EP0217777A1 - Caloduc capillaire - Google Patents

Caloduc capillaire Download PDF

Info

Publication number
EP0217777A1
EP0217777A1 EP86870111A EP86870111A EP0217777A1 EP 0217777 A1 EP0217777 A1 EP 0217777A1 EP 86870111 A EP86870111 A EP 86870111A EP 86870111 A EP86870111 A EP 86870111A EP 0217777 A1 EP0217777 A1 EP 0217777A1
Authority
EP
European Patent Office
Prior art keywords
heat exchange
exchange surface
heat pipe
partition
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86870111A
Other languages
German (de)
English (en)
Other versions
EP0217777B1 (fr
Inventor
Ranbir Singh Bhatti
Stéphane Van Oost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Belge De Constructions Aeronautiques Sabca SA
Original Assignee
Belge De Constructions Aeronautiques Sabca SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE0/215549A priority Critical patent/BE903187A/fr
Priority claimed from BE0/215549A external-priority patent/BE903187A/fr
Application filed by Belge De Constructions Aeronautiques Sabca SA filed Critical Belge De Constructions Aeronautiques Sabca SA
Priority to AT86870111T priority patent/ATE45212T1/de
Publication of EP0217777A1 publication Critical patent/EP0217777A1/fr
Application granted granted Critical
Publication of EP0217777B1 publication Critical patent/EP0217777B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Definitions

  • a heat pipe is in the general form of a tube, of any section, hermetically sealed, the internal wall of which is lined with capillary tissue soaked in an adequate liquid.
  • this tube is heated, the liquid evaporates on the heated side while the vapor condenses on the cooled side. Finally, the condensate is returned to its starting point by capillary suction of the tissue.
  • the vapor phase in the heat pipe is quasi-isothermal, the only gradients occur by conduction of the evaporator and the condenser.
  • the heat pipe is therefore a quasi-isothermal system whatever its length.
  • the maximum heat transport capacity of the heat pipe is governed by the balance of the driving pressures (gravity, capillary suction) and the resistant pressures (pressure drops).
  • the subject of the invention is an internal structure of improved heat pipes which overcomes the drawbacks of conventional lattice capillary structures.
  • a heat pipe characterized by at least one permeable partition developing into a sheet brought into contact at regular intervals with the heat exchange surface so as to form therewith capillary channels having as lateral edges the aforementioned joints and so that said capillary channels have corners at an acute angle along their lateral edges, each partition having openings having a diameter or a width at least approximately equal to the maximum height of a channel.
  • Figure 1 shows a cross section of a cylindrical heat pipe according to the invention.
  • the outer tube 1 of the heat pipe constitutes the heat exchange surface of the evaporator zone.
  • the inner surface of the tube 1 is advantageously formed with grooves 2, the role of which will be seen below.
  • a first capillary partition 3 developing along a hexagonal parallelipipedic surface, the edges A, B .... of the parallelipipedic surface being for example welded to the tube 1.
  • several longitudinal capillary channels 10 are thus formed for the circulation of a liquid.
  • a second capillary partition 4 forming with the partition 3 several capillary channels 20 parallel to the channels 10.
  • a third partition 5 forming with the partition 4 longitudinal capillary channels 30. Additional partitions could also be provided in a similar manner.
  • a characteristic feature of the structure according to the invention is that the capillary channels 10, 20, 30 formed by the partitions inside the tube 1 have corners at an acute angle, such as 101, 102, 202, 301, 302 for example.
  • a second characteristic characteristic of the invention is the formation of a plurality of openings 6 in the partitions 3, 4, 5.
  • the vapor bubbles which form in the liquid channels 10, 20, 30 and which would tend to stagnate there are animated by a capillary push developed in a corner, which expels them from the corners 101 , 102, 201 ?? and bring them to the openings 6 which immediately evacuate them to the adjacent interior channel and finally into the central vapor channel 40 (see Figure 1).
  • This avoids the formation of steam plugs and an insulating vapor film which limit the transportable power in conventional heat pipes.
  • the grooves 2 advantageously formed in the internal face of the tube 1 and which have been mentioned previously, distributes the liquid, preferably housed in the aforementioned corners, over the entire internal surface of the tube subjected to the heat flow.
  • the aforementioned openings 6 have nothing to do with the meshes of a trellis usually used to constitute the permeable partitions.
  • the openings 6 are made in the partition with dimensions and a pitch chosen as a function of the maximum radial width of the channels. Designating by E the maximum height of a liquid channel, the optimal value of the diameter or width d of the openings is equal to approximately E.
  • the step e it is advantageous to choose it as small as possible, at the limit even of zero value, that is to say that the openings would be continuous slits. In practice, however, it has proved to be interesting and sufficient to choose the step equal to 4d.
  • FIG. 3 shows a heat pipe with a surface.
  • FIG. 4 illustrates an embodiment in which the heat exchange surface 1 is planar.
  • this arrangement also has an appreciable mechanical advantage: that of allowing the bending of the heat pipe without degradation of the heat transport capacity, the geometric shape. liquid channels remaining in conformity with its initial arrangement thanks to the mechanical support of the folded partitions, kept in contact with the surface of the tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Caloduc comprenant au moins une cloison perméable (3, 4 ..) se développant suivant une nappe mise en contact à intervalles réguliers (A, B, C ...) avec la surface d'échange thermique (1) de manière à former avec celle-ci des canaux capillaires (10, 20, 30 ...) ayant les jointures (A, B, C ...)comme bords latéraux et de manière que lesdits canaux capillaires présentent des coins à angle aigu (101, 102, 201, ...) le long de leurs bords latéraux. Chaque cloison (3, 4 ...) présente des ouvertures (6) ayant un dia­mètre ou une largeur (d) au moins approximativement égale à la hauteur maximale (E) d'un canal.

Description

  • Un caloduc se présente sous la forme générale d'un tube, de section quelconque, hermétiquement scellé, dont la paroi interne est tapissée d'un tissu capillaire imbibé d'un liquide adéquat. Lorsque l'on chauffe ce tube, le liquide s'évapore du côté chauffé tandis que la vapeur se condense du côté refroidi. Enfin, le condensat est ramené à son point de départ par succion capillaire du tissu.
  • Lorsque le caloduc est incliné, évaporateur en-dessous, la gravité favorise fortement le retour du liquide tandis que la succion capillaire assure le mouillage efficace de toutes les surfaces d'évaporation et de condensation.
  • La phase vapeur dans le caloduc est quasi-isotherme, les seuls gradients se produisent par conduction de l'évaporateur et du condenseur. Le caloduc est donc un système quasi-isotherme quelle que soit sa longueur. La capacité de transport de chaleur maximum du caloduc est régie par l'équilibre des pressions motrices (gra­vité, succion capillaire) et des pressions résistantes (pertes de charge).
  • Une structure capillaire interne usuelle dans un caloduc utilise des cloisons perméables sous forme de treillis cylindriques concentriques. Cette structure a pour in­convénient de voir sa puissance calorifique transporta­ble limitée par deux phénomènes :
    • a) formation de bouchons de vapeur ou de gaz dans les canaux prévus pour la circulation du liquide dans les zones de chauffage.
    • b) formation d'un film de vapeur isolant qui engendre des gradients de température importants, préjudiciables à la supraconductivité recherchée dans le domaine de la trans­mission de chaleur.
  • De plus, ces caloducs connus subissent une très forte dé­gradation de leurs performances après cintrage, ce qui les rend impropres à leur utilisation dans certaines applica­tions telles que le domaine des satellites artificiels, par exemple.
  • L'invention a pour objet une structure interne de caloducs perfectionnée qui pallie les inconvénients des structures capillaires à treillis usuelles.
  • Cet objectif est atteint, selon l'invention, par un calo­duc caractérisé par au moins une cloison perméable se dé­veloppant en une nappe mise en contact à intervalles ré­guliers avec la surface d'échange thermique de manière à former avec celle-ci des canaux capillaires ayant comme bords latéraux les jointures précitées et de manière que lesdits canaux capillaires présentent des coins à angle aigu le long de leurs bords latéraux, chaque cloison pré­sentant des ouvertures ayant un diamètre ou une largeur au moins approximativement égale à la hauteur maximale d'un canal.
  • D'autres particularités de l'invention ressortiront de l'exposé de l'invention.
  • L'invention est exposée dans ce qui suit en s'appuyant sur les dessins ci-annexés dans lequels:
    • . la figure 1 est une vue en coupe transversale d'un mode d'exécution exemplaire d'un caloduc selon l'inven­tion;
    • . la figure 2 montre schématiquement l'effet cinétique créé avec la disposition selon l'invention;
    • . les figures 3 et 4 illustrent deux autres exemples d'exécution typiques de la disposition selon l'invention.
  • Se reportant aux dessins, la figure 1 montre une coupe transversale d'un caloduc cylindrique selon l'invention. Le tube extérieur 1 du caloduc constitue la surface d'échange thermique de la zone évaporateur. La surface intérieure du tube 1 est avantageusement formée avec des rainures 2 dont on verra le rôle plus loin. A l'intérieur du tube 1 est fixée une première cloison capillaire3 se développant suivant une surface parallélipipédique hexagonale, les arêtes A, B.... de la surface parallélipipédique étant par exemple soudées au tube 1. Entre la surface 3 et le tube 1 sont ainsi formés plusieurs canaux capil­laires longitudinaux 10 pour la circulation d'un liquide.
  • A l'intérieur de la cloison 3 est fixée une deuxième cloison capillaire 4 formant avec la cloison 3 plusieurs canaux capillaires 20 parallèles aux canaux 10. Et à l'intérieur de la cloison 4 est fixée une troisième cloison 5 formant avec la cloison 4 des canaux capillaires longitudinaux 30. Des cloisons supplémentaires pourraient encore être prévues d'une façon similaire.
  • Une particularité caractéristique de la structure selon l'invention est que les canaux capillaires 10, 20, 30 formés par les cloisons à l'intérieur du tube 1 pré­sentent des coins à angle aigu, tels que 101, 102, 202, 301, 302 par exemple. Une seconde particularité caractéristique de l'invention est la formation d'une pluralité d'ouvertures 6 dans les cloisons 3, 4, 5.
  • Grâce à ces deux particularités combinées, les bulles de vapeur qui se forment dans les canaux de liquide 10, 20, 30 et qui auraient tendance à y stagner, se trouvent animées par une poussée capillaire développée dans un coin, qui les expulsent des coins 101, 102, 201...... et les aménent vers les ouvertures 6 qui les évacuent immédiatement vers le canal adjacent intérieur et finalement dans le canal de vapeur central 40 (voir figure 1). On évite ainsi la formation de bouchons de vapeur et de film de vapeur isolant qui limitent la puissance transportable dans les caloducs classiques. Les rainures 2 formées avantageusement dans la face interne du tube 1 et que l'on a mentionnées précédemment, réalise la distribution du liquide, logé préférentiellement dans les coins précités, sur l'entièreté de la surface interne du tube soumise au flux de chaleur.
  • Il est à noter que les ouvertures 6 précitées n'ont rien à voir avec les mailles d'un treillis habituel­lement utilisé pour constituer les cloisons perméables. Les ouvertures 6 sont réalisées dans la cloison avec des dimensions et un pas choisis en fonction de la largeur radiale maximale des canaux. Désignant par E la hauteur maximale d'un canal de liquide, la valeur optimale du diamètre ou de la largeur d des ouvertures est égale à environ E. Quant au pas e, il est avan­tageux de le choisir le plus petit possible, à la limite même de valeur nulle, c'est-à-dire que les ouvertures seraient des fentes continues. En pratique, cependant, il s'est avéré intéressant et suffisant de choisir le pas égal à 4d.
  • L'invention n'est nullement limitée au mode d'exécution exemplaire illustré à la figure 1. Deux autres exemples d'exécution typiques sont illustrés aux figures 3 et 4. Le mode d'exécution illustré à la figure 3 montre un caloduc à surface d'échange cylindrique avec une cloison perméable se développant suivant une surface polyédrique quelconque. Des cloisons additionnelles peuvent bien sûr être prévues comme décrit précédemment. La figure 4 illustre un mode d'exécution dans lequel la surface d'échange thermique 1 est plane.
  • En plus des avantages que procure la disposition selon l'invention sur le plan de la puissance calori­fique transportable, cette disposition a encore un avantage mécanique appréciable: celui de permettre le cintrage du caloduc sans dégradation de la capacité de transport de chaleur, la forme géométrique des canaux de liquide restant conforme à sa disposition initiale grâce au support mécanique des cloisons pliées, maintenues en contact avec la surface du tube.

Claims (6)

1. Caloduc comprenant une surface d'échange thermique et au moins une cloison perméable formant avec la surface d'échange thermique plusieurs canaux, caractérisé en ce que la ou chaque cloison (3, 4 ...) se développe suivant une nappe mise en contact à intervalles réguliers (A, B, C ...) avec la surface d'échange thermique (1) de manière à former avec celle-ci des canaux capillaires (10, 20, 30 ...) ayant comme bords latéraux les jointures (A, B, C ...) précitées et de manière que lesdits canaux capil­laires présentent des coins à angle aigu (101, 102, 201, ...) le long de leurs bords latéraux, et en ce que la ou chaque cloison (3, 4 ...) présente des ouvertures (6) ayant un diamètre ou une largeur (d) au moins approxima­tivement égale à la hauteur maximale (E) d'un canal.
2. Caloduc selon la revendication 1, caractérisé en ce qu'il comprend plusieurs cloisons (3, 4, 5 ...) mises en contact à intervalles réguliers entre elles et avec la sur­face d'échange thermique.
3. Caloduc selon la revendication 1 ou 2, caractérisé en ce que la ou les cloisons (3, 4 ...) se développent sui­vant une surface parallélipipédique polygonale inscrite dans une surface d'échange thermique cylindrique.
4. Caloduc selon la revendication 1 ou 2, caractérisé en ce que la ou les cloisons (3, 4 ...) se développent sui­vant une surface polydérique quelconque.
5. Caloduc selon la revendication 1, caractérisé en ce que la face interne de la surface d'échange thermique (1) présente des rainures (2) perpendiculaires à la direction longitudinale des canaux précités.
6. Caloduc selon la revendication 1 ou 2 , caractérisé en ce que la face interne de la surface d'échange thermique (1) est plane.
EP19860870111 1985-09-05 1986-08-11 Caloduc capillaire Expired EP0217777B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BE0/215549A BE903187A (fr) 1985-09-05 1985-09-05 Caloduc capillaire
AT86870111T ATE45212T1 (de) 1985-09-05 1986-08-11 Waermerohr mit kapillarer struktur.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE215549 1985-09-05
BE0/215549A BE903187A (fr) 1985-09-05 1985-09-05 Caloduc capillaire

Publications (2)

Publication Number Publication Date
EP0217777A1 true EP0217777A1 (fr) 1987-04-08
EP0217777B1 EP0217777B1 (fr) 1989-08-02

Family

ID=3843924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860870111 Expired EP0217777B1 (fr) 1985-09-05 1986-08-11 Caloduc capillaire

Country Status (2)

Country Link
EP (1) EP0217777B1 (fr)
DE (1) DE3664809D1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574678A1 (fr) * 1992-06-17 1993-12-22 ERNO Raumfahrttechnik Gesellschaft mit beschränkter Haftung Galoduc
EP1333237A2 (fr) * 2002-02-05 2003-08-06 National Space Development Agency of Japan Accumulateur
US6843308B1 (en) 2000-12-01 2005-01-18 Atmostat Etudes Et Recherches Heat exchanger device using a two-phase active fluid, and a method of manufacturing such a device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598177A (en) * 1968-10-29 1971-08-10 Gen Electric Conduit having a zero contact angle with an alkali working fluid and method of forming
US3892273A (en) * 1973-07-09 1975-07-01 Perkin Elmer Corp Heat pipe lobar wicking arrangement
US4019571A (en) * 1974-10-31 1977-04-26 Grumman Aerospace Corporation Gravity assisted wick system for condensers, evaporators and heat pipes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598177A (en) * 1968-10-29 1971-08-10 Gen Electric Conduit having a zero contact angle with an alkali working fluid and method of forming
US3892273A (en) * 1973-07-09 1975-07-01 Perkin Elmer Corp Heat pipe lobar wicking arrangement
US4019571A (en) * 1974-10-31 1977-04-26 Grumman Aerospace Corporation Gravity assisted wick system for condensers, evaporators and heat pipes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574678A1 (fr) * 1992-06-17 1993-12-22 ERNO Raumfahrttechnik Gesellschaft mit beschränkter Haftung Galoduc
US6843308B1 (en) 2000-12-01 2005-01-18 Atmostat Etudes Et Recherches Heat exchanger device using a two-phase active fluid, and a method of manufacturing such a device
EP1333237A2 (fr) * 2002-02-05 2003-08-06 National Space Development Agency of Japan Accumulateur
EP1333237A3 (fr) * 2002-02-05 2004-07-07 National Space Development Agency of Japan Accumulateur

Also Published As

Publication number Publication date
EP0217777B1 (fr) 1989-08-02
DE3664809D1 (en) 1989-09-07

Similar Documents

Publication Publication Date Title
FR2486221A1 (fr) Echangeur de chaleur
EP0165179B1 (fr) Echangeurs de chaleur à plaques et nouveau type de plaques permettant l'obtention de tels échangeurs
FR2500609A1 (fr) Echangeur de chaleur a tuyaux plats
FR2500610A1 (fr) Echangeur de chaleur a plaques perforees
FR2462682A1 (fr) Perfectionnements aux tubes de chaleur et aux siphons thermiques
EP0567393A1 (fr) Evaporateur à plaques à hautes performances thermiques fonctionnant en régime d'ébullition nucléée
EP0217777B1 (fr) Caloduc capillaire
FR2468093A1 (fr) Condenseur
EP0314585B1 (fr) Echangeur de chaleur gaz/liquide avec condensation
FR2848292A1 (fr) Plaque d'un echangeur thermique et echangeur thermique a plaques
LU82393A1 (fr) Echangeur de chaleur a enceinte en spirale
FR2515803A1 (fr) Echangeur de chaleur comportant un faisceau de tubes paralleles pouvant etre sollicite par de l'air, notamment pour la climatisation de l'habitacle d'un vehicule automobile
BE903187A (fr) Caloduc capillaire
FR2515804A1 (fr) Echangeur de chaleur, comportant un faisceau de tubes orientes parallelement, pouvant etre sollicite par de l'air
FR3080171A1 (fr) Caloduc a pompage capillaire a fonctionnement ameliore
FR2625303A1 (fr) Tuyau plat pour echangeurs de chaleur
EP0117829A1 (fr) Echangeur de chaleur à tuyaux
FR2468085A1 (fr) Appareil frigorifique a sorption, procede pour la mise en service de cet appareil et utilisation de ce dernier
EP3553444B1 (fr) Caloduc a artere a fonctionnement ameliore
FR2811416A1 (fr) Echangeur de chaleur du type a deux voies d'ecoulement de fluide
WO1999050607A1 (fr) Dispositif d'echanges thermiques a fluide biphasique actif et procede de fabrication d'un tel dispositif
FR2935473A1 (fr) Echangeur de chaleur.
FR3060729A1 (fr) Echangeur de chaleur avec dispositif melangeur liquide/gaz a canal isolant thermique
FR2570172A1 (fr) Echangeur perfectionne a tubes multiples
FR2549946A1 (fr) Echangeur thermique a ailettes prevu en particulier pour deshumidificateur d'air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19871202

17Q First examination report despatched

Effective date: 19880616

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 45212

Country of ref document: AT

Date of ref document: 19890815

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3664809

Country of ref document: DE

Date of ref document: 19890907

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86870111.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000825

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010811

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030617

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030619

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030708

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030715

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030801

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030806

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030822

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040811

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050811