EP0209219A1 - Improvements relating to coaxial magnetrons - Google Patents

Improvements relating to coaxial magnetrons Download PDF

Info

Publication number
EP0209219A1
EP0209219A1 EP86303537A EP86303537A EP0209219A1 EP 0209219 A1 EP0209219 A1 EP 0209219A1 EP 86303537 A EP86303537 A EP 86303537A EP 86303537 A EP86303537 A EP 86303537A EP 0209219 A1 EP0209219 A1 EP 0209219A1
Authority
EP
European Patent Office
Prior art keywords
tuning
cavity
stabilising
coaxial
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86303537A
Other languages
German (de)
French (fr)
Inventor
Alan Butler Cutting
Melvin Gerrard England
Roger John Gates
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thorn EMI PLC
Original Assignee
Thorn EMI PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thorn EMI PLC filed Critical Thorn EMI PLC
Publication of EP0209219A1 publication Critical patent/EP0209219A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • H01J23/207Tuning of single resonator

Definitions

  • This invention relates to coaxial magnetrons and it relates particularly to coaxial magnetrons which have a rotatable tuning member, for example a spin tuned coaxial magnetron.
  • Spin tuned coaxial magnetrons produce a microwave output of varying frequency and are useful in radar applications requiring frequency agility.
  • USP 3,412,285 W.A.Gerard, Westinghouse Electric Corp. discloses a tuning mechanism comprising a fixed tuning member and a rotatable tuning member which extend from opposite end faces of the annular stabilizing cavity to overlap near the centre of the cavity, where the electric field is high.
  • Each tuning member has at least two arcuate portions or teeth, with gaps between them, the rotatable teeth passing close to the stationary teeth.
  • Both tuning members are made of a "dielectric or any other suitable material that will concentrate the electric field".
  • B.P 1485949 (A.B Cutting, EMI Varian Limited), in which several arcuate electrically conducting tuning elements are mounted in a stationary annular dielectric channel extending from one end face into the stabilizing cavity and similar elements are mounted on dielectric fingers extending from the same end of the cavity and within the annular dielectric channel. These fingers are rotatable about the magnetron axis. It is arranged that the rotatable conducting tuning elements pass close to the stationary ones in the central region of the cavity where the electric field is high.
  • tuning is achieved by disturbing the electric field in the central region of the cavity, where the electric field strength is high. It is therefore necessary to construct those parts of the stationary and rotatable tuning members which are in the cavity mainly or entirely of dielectric material.
  • dielectric material are expensive to machine to required shapes, not very robust and sensitive to thermal shock.
  • the dielectric loss reduces the Q-factor & the efficiency of the magnetron.
  • An object of the invention is to minimise the use of dielectric material within the cavity so as to alleviate the above disadvantages.
  • a coaxial magnetron comprising a resonator cavity, a stabilising cavity coupled to the resonator cavity, and a tuning arrangement to influence the frequency of electromagnetic radiation generated, wherein said tuning arrangement includes a plurality of first tuning elements rotatable, in the stabilising cavity, on a longitudinal axis of the magnetron relative to a plurality of second tuning elements in the stabilising cavity, the said first and second tuning elements being made of an electrically conductive material and being positioned adjacent to a wall of the stabilising cavity where the electric field is relatively small.
  • the inventors have discovered that it is possible to achieve frequency agility by disturbing the magnetic field close to the cavity wall where the electric field is low.
  • the tuning members can then be constructed of conducting material (e.g copper) and manufactured at low cost to form a mechanically and thermally robust structure.
  • said tuning arrangement includes first and second tuning members defining part of the stabilising cavity wall, said first and second tuning elements being formed integrally with said first and second tuning members respectively. Said part of the stabilising cavity wall and said first and second tuning elements may be substantially orthogonal to one another.
  • an electrically conductive tuning member 9 has an annular end surface 10 disposed at an end wall of the stabilizing cavity and is rotatable about the axis of the magnetron.
  • the tuning member 9 has a plurality of arcuate electrically conductive tuning elements such as 11 spaced along the outer circumference of the annular end surface and protruding into the stabilizing cavity 4.
  • the tuning elements extend over an arc length of 30 and are spaced apart by 30.
  • This fixed tuning member 12 also has an annular end surface 13 disposed concentrically with and around, the annular end surface 10 and has a matching set of tuning elements such as 14 spaced along the inner circumferences of the annular end surface and protruding into the stabilizing cavity 4.
  • FIGS 3a and 3b show profiles of tuning elements shaped to provide respectively sinusoidal and triangular frequency variations as the tuning member 9 is rotated. It will be appreciated that other profiles can be devised in order to obtain other forms of frequency variation.
  • FIGs 4a and 4b show isometric views of tuning elements having the profile shown in Figure 3a. Eight elements are shown on each tuning member. Figure 4a shows the two sets of elements as misaligned and Figure 4b shows the two sets as aligned.
  • the frequency bandwidth is related to the height of the tuning elements. When they are short, only the magnetic field is significantly affected, giving a negative change of frequency, as the height is increased this effect is enhanced until the electric field is disturbed and introduces a positive frequency variation offsetting that produced by the magnetic field.
  • An annular choke cavity may be provided at the end of each gap between adjacent tuning elements so that the gap has the effect of a short circuit.

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

A coaxial magnetron has a coaxial stabilising cavity (4) and a tuner comprising a tuning member (12) and a tuning member (9) rotatable, on a longitudinal axis of the magnetron, relative to tuning member (12). Respective surfaces (13, 10) of the tuning members (12, 9) define part of the stabilising cavity wall and tuning elements (14, 11), made of an electrically conductive material and formed integrally with members (12, 9), are positioned adjacent to the wall where the electric field is relatively small.

Description

  • This invention relates to coaxial magnetrons and it relates particularly to coaxial magnetrons which have a rotatable tuning member, for example a spin tuned coaxial magnetron. Spin tuned coaxial magnetrons produce a microwave output of varying frequency and are useful in radar applications requiring frequency agility.
  • Various designs of spin-tuned frequency-agile coaxial magnetrons are known. For example, USP 3,412,285 (W.A.Gerard, Westinghouse Electric Corp.) discloses a tuning mechanism comprising a fixed tuning member and a rotatable tuning member which extend from opposite end faces of the annular stabilizing cavity to overlap near the centre of the cavity, where the electric field is high. Each tuning member has at least two arcuate portions or teeth, with gaps between them, the rotatable teeth passing close to the stationary teeth. Both tuning members are made of a "dielectric or any other suitable material that will concentrate the electric field". A different design is disclosed in B.P 1485949 (A.B Cutting, EMI Varian Limited), in which several arcuate electrically conducting tuning elements are mounted in a stationary annular dielectric channel extending from one end face into the stabilizing cavity and similar elements are mounted on dielectric fingers extending from the same end of the cavity and within the annular dielectric channel. These fingers are rotatable about the magnetron axis. It is arranged that the rotatable conducting tuning elements pass close to the stationary ones in the central region of the cavity where the electric field is high.
  • In the known designs, tuning is achieved by disturbing the electric field in the central region of the cavity, where the electric field strength is high. It is therefore necessary to construct those parts of the stationary and rotatable tuning members which are in the cavity mainly or entirely of dielectric material. However, such materials are expensive to machine to required shapes, not very robust and sensitive to thermal shock. Furthermore, the dielectric loss reduces the Q-factor & the efficiency of the magnetron.
  • An object of the invention is to minimise the use of dielectric material within the cavity so as to alleviate the above disadvantages.
  • Accordingly, there is provided a coaxial magnetron comprising a resonator cavity, a stabilising cavity coupled to the resonator cavity, and a tuning arrangement to influence the frequency of electromagnetic radiation generated, wherein said tuning arrangement includes a plurality of first tuning elements rotatable, in the stabilising cavity, on a longitudinal axis of the magnetron relative to a plurality of second tuning elements in the stabilising cavity, the said first and second tuning elements being made of an electrically conductive material and being positioned adjacent to a wall of the stabilising cavity where the electric field is relatively small.
  • The inventors have discovered that it is possible to achieve frequency agility by disturbing the magnetic field close to the cavity wall where the electric field is low. The tuning members can then be constructed of conducting material (e.g copper) and manufactured at low cost to form a mechanically and thermally robust structure.
  • In a preferred embodiment, said tuning arrangement includes first and second tuning members defining part of the stabilising cavity wall, said first and second tuning elements being formed integrally with said first and second tuning members respectively. Said part of the stabilising cavity wall and said first and second tuning elements may be substantially orthogonal to one another.
  • In order that the invention may be more readily understood and carried into effect, a specific embodiment thereof is now described by reference to, and as illustrated in, the accompanying drawings of which:
    • Figure 1 shows a cross-sectional side view through part of a coaxial magnetron constructed in accordance with the present invention.
    • Figure 2 shows the end view of the tuning members forming part of the end wall of the coaxial cavity.
    • Figure 3a and 3b show two examples of tuning element profiles.
    • Figure 4a and 4b show isometric views of the tuning elements having the profile shown in Figure 3a.
    • Figure 1 shows a coaxial magnetron comprising the usual known elements, namely a cathode 1 surrounded by a coaxial cylindrical anode 2, having radial vanes such as 3, and a surrounding coaxial stabilizing cavity 4. Coupling slots (not shown) are provided in the anode 2 between alternative pairs of vanes. Microwave energy is coupled out of the stabilizing cavity 4 through a slot 6 and an output waveguide 7 having a dielectric window 8.
  • Referring now to Figures 1 and 2, an electrically conductive tuning member 9 has an annular end surface 10 disposed at an end wall of the stabilizing cavity and is rotatable about the axis of the magnetron. The tuning member 9 has a plurality of arcuate electrically conductive tuning elements such as 11 spaced along the outer circumference of the annular end surface and protruding into the stabilizing cavity 4. In this example, the tuning elements extend over an arc length of 30 and are spaced apart by 30. This fixed tuning member 12 also has an annular end surface 13 disposed concentrically with and around, the annular end surface 10 and has a matching set of tuning elements such as 14 spaced along the inner circumferences of the annular end surface and protruding into the stabilizing cavity 4.
  • Figures 3a and 3b show profiles of tuning elements shaped to provide respectively sinusoidal and triangular frequency variations as the tuning member 9 is rotated. It will be appreciated that other profiles can be devised in order to obtain other forms of frequency variation.
  • Figures 4a and 4b show isometric views of tuning elements having the profile shown in Figure 3a. Eight elements are shown on each tuning member. Figure 4a shows the two sets of elements as misaligned and Figure 4b shows the two sets as aligned.
  • The frequency bandwidth is related to the height of the tuning elements. When they are short, only the magnetic field is significantly affected, giving a negative change of frequency, as the height is increased this effect is enhanced until the electric field is disturbed and introduces a positive frequency variation offsetting that produced by the magnetic field.
  • An annular choke cavity may be provided at the end of each gap between adjacent tuning elements so that the gap has the effect of a short circuit.

Claims (4)

1. A coaxial magnetron comprising a resonator cavity, a stabilising cavity coupled to the resonator cavity, and a tuning arrangement to influence the frequency of electromagnetic radiation generated, wherein said tuning arrangement includes a plurality of first tuning elements rotatable, in the stabilising cavity, on a longitudinal axis of the magnetron relative to a plurality of second tuning elements in the stabilising cavity, the said first and second tuning elements being made of an electrically conductive material and being positioned adjacent to a wall of the stabilising cavity where the electric field is relatively saall.
2. A coaxial magnetron according to Claim 1 wherein said tuning arrangement includes first and second tuning members defining part of the stabilising cavity wall, said first and second tuning elements being formed integrally with said first and second tuning members respectively.
3. A coaxial magnetron according to Claim 2 wherein said part of the stabilising cavity wall and said first and second tuning elements are substantially orthogonal to one another.
4. A coaxial magnetron according to Claims 1 to 3 wherein said tuning elements are made of copper.
EP86303537A 1985-07-15 1986-05-09 Improvements relating to coaxial magnetrons Withdrawn EP0209219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8517810 1985-07-15
GB8517810 1985-07-15

Publications (1)

Publication Number Publication Date
EP0209219A1 true EP0209219A1 (en) 1987-01-21

Family

ID=10582301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86303537A Withdrawn EP0209219A1 (en) 1985-07-15 1986-05-09 Improvements relating to coaxial magnetrons

Country Status (1)

Country Link
EP (1) EP0209219A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2224882A (en) * 1988-10-24 1990-05-16 Eev Ltd Tuning magnetrons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904919A (en) * 1974-05-06 1975-09-09 Varian Associates Rotary tuner for a circular electric mode crossed field tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904919A (en) * 1974-05-06 1975-09-09 Varian Associates Rotary tuner for a circular electric mode crossed field tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2224882A (en) * 1988-10-24 1990-05-16 Eev Ltd Tuning magnetrons
US5041801A (en) * 1988-10-24 1991-08-20 Eev Limited Magnetron tuning systems
GB2224882B (en) * 1988-10-24 1992-12-23 Eev Ltd Magnetron tuning systems

Similar Documents

Publication Publication Date Title
US4851788A (en) Mode suppressors for whispering gallery gyrotron
US3594667A (en) Microwave window having dielectric variations for tuning of resonances
US6593695B2 (en) Broadband, inverted slot mode, coupled cavity circuit
US2432466A (en) Interdigital magnetron
EP0769797B1 (en) Magnetron
EP0660363B1 (en) Linear-beam cavity circuits with non-resonant RF loss slabs
US3453491A (en) Coupled cavity traveling-wave tube with improved voltage stability and gain vs. frequency characteristic
EP0209219A1 (en) Improvements relating to coaxial magnetrons
US3471738A (en) Periodic slow wave structure
US6417622B2 (en) Broadband, inverted slot mode, coupled cavity circuit
US3223882A (en) Traveling wave electric discharge oscillator with directional coupling connections to a traveling wave structure wherein the number of coupling connections times the phase shift between adjacent connections equal an integral number of wavelengths
US5537002A (en) Frequency tunable magnetron including at least one movable backwall
US4866343A (en) Re-entrant double-staggered ladder circuit
US20040113560A1 (en) Magnetron
US2617956A (en) High-frequency discharge device
US4277723A (en) Symmetrical magnetron with output means on center axis
EP0414810A4 (en) Coupled cavity circuit with increased iris resonant frequency
JPH0437536B2 (en)
US3441793A (en) Reverse magnetron having a circular electric mode purifier in the output waveguide
US4004180A (en) Traveling wave tube with rectangular coupling waveguides
GB2280541A (en) Magnetron output apparatus
US3521116A (en) Single high-frequency interaction gap klystron with means for increasing the characteristic impedance
GB2173636A (en) Magnetrons
US3195010A (en) Magnetron device with output coupling
US3428859A (en) Magnetron anode having temperature compensating members within the cavities of a different coefficient of thermal expansion from the cavities

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19870708

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CUTTING, ALAN BUTLER

Inventor name: ENGLAND, MELVIN GERRARD

Inventor name: GATES, ROGER JOHN