EP0211582A2 - Filtre à base d'une fibre optique - Google Patents
Filtre à base d'une fibre optique Download PDFInfo
- Publication number
- EP0211582A2 EP0211582A2 EP86305727A EP86305727A EP0211582A2 EP 0211582 A2 EP0211582 A2 EP 0211582A2 EP 86305727 A EP86305727 A EP 86305727A EP 86305727 A EP86305727 A EP 86305727A EP 0211582 A2 EP0211582 A2 EP 0211582A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibre
- power
- optical fibre
- elongating
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2552—Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02052—Optical fibres with cladding with or without a coating comprising optical elements other than gratings, e.g. filters
Definitions
- the present invention relates to optical fibre filters.
- An optical fibre normally has a relatively broad wavelength transmission characteristic. Depending upon the dimensions and refractive index profile of the fibre, there will be a cut-off wavelength beyond which the HE21 mode will not propagate along the fibre. Shorter wavelengths will normally propagate and the loss of the fibre will vary according to the wavelength being transmitted.
- the present invention therefore relates to the technical problem of producing an optical fibre filter.
- the present invention provides a method of producing an optical fibre filter comprising the steps of launching light energy of a single wavelength into an optical fibre, elongating a portion of the fibre while monitoring the power transmitted therethrough, and stopping the elongating process at a selected point of the transmitted power/elongation curve.
- the method is particularly advantageous in that it enables filters of different characteristics to be produced from an optical fibre without any strict fabrication requirement for the starting fibre.
- the invention further provides apparatus for producing an optical fibre filter comprising a laser source producing radiation at a single wavelength for propagation along an optical fibre, means for elongating a portion of the fibre, means for monitoring the power transmitted along the fibre through the elongated portion, and means for controlling the elongating means in response to the output of the power monitoring means so as to stop the elongation at a predetermined point in the relationship between power and elongation.
- Figure 2 illustrates the apparatus used for producing the taper in a fibre 10.
- the apparatus comprises a laser light source producing radiation at a predetermined wavelength which is 1. 5 micrometres for the purposes of the present example.
- This radiation is passed through a lens 14 to focus it onto the cleaved face of the core 2 of the fibre 10 so that light is propagated along the core of the fibre.
- the fibre will be surrounded by an acrylate jacket which will strip any modes which start to propagate in the cladding waveguide of the fibre. If such a jacket is not provided the fibre may pass through a bath of index matching fluid which will prevent light propagation along the cladding waveguide.
- the fibre 10 is clamped at two spaced points along its length by clamps 16 and 18.
- Each clamp is provided with a motorised driver 20, 22 to enable the clamps to be pulled away from each other to taper the portion of the fibre between them.
- the drives are precisely controlled so that fibre extension of the order of 1cm can be achieved and the extension stopped at a desired point to an accuracy of less than 1mm.
- the clamps may be positioned vertically one above the other so that gravity can assist the tapering process.
- An epoxy-butane flame (not shown) is used to heat the fibre while the taper between the clamps is elongated.
- the end of the fibre 10 is coupled to a power detector 24 which is connected to a chart recorder. If this is not the case then the power detection is provided by a microscope coupled to a vidicon camera. The power detector or microscope is focused so as to detect the power propagated along the core of the optical fibre 10. If the acrylate jacket does not strip modes propagating in the cladding waveguide, a further bath of index matching fluid is provided to avoid light propagating in the cladding waveguide affecting the power detector.
- a typical plot produced on the chart recorder 26 is shown in Figure 1.
- the plot comprises a level section where a constant amount of power is being received.
- the power launched from the laser into the core is being propagated along the core with little- or no coupling of power into the cladding waveguide.
- the received power oscillates increasingly rapidly between a series of minima A, B, C where little power is being received through the core.
- minima correspond to extensions of the fibre at which the tapered portion of the fibre 10 between the clamps 16, 18 is so dimensioned that there is complete energy coupling between the core and the cladding waveguides.
- the plot produced in Figure 1 has been shown for a considerable extension of the fibre between the clamps.
- the drive to the clamps is stopped when the recorder reaches one of the minimum A, B, C or a desired intermediate point depending on the required wavelength transmission characteristic of the filter.
- Figure 3 shows plots of the wavelength transmission characteristics in which power transmitted is plotted against wavelength for optical fibre filters produced by stopping the taper at various extensions when laser light of 1.5 micrometres is being propagated along the fibre core.
- Figure 3A shows the transmission characteristic of the filter produced by stopping the taper at the point marked A on Figure 1.
- the maximum to minimum transmission points are separated by 280 nanometres and the modulation depth is at least 14dB.
- the transmission characteristic illustrated in Figure 3B is produced as a result of stopping the extension approximately at the point marked B in Figure 1. In this transmission characteristic the full oscillation is clear.
- the pass band is now 220 nanometres wide and at least 33dB modulation is present.
- the iflter has a pass band of 190 nanometres which is 33.5dB deep.
- the pass band is reduced to 165 nanometres with a modulation depth of 41dB.
- Optical fibre filters with different characteristics can be produced in dependence on the point on the power/elongation curve at which tapering is stopped, and on the value of the single wavelength used to generate the curve. Where the taper is stopped at a minimum, the resulting filter will normally block radiation of the single wavelength used to produce the curve; this is because at a minimum of the power/elongation curve energy at that wavelength is coupled to the tubular cladding waveguide. If elongation is stopped at a maximum, the single wavelength will be within the pass band.
- Optical filters produced by the described method can readily be incorporated into an optical fibre system where they will filter out wavelengths outside the pass band and transmit the filtered energy through the optical fibre system with minimum loss.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Laser Surgery Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8519087 | 1985-07-29 | ||
GB858519087A GB8519087D0 (en) | 1985-07-29 | 1985-07-29 | Optical fibre filters |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0211582A2 true EP0211582A2 (fr) | 1987-02-25 |
EP0211582A3 EP0211582A3 (fr) | 1987-11-11 |
Family
ID=10583016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86305727A Withdrawn EP0211582A3 (fr) | 1985-07-29 | 1986-07-25 | Filtre à base d'une fibre optique |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0211582A3 (fr) |
GB (2) | GB8519087D0 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2299683A (en) * | 1995-04-04 | 1996-10-09 | Northern Telecom Ltd | Optical notch filter manufacture in a single mode fibre |
EP0793124A1 (fr) * | 1996-03-01 | 1997-09-03 | Alcatel | Filtre obtenu par inscription d'un réseau de Bragg dans une fibre optique |
US6459526B1 (en) | 1999-08-09 | 2002-10-01 | Corning Incorporated | L band amplifier with distributed filtering |
DE102006002605A1 (de) | 2006-01-13 | 2008-07-24 | Technische Universität Berlin | Optisches Modul mit einer Lichtleitfaser und einer Fabry-Perot Schichtstruktur als elektrooptischer Modulator und abstimmbares Filter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3957341A (en) * | 1974-09-03 | 1976-05-18 | The United States Of America As Represented By The Secretary Of The Navy | Passive frequency-selective optical coupler |
GB1493660A (en) * | 1975-12-16 | 1977-11-30 | Standard Telephones Cables Ltd | Optical waveguide power dividers |
CA1118621A (fr) * | 1979-11-01 | 1982-02-23 | Lawrence C. Smyth | Methode et gabarit de fabrication de raccords pour fibres optiques |
EP0123396A2 (fr) * | 1983-03-22 | 1984-10-31 | THE GENERAL ELECTRIC COMPANY, p.l.c. | Fabrication de coupleurs de fibres optiques |
EP0148569A1 (fr) * | 1983-11-30 | 1985-07-17 | Stc Plc | Fabrication d'un coupleur directionnel à fibres monomodes |
-
1985
- 1985-07-29 GB GB858519087A patent/GB8519087D0/en active Pending
-
1986
- 1986-07-25 EP EP86305727A patent/EP0211582A3/fr not_active Withdrawn
- 1986-07-25 GB GB8618182A patent/GB2179172B/en not_active Expired
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3957341A (en) * | 1974-09-03 | 1976-05-18 | The United States Of America As Represented By The Secretary Of The Navy | Passive frequency-selective optical coupler |
GB1493660A (en) * | 1975-12-16 | 1977-11-30 | Standard Telephones Cables Ltd | Optical waveguide power dividers |
CA1118621A (fr) * | 1979-11-01 | 1982-02-23 | Lawrence C. Smyth | Methode et gabarit de fabrication de raccords pour fibres optiques |
EP0123396A2 (fr) * | 1983-03-22 | 1984-10-31 | THE GENERAL ELECTRIC COMPANY, p.l.c. | Fabrication de coupleurs de fibres optiques |
EP0148569A1 (fr) * | 1983-11-30 | 1985-07-17 | Stc Plc | Fabrication d'un coupleur directionnel à fibres monomodes |
Non-Patent Citations (1)
Title |
---|
IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. QE-10, no. 12, December 1974, pages 879-887, New York, US; S. KAWAKAMI et al.: "Characteristics of a doubly clad optical fiber with a low-index inner cladding" * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2299683A (en) * | 1995-04-04 | 1996-10-09 | Northern Telecom Ltd | Optical notch filter manufacture in a single mode fibre |
US5708740A (en) * | 1995-04-04 | 1998-01-13 | Northern Telecom Limited | Optical notch filter manufacture in optical fibre waveguide by plastic deformation |
EP0793124A1 (fr) * | 1996-03-01 | 1997-09-03 | Alcatel | Filtre obtenu par inscription d'un réseau de Bragg dans une fibre optique |
FR2745641A1 (fr) * | 1996-03-01 | 1997-09-05 | Alcatel Submarcom | Filtre obtenu par inscription d'un reseau de bragg dans une fibre optique |
US5818987A (en) * | 1996-03-01 | 1998-10-06 | Alcatel Alsthom Compagnie Generale D'electricite | Filter obtained by writing a Bragg grating into an optical fiber |
US6459526B1 (en) | 1999-08-09 | 2002-10-01 | Corning Incorporated | L band amplifier with distributed filtering |
DE102006002605A1 (de) | 2006-01-13 | 2008-07-24 | Technische Universität Berlin | Optisches Modul mit einer Lichtleitfaser und einer Fabry-Perot Schichtstruktur als elektrooptischer Modulator und abstimmbares Filter |
Also Published As
Publication number | Publication date |
---|---|
GB8618182D0 (en) | 1986-09-03 |
EP0211582A3 (fr) | 1987-11-11 |
GB2179172B (en) | 1989-08-16 |
GB2179172A (en) | 1987-02-25 |
GB8519087D0 (en) | 1985-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0431311B1 (fr) | Coupleur à fibre optique achromatique et son procédé de fabrication | |
US4728170A (en) | Single mode optical fibre attenuators | |
CA1252633A (fr) | Fabrication d'un attenuateur optique par epissure fusee de fibres optiques | |
US6321006B2 (en) | Optical fiber having an expanded mode field diameter and method of expanding the mode field diameter of an optical fiber | |
US5647040A (en) | Tunable optical coupler using photosensitive glass | |
EP0839770B1 (fr) | Procédé de fabrication de fibres optiques dopées par le germanium à dispersion Brillouin réduite | |
EP0340042A1 (fr) | Connexion de guides d'ondes optiques | |
US20170017036A1 (en) | Apparatus for combining optical radiation | |
US4618212A (en) | Optical fiber splicing using leaky mode detector | |
US8818151B1 (en) | Fiber Pump Signal Combiner | |
EP0736784A2 (fr) | Méthode de production de filtres d'encoches optiques | |
CA2075954A1 (fr) | Fibre optique possedant une lentille aspherique | |
US5408556A (en) | 1 X N splitter for single-mode fibers and method of construction | |
CA2441918A1 (fr) | Coupleur optique comprenant des fibres multimodes et methode de fabrication de ce coupleur | |
EP0212864A2 (fr) | Coupleur coaxial | |
EP0211582A2 (fr) | Filtre à base d'une fibre optique | |
US5035477A (en) | Method of changing the spot diameter of single-mode step-index fibers, and single-mode fiber coupling unit made by said method | |
EP2778142A1 (fr) | Fibres optiques avec tampons de verre | |
GB2183866A (en) | Optical fibre filter having tapered sections | |
US6385372B1 (en) | Fiber optical coupler fabrication and system | |
GB2128766A (en) | Single-mode optical fibre attenuator | |
WO2004092777A2 (fr) | Coupleur achromatique de fibre optique et procedes associes | |
CN212623177U (zh) | 融锥型长周期光纤光栅制备装置 | |
JPS63217314A (ja) | 光分岐器の製造方法 | |
CA1284282C (fr) | Filtre a longueur d'onde integre a un guide de lumiere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR IT NL SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19880513 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GEORGIOU, GEORGE ANTONY Inventor name: BOUCOUVALAS, ANTHONY CHRISTOS |