Oberfläche mit 11, und ein auf die Oberfläche 11 gefälltes Lot mit S bezeichnet. Die Einfallsebene, in der die optisch überla­gerten Lichtwellen einfallen, ist bei sämtlichen Figuren 2 bis 5 die Zeichenebene.In these figures, the substrate is denoted by 1, its surface by 11, and a solder which has fallen onto the surface 11 by S. The plane of incidence in which the optically superimposed light waves are incident is the plane of the drawing in all FIGS. 2 to 5.

In den Figuren 2 bis 4 besteht die fotoempfindliche Ober­fläche des Substrats 1 aus einer auf die Oberfläche 11 auf­gebrachten Fotolackschicht 2.In FIGS. 2 to 4, the photosensitive surface of the substrate 1 consists of a photoresist layer 2 applied to the surface 11.

Nach Figur 2 überlagern sich zwei aus verschiedenen Rich­tungen R₁ und R₂ einfallende kohärente ebene Wellen 2, 3 vor der Fotolackschicht 2 und bilden ein Interferenzfeld 34, das auf dieser Fotolackschicht 2 parallele, senkrecht sur Zeichenebene verlaufende Interferenzstreifen erzeugt. Die Ortsfrequenz K dieser Interferenzstreifen läßt sich durch den Einfallswinkel der ebenen Wellen und deren Wellenlänge weitgehend einstellen. Der Einfallswinkel der ebenen Welle 3 bzw. 4 ist bekanntlich durch den zwischen der zugeordneten Richtung R₁ bzw. R₂ und dem Lot S gemessenen Winkel α₁ bzw. α₂ gegeben.According to FIG. 2, two coherent plane waves 2, 3 incident from different directions R 1 and R 2 overlap in front of the photoresist layer 2 and form an interference field 34, which generates 2 parallel interference strips that run perpendicular to the plane of the drawing on this photoresist layer. The spatial frequency K of these interference fringes can be largely adjusted by the angle of incidence of the plane waves and their wavelength. The angle of incidence of the plane shaft 3 or 4 is known to be given by the angle α 1 or α 2 measured between the assigned direction R 1 or R 2 and the plumb line S.

Der Fotolack 2 wird eine ausreichende Belichtungszeit lang mit diesen Interferenzstreifen belichtet.The photoresist 2 is exposed to these interference fringes for a sufficient exposure time.

Für die zweite Belichtung wird der Einfallswinkelα₁ und/oderα₂ der ebenen Wellen 3 und 4 geändert. Dies ge­schieht am einfachsten dadurch, daß das Substrat um eine zur Einfallsebene senkrechte Achse M verdreht wird, bei­spielsweise in Richtung des Pfeiles R₃, wobei in diesem Fall die geänderten Einfallswinkel gegeben sind durch α₁ + β und α₂ - β . Dadurch ändert sich von selbst die Ortsfrequenz K der Interferenzstreifen auf der Fotolack­schicht 2. Die erforderliche Ortsfrequenzänderung ΔK läßt sich durch den Betrag des Winkels β, um den verdreht wird, einstellen. Die Lage der Drehachse M ist relativ unkri­tisch.For the second exposure, the angle of incidence α 1 and / or α 2 of the plane waves 3 and 4 is changed. This is done most simply by rotating the substrate about an axis M perpendicular to the plane of incidence, for example in the direction of the arrow R₃, in which case the changed angles of incidence are given by α₁ + β and α₂ - β. This automatically changes the Spatial frequency K of the interference fringes on the photoresist layer 2. The required change in the spatial frequency ΔK can be set by the amount of the angle β by which the rotation takes place. The position of the axis of rotation M is relatively uncritical.

Nach Figur 3 überlagern sich zwei von Quellpunkten oder -linien Q5, Q6 ausgehende, aus verschiedenen Richtungen R₅ bzw. R₆ einfallende kohärente divergente Wellen 5, 6 vor der Fotolackschicht 2. Sie bilden ein Interferenzfeld 56, das ebenfalls Interferenzstreifen auf der Fotolackschicht 2 erzeugt. Bei vorgegebenen Einfallswinkeln α₅ bzw. α₆ der divergenten Wellen 5, 6 läßt sich die Ortsfrequenz K dieser Interferenzstreifen durch den Abstand d der Fotolackschicht 2 von den Quellpunkten Q5, Q6 weitgehend einstellen.According to FIG. 3, two coherent divergent waves 5, 6 originating from source points or lines Q5, Q6 and coming in from different directions R₅ or R über overlap in front of the photoresist layer 2. They form an interference field 56, which likewise produces interference strips on the photoresist layer 2. At predetermined angles of incidence α₅ or α₆ of the divergent waves 5, 6, the spatial frequency K of these interference fringes can be largely adjusted by the distance d of the photoresist layer 2 from the source points Q5, Q6.

Ist der Abstand d für die eine Belichtung ausgewählt, so wird für die zweite Belichtung dieser Abstand d durch Ver­schieben in der beispielsweise zum Lot S parallelen Rich­tung R₇ vergrößert oder aber auch verkleinert. Dadurch ändert sich von selbst die Ortsfrequenz der Interferenz­streifen auf der Fotolackschicht 2. Die erforderliche Orts­frequenzänderung ΔK läßt sich durch die Abstandsänderung Δd einstellen.If the distance d is selected for the one exposure, this distance d is increased or also reduced for the second exposure by shifting in the direction R₇ parallel to the perpendicular S, for example. As a result, the spatial frequency of the interference fringes on the photoresist layer 2 changes automatically. The required spatial frequency change ΔK can be set by changing the distance Δd.

Nach Figur 4 ist das Substrat 1 fest mit einem im Winkel δ von beispielsweise 90° dazu angeordneten ebenen Spiegel Sp verbunden. Aus Richtung R₈ fällt eine ebene Welle 8 sowohl auf die Fotolackschicht 2 als auch auf den Spiegel Sp. Der Spiegel Sp reflektiert den auf ihn treffenden Anteil 18 der ebenen Welle 8, beispielsweise die Hälfte, in Richtung Fotolackschicht 2. Dadurch entsteht vor der Fotolackschicht 2 ein Interferenzfeld 80, das auf dieser Schicht Interfe­renzstreifen erzeugt, deren Ortsfrequenz K vom Einfalls­winkel α₈ der ebenen Welle auf die Fotolackschicht 2 sowie vom Winkel δ zwischen dem Spiegel Sp und der Fotolack­schicht 2 bzw. Oberfläche 11 abhängt.According to FIG. 4, the substrate 1 is firmly connected to a plane mirror Sp arranged at an angle δ of, for example, 90 °. From the direction R₈, a plane wave 8 falls on both the photoresist layer 2 and on the mirror Sp. The mirror Sp reflects the portion 18 of the plane wave 8 that hits it, for example half, in the direction of the photoresist layer 2. This creates in front of the photoresist layer 2 an interference field 80 which generates interference fringes on this layer, the spatial frequency K of which depends on the angle of incidence α₈ of the plane wave on the photoresist layer 2 and on the angle δ between the mirror Sp and the photoresist layer 2 or surface 11.

Ist die Ortsfrequenz K für die eine Belichtung ausgewählt, so kann die Ortsfrequenzänderung ΔK für die zweite Belich­tung einfach durch gemeinsames Verdrehen von Substrat 1 und Spiegel Sp um eine Achse M', beispielsweise in Richtung des Pfeiles R₉, eingestellt werden. Wie bei der Ausgestaltung nach Figur 2 läßt sich die erforderliche Ortsfrequenzände­rung ΔK durch den Betrag des Winkels γ, um den verdreht wird, einstellen. Auch hier ist die Lage der Drehachse M' relativ unkritisch.If the spatial frequency K is selected for the one exposure, the spatial frequency change ΔK for the second exposure can be set simply by rotating substrate 1 and mirror Sp together about an axis M ', for example in the direction of arrow R₉. As in the embodiment according to FIG. 2, the required change in spatial frequency .DELTA.K can be set by the amount of the angle .gamma. By which it is rotated. Here, too, the position of the axis of rotation M 'is relatively uncritical.

In der Figur 5 besteht die fotoempfindliche Oberfläche des Substrats 1 aus dessen mit einer durch Belichtung aktivie­rbaren Ätzflüssigkeit 20 in Kontakt stehenden Oberfläche 11 selbst. Ansonsten entspricht die ganze Anordnung nach Fi­gur 5 der Anordnung nach Figur 4, wobei die einander ent­sprechenden Elemente die gleichen Bezugszeichen aufweisen. Im Unterschied zur Figur 4 ist die Anordnung nach Figur 5 in einer die Ätzflüssigkeit 20 enthaltenden transparenten Küvette 10 eingeschlossen.In FIG. 5, the photosensitive surface of the substrate 1 consists of its surface 11 itself, which is in contact with an etching liquid 20 that can be activated by exposure. Otherwise, the entire arrangement according to FIG. 5 corresponds to the arrangement according to FIG. 4, the corresponding elements having the same reference numerals . In contrast to FIG. 4, the arrangement according to FIG. 5 is enclosed in a transparent cuvette 10 containing the etching liquid 20.

Durch das einfallende Laserlicht 8 wird eine chemische Reaktion direkt im Substratmaterial an der Oberfläche 11 des Substrats 1 ausgelöst. Die Entstehung des Gitters mit Phasensprung läuft ganz analog ab, wie bei der Verwendung von Fotolack: Im ersten Belichtungsschritt wird beispiels­weise ein Gitter mit einer ersten Gitterkonstanten K = Λ + ΔΛ, zweiten Belichtungsschritt ein Gitter mit der Gitterkonstanten Λ - ΔΛ erzeugt. Das aus der Überlagerung dieser beiden Gitter resultierende Gitter hat eine mittliere Gitterkonstante Λ, die sinusförmig mit der Periode ΔΛ moduliert ist.The incident laser light 8 triggers a chemical reaction directly in the substrate material on the surface 11 of the substrate 1. The formation of the grating with a phase shift takes place in a very analogous manner as when using photoresist: in the first exposure step, for example, a grating with a first grating constant K = Λ + ΔΛ, the second exposure step a grating with the grating constants Λ - ΔΛ is generated. The lattice resulting from the superposition of these two lattices has an average lattice constant Λ which is modulated sinusoidally with the period ΔΛ.

Als Ätzmittel kommen alle für laseraktives Ätzen bekann­ten Flüssigkeiten und Gase in Betracht. So kann beispiels­weise eine Mischung aus einem Teil H₂SO₄, einem Teil H₂O₂ und 10 Teilen H₂O (siehe obengenannte Literaturstelle Appl. Phys. Lett.) verwendet werden, die beispielsweise für ein Substratmaterial aus InP geeignet ist.All liquids and gases known for laser-active etching can be used as etchants. For example, a mixture of one part of H₂SO₄, one part of H₂O₂ and 10 parts of H₂O (see above-mentioned reference Appl. Phys. Lett.) Can be used, for example is suitable for a substrate material made of InP.

Für die Herstellung der Gitterstrukturen durch laserak­tives Ätzen und die Herstellung mittels Fotolack kann die gleiche optische Anordnung zur Belichtung verwendet wer­den. So kann bei dem Verfahren nach Figur 5 anstelle der Anordnung nach Figur 4 auch die Anordnung nach Figur 2 oder Figur 3 verwendet werden.The same optical arrangement for exposure can be used for the production of the lattice structures by laser-active etching and the production by means of photoresist. Thus, in the method according to FIG. 5, instead of the arrangement according to FIG. 4, the arrangement according to FIG. 2 or FIG. 3 can also be used.

BezugszeichenlisteReference symbol list

  • B(Z) BelichtungsfunktionB (Z) exposure function
  • Lmin minimale Länge des LasersL min minimum length of the laser
  • Lmax maximale Länge des LasersL max maximum length of the laser
  • Lopt optimale Länge des LasersL opt optimal length of the laser
  • 1 Substat1 Substat
  • 11 Oberfläche des Substrats11 surface of the substrate
  • 2 Fotolackschicht2 photoresist layer
  • S auf die Oberfläche gefälltes LotS solder precipitated on the surface
  • R₁, R₂ verschiedene RichtungenR₁, R₂ different directions
  • 3, 4 kohärente ebene Wellen3, 4 coherent plane waves
  • 34 Interferenzfeld34 interference field
  • K Ortsfrequenz der InterferenzstreifenK spatial frequency of the interference fringes
  • α₁, α₂ Einfallswinkel der ebenen Wellenα₁, α₂ angle of incidence of the plane waves
  • M zur Einfallsebene senkrechte AchseM axis perpendicular to the plane of incidence
  • R₃ PfeilR₃ arrow
  • β Winkel, um den das Substrat 1 um die Achse M verdreht wirdβ angle by which the substrate 1 is rotated about the axis M.
  • Q₅, Q₆ Quellpunkte oder -linienQ₅, Q₆ source points or lines
  • R₅, R₆ einfallende divergente WellenR₅, R₆ incident divergent waves
  • 5, 6 kohärente divergente Wellen5, 6 coherent divergent waves
  • α₅, α₆ Einfallswinkel der divergenten Wellen 5, 6α₅, α₆ angle of incidence of the divergent waves 5, 6
  • d Abstand der Fotolackschicht von den Quell­punkten Q₅, Q₆d Distance of the photoresist layer from the source points Q₅, Q₆
  • R₇ Richtung parallel zum Lot SR₇ direction parallel to Lot S
  • Δd AbstandsänderungΔd distance change
  • δ Winkel, in dem der Spiegel Sp zum Substrat 1 angeordnet istδ angle at which the mirror Sp is arranged relative to the substrate 1
  • Sp SpiegelSp mirror
  • R₈ RichtungR₈ direction
  • 8 ebene Welle8 flat shaft
  • 18 vom Spiegel Sp reflektierter Anteil der ebenen Welle 818 part of the plane wave 8 reflected by the mirror Sp
  • 80 Interferenzfeld80 interference field
  • α₈ Einfallswinkel der ebenen Welle 8α₈ angle of incidence of the plane shaft 8
  • M' AchseM 'axis
  • R₉ PfeilR₉ arrow
  • γ Winkel, um den verdreht wirdγ angle by which to rotate
  • 20 Ätzflüssigkeit20 etching liquid
  • 10 Küvette10 cuvette
  • Λ GitterkonstanteΛ lattice constant
  • ΔΛ Periode, mit der die Gitterkonstante moduliert istΔΛ period with which the lattice constant is modulated

Claims (6)

1. Verfahren zur Erzeugung einer Gitterstruktur mit Phasen­sprung auf der Oberfläche eines Substrats (1) durch Belich­tung der fotoempfindlichen Oberfläche (2, 11) in einem optischen Interferenzfeld (34, 56, 80) und Entwickeln der belichteten Oberfläche, gekennzeichnet durch überlagerte Belichtung der fotoempfindlichen Oberfläche (2, 11) in wenigstens zwei Interferenzfeldern (34, 56, 80) unterschiedlicher Ortsfrequenz.1. A method for producing a lattice structure with phase jump on the surface of a substrate (1) by exposure of the photosensitive surface (2, 11) in an optical interference field (34, 56, 80) and developing the exposed surface, characterized by superimposed exposure of the photosensitive Surface (2, 11) in at least two interference fields (34, 56, 80) of different spatial frequencies. 2. Verfahren nach Anspruch 1, dadurch ge­kennzeichnet, daß die fotoempfindliche Ober­fläche des Substrats (1) aus einer auf das Substrat (1) aufgebrachten Fotolackschicht (2) besteht, die nach der überlagerten Belichtung entwickelt wird, wobei die mit der entwickelten Fotolackschicht bedeckte Oberfläche (11) des Substrats mit einem Ätzmittel geätzt wird, das die Oberfläche (11) des Substrats angreift.2. The method according to claim 1, characterized in that the photosensitive surface of the substrate (1) consists of a on the substrate (1) applied photoresist layer (2), which is developed after the superimposed exposure, the surface covered with the developed photoresist layer (11) of the substrate is etched with an etchant which attacks the surface (11) of the substrate. 3. Verfahren nach Anspruch 1, dadurch ge­kennzeichnet, daß die fotoempfindliche Oberfläche aus der mit einem Ätzmittel (20) in Kontakt stehenden Substratoberfläche (11) besteht, an der die Ätzreaktion durch Belichtung aktivierbar ist.3. The method according to claim 1, characterized in that the photosensitive surface consists of the substrate surface (11) in contact with an etchant (20), on which the etching reaction can be activated by exposure. 4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die fotoempfindliche Oberfläche (2, 11) in dem Interferenz­feld (34) zweier ebener kohärenter Wellen (3, 4) unter ver­schiedenen Einfallswinkeln belichtet wird.4. The method according to any one of the preceding claims, characterized in that the photosensitive surface (2, 11) in the interference field (34) of two plane coherent waves (3, 4) is exposed at different angles of incidence. 5. Verfahren nach einem der Ansprüche 1 bis 3, da­durch gekennzeichnet, daß die foto­empfindliche Oberfläche (2, 11) in dem Interferenzfeld (56) zweier divergenter kohärenter Lichtwellen (5, 6) in verschiedenen Abständen von den Quellpunkten oder -linien (Q₅, Q₆) der divergenten Wellen (5, 6) belichtet wird.5. The method according to any one of claims 1 to 3, characterized in that the photosensitive surface (2, 11) in the interference field (56) two divergent coherent light waves (5, 6) at different distances from the source points or lines (Q₅, Q₆) of the divergent waves (5, 6) is exposed. 6. Verfahren nach einem der Ansprüche 1 bis 3, da­durch gekennzeichnet, daß die foto­empfindliche Oberfläche (2, 11) in dem Interferenzfeld (80) einer ebenen Welle (8) und eines von einem relativ zum Substrat (1) fixierten Spiegen (Sp) umgelenkten Anteil (18) dieser Welle unter verschiedenen Einfalls­winkeln belichtet wird.6. The method according to any one of claims 1 to 3, characterized in that the photosensitive surface (2, 11) in the interference field (80) of a plane wave (8) and one of a relative to the substrate (1) fixed mirror (Sp) deflected portion (18) of this wave is exposed at different angles of incidence.
EP86115089A 1985-11-04 1986-10-30 Method of producing a grid pattern incorporating a phase jump on the surface of a substrate Expired - Lifetime EP0221514B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3539092 1985-11-04
DE3539092 1985-11-04
DE3545102 1985-12-19
DE3545102 1985-12-19

Publications (3)

Publication Number Publication Date
EP0221514A2 true EP0221514A2 (en) 1987-05-13
EP0221514A3 EP0221514A3 (en) 1989-03-08
EP0221514B1 EP0221514B1 (en) 1993-01-07

Family

ID=25837545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115089A Expired - Lifetime EP0221514B1 (en) 1985-11-04 1986-10-30 Method of producing a grid pattern incorporating a phase jump on the surface of a substrate

Country Status (5)

Country Link
US (1) US4859548A (en)
EP (1) EP0221514B1 (en)
JP (1) JPH0693045B2 (en)
CA (1) CA1290601C (en)
DE (1) DE3687444D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432047A (en) * 1992-06-12 1995-07-11 International Business Machines Corporation Patterning process for bipolar optical storage medium
US5501926A (en) * 1992-06-12 1996-03-26 International Business Machines Corporation Dichromatic photomask and a method for its fabrication

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059499A (en) * 1988-06-03 1991-10-22 Michael Teitel Master hologram and micropattern replication method
WO1992000555A1 (en) * 1990-06-29 1992-01-09 E.I. Du Pont De Nemours And Company Method and apparatus for recording plural holographic images into a holographic recording material by temporal interleaving
US5543251A (en) * 1990-06-29 1996-08-06 E. I. Du Pont De Nemours And Company Method of recording plural holographic images into a holographic recording material by temporal interleaving
JP2725913B2 (en) * 1991-08-29 1998-03-11 富士通株式会社 Hologram drawing device
JP2774398B2 (en) * 1991-09-17 1998-07-09 富士通株式会社 Hologram making device
US6709790B1 (en) * 1992-08-26 2004-03-23 Goodrich Corporation Method and apparatus for generating periodic structures in substrates by synthetic wavelength holograph exposure
US5415835A (en) * 1992-09-16 1995-05-16 University Of New Mexico Method for fine-line interferometric lithography
US5362584A (en) * 1993-04-02 1994-11-08 International Business Machines Corporation Phase-shifting transparent lithographic mask for writing contiguous structures from noncontiguous mask areas
US5705321A (en) * 1993-09-30 1998-01-06 The University Of New Mexico Method for manufacture of quantum sized periodic structures in Si materials
US6042998A (en) * 1993-09-30 2000-03-28 The University Of New Mexico Method and apparatus for extending spatial frequencies in photolithography images
KR0164076B1 (en) * 1995-09-29 1999-02-01 김주용 Fine patterning method of semiconductor device
US5629998A (en) * 1996-01-29 1997-05-13 Corning Incorporated Method and apparatus for writing photosensitive grating using Lloyd's mirror
US6212148B1 (en) 1998-01-30 2001-04-03 Siros Technologies, Inc. Optical data storage by selective localized alteration of a format hologram
KR20000026880A (en) * 1998-10-23 2000-05-15 김영남 Discontinuous exposure lens using grating and method for fabricating thereof
US6322933B1 (en) * 1999-01-12 2001-11-27 Siros Technologies, Inc. Volumetric track definition for data storage media used to record data by selective alteration of a format hologram
US6512606B1 (en) 1999-07-29 2003-01-28 Siros Technologies, Inc. Optical storage media and method for optical data storage via local changes in reflectivity of a format grating
US6322931B1 (en) 1999-07-29 2001-11-27 Siros Technologies, Inc. Method and apparatus for optical data storage using non-linear heating by excited state absorption for the alteration of pre-formatted holographic gratings
US6310850B1 (en) 1999-07-29 2001-10-30 Siros Technologies, Inc. Method and apparatus for optical data storage and/or retrieval by selective alteration of a holographic storage medium
US6391528B1 (en) * 2000-04-03 2002-05-21 3M Innovative Properties Company Methods of making wire grid optical elements by preferential deposition of material on a substrate
KR100357981B1 (en) * 2000-06-29 2002-10-25 삼성전자 주식회사 Apparatus for manufacturing grating device and method of manufacturing the same
US7959714B2 (en) 2007-11-15 2011-06-14 Cummins Filtration Ip, Inc. Authorized filter servicing and replacement
CN103576225B (en) * 2013-11-08 2016-01-20 无锡英普林纳米科技有限公司 Position phase mask lithography prepares the method for the adjustable nanometer periodic optical grating of dutycycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140594A2 (en) * 1983-10-03 1985-05-08 Fujitsu Limited Method for constructing and reconstructing hologram

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402571A (en) * 1981-02-17 1983-09-06 Polaroid Corporation Method for producing a surface relief pattern
JPS61156003A (en) * 1984-12-27 1986-07-15 Sharp Corp Production of diffraction grating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140594A2 (en) * 1983-10-03 1985-05-08 Fujitsu Limited Method for constructing and reconstructing hologram

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLIED OPTICS, Band 24, Nr. 19, 1. Oktober 1985, Seiten 3155-3161, Optical Society of America; X. MAI et al.: "Simple versatile method for fabricating guided-wave gratings" *
APPLIED PHYSICS LETTERS, Band 47, Nr. 3, 1. August 1985, Seiten 269-271, American Institute of Physics; R.M. LUM et al.: "Improvements in the modulation amplitude of submicron gratings produced in n-InP by direct photoelectrochemical etching" *
ELECTRONIC LETTERS, Band 20, Nr. 24, 22. November 1984, Seten 1008-1010; K. UTAKA et al.: "Lambda/4-shifted InGaAsP/InP DFB lasers by simultaneous holographic exposure of positive and negative photoresists" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432047A (en) * 1992-06-12 1995-07-11 International Business Machines Corporation Patterning process for bipolar optical storage medium
US5501926A (en) * 1992-06-12 1996-03-26 International Business Machines Corporation Dichromatic photomask and a method for its fabrication

Also Published As

Publication number Publication date
EP0221514B1 (en) 1993-01-07
CA1290601C (en) 1991-10-15
JPS62108209A (en) 1987-05-19
US4859548A (en) 1989-08-22
DE3687444D1 (en) 1993-02-18
JPH0693045B2 (en) 1994-11-16
EP0221514A3 (en) 1989-03-08

Similar Documents

Publication Publication Date Title
EP0221514B1 (en) Method of producing a grid pattern incorporating a phase jump on the surface of a substrate
DE3687845T2 (en) SPATIAL PHASE MODULATION MASKS, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR THE FORMATION OF PHASE-SHIFTED GRADES.
DE69524940T2 (en) Semiconductor laser and method for its manufacture
DE69709822T2 (en) Laser diode array and manufacturing process
DE68915673T2 (en) Semiconductor laser device.
DE3445725C2 (en)
DE69936615T2 (en) Device having an optical function, manufacturing method and optical communication system
DE69414500T2 (en) Wavelength-tunable light source with interferometer as an optical filter within the external resonator
DE69214324T2 (en) Manufacturing process for an optical integrated circuit
DE3686315T2 (en) METHOD FOR PRODUCING A SEMICONDUCTOR STRUCTURE.
DE69609068T2 (en) METHOD AND DEVICE FOR PRODUCING AN OPTICAL WAVE GRID
DE3936694C2 (en) Semiconductor component, in particular DFB semiconductor laser
DE69018336T2 (en) Method of making a diffraction grating.
DE60010837T2 (en) Optical semiconductor device and associated manufacturing method
EP1533876A2 (en) Polarisation control of vercial cavity diode lasers by a monolithically integrated surface grating
DE69203784T2 (en) Gain-coupled semiconductor laser with distributed feedback.
JPH08227838A (en) Formation of minute pattern
DE69323343T2 (en) Method of making a diffraction grating
EP0704946B1 (en) Optoelectronic multiwavelength element
DE10302134A1 (en) Semiconductor laser
JPH073909B2 (en) Semiconductor laser manufacturing method
DE69801283T2 (en) Optical semiconductor component
DE3406838C2 (en)
DE68915699T2 (en) Semiconductor laser device.
DE3689756T2 (en) Semiconductor laser with distributed feedback.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19890726

17Q First examination report despatched

Effective date: 19910612

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3687444

Country of ref document: DE

Date of ref document: 19930218

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931018

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931031

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931216

Year of fee payment: 8

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST