EP0207433B1 - Method for the combustion of a fuel with air supply in a burner - Google Patents

Method for the combustion of a fuel with air supply in a burner Download PDF

Info

Publication number
EP0207433B1
EP0207433B1 EP86108638A EP86108638A EP0207433B1 EP 0207433 B1 EP0207433 B1 EP 0207433B1 EP 86108638 A EP86108638 A EP 86108638A EP 86108638 A EP86108638 A EP 86108638A EP 0207433 B1 EP0207433 B1 EP 0207433B1
Authority
EP
European Patent Office
Prior art keywords
burner
jet
reaction zone
process according
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86108638A
Other languages
German (de)
French (fr)
Other versions
EP0207433A3 (en
EP0207433A2 (en
Inventor
Karl Heinz Dipl.-Phys. Krieb
Hans-Harald Dr.-Ing. Halling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DR.-ING. HANS-HARALD HALLING TE VELBERT-LANGENBERG
Original Assignee
Steag GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steag GmbH filed Critical Steag GmbH
Publication of EP0207433A2 publication Critical patent/EP0207433A2/en
Publication of EP0207433A3 publication Critical patent/EP0207433A3/en
Application granted granted Critical
Publication of EP0207433B1 publication Critical patent/EP0207433B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/003Combustion process using sound or vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass

Definitions

  • the invention relates to a method of the type mentioned in the preamble of claim 1 above.
  • Such a method is known from DE-OS 3 110 186, in which coal dust is mixed with a predetermined amount of exhaust gas while supplying combustion air, and air in a predetermined amount for combustion in a reaction zone which is formed in the first combustion stage necessary air is supplied.
  • the admixture of exhaust gas ensures that the coal dust burns slowly at a low temperature with a small amount of 0 2 and the unburned components NH 3 , HCN and CO and hydrocarbons formed during the combustion activate the intermediates which are suitable for the denitration reaction , are formed in large quantities, remain unburned for a longer period of time and are effectively involved in the breakdown of the NO formed.
  • Coal which is present in large quantities as an unburned component in the first low temperature reaction zone, is burned in the second reaction zone.
  • the first reaction zone is a flame zone.
  • the pulse field is built up by a gas jet of higher speed, this can e.g. be formed by an air jet, flue gas jet or another flame that burns essentially perpendicular to the flame.
  • the initiation of an ignition by means of a pulse field can advantageously also be used in the combustion of liquid or gaseous fuels.
  • the temperature that enables pyrolysis can be up to 800 ° C and is preferably 600-700 ° C.
  • flue gas recirculation in particular without internal flue gas recirculation, i.e. in the case of essentially laminar carrier air flow and secondary air flow in the first reaction zone, when the jet burner is operating at power in the first reaction zone, the coal dust escaping from the burner mouth is purely pyrolysed by the incoming dust from the combustion chamber Radiation (IR radiation). It is assumed that the concentration of OH radicals required for ignition in the first reaction zone is too low.
  • the oxygen content in the first reaction zone is preferably in the range of 3-6%, preferably 5%.
  • the flame is irradiated at the end of the first reaction zone with a pulse field of a predetermined width which is essentially transverse to the flame.
  • the OH field from the combustion in the second reaction zone (actual flame zone) caused by the pulse field from the combustion chamber is introduced in the ignition area at least into the outer jacket of the reaction zone and there leads to ignition of the coal dust, ie, the flue gas is mixed into the reaction zone by the pulse field.
  • the combustion in the second zone is preferably carried out with excess air. Due to the temporal and spatial separation of pre-combustion or pyrolysis and combustion with excess air, fuel nitrogen is primarily converted to molecular H 2 or the formation of “prompt” NO X via the detour via CN and NH Connections are largely avoided.
  • the pulse field can be moved along the flame axis.
  • the preceding claim 1 requires that the pulse field is directed essentially across the flame.
  • the invention includes both the displacement of a pulse field extending perpendicular to the flame axis along the flame axis and a pivoting of the pulse field with respect to the flame axis, insofar as an essential field component is oriented perpendicular to the flame axis.
  • the width of the pulse field is sufficient in the direction of the flame axis to ensure reliable ignition under different load conditions.
  • the invention is also directed to a furnace for carrying out the method with at least one jet burner and a combustion chamber.
  • at least one ultrasound transmitter is assigned to the jet burner, the ultrasound field of which is essentially perpendicular to the flame axis of the burner
  • at least one gas jet source is assigned to the jet burner, the gas jet of which is essentially perpendicular to the flame of the burner .
  • a coal dust jet burner 1 is arranged in the wall of a combustion chamber 2 and, as shown at 3, is supplied with a stream 13 of coal dust and carrier air.
  • a flame F is formed with two zones Z1 and Z2 lying one behind the other in the beam direction.
  • Secondary air 4 is supplied to the combustion chamber essentially parallel to the coal dust flow and at essentially the same speed. It continues in the firebox Tertiary air 5 is introduced, which is aligned with the second zone Z2.
  • a temperature of 600-700 ° C. prevails in the first zone Z1 in such a way that pyrolysis takes place in the flame zone Z1 under the influence of the schematically represented radiation IR of the combustion chamber.
  • an ultrasonic transmitter 6 is arranged in the combustion chamber wall in such a way that its ultrasonic field is oriented essentially perpendicular to the axis of the flame.
  • the ultrasonic field causes the coal dust to ignite at the end of the first zone Z1 and the coal dust burns in the zone Z2 when there is an excess of air which is set by the quantity of secondary air 4 supplied and, if appropriate, the quantity of tertiary air 5.
  • the ultrasonic transmitter 6 is either moved in the direction of the arrow shown at 7 or pivoted at 8 shown.
  • a plurality of ultrasound transmitters can be assigned to a burner 1. Due to the spatial and temporal separation of pyrolysis and combustion, the combustion being triggered by the ultrasound field, minimal NO formation is achieved.

Description

Die Erfindung betrifft ein Verfahren der im Oberbegriff des vorstehenden Anspruchs 1 genannten Art.The invention relates to a method of the type mentioned in the preamble of claim 1 above.

Aus der DE-OS 3 110 186 ist ein solches Verfahren bekannt, bei dem Kohlenstaub unter Zuführung von Verbrennungsluft mit einer vorgegebenen Menge an Abgas vermischt wird und in einer Reaktionszone, die in der ersten Verbrennungsstufe gebildet wird, Luft in einer vorgegebenen Menge der zur Verbrennung notwendigen Luft zugeführt wird.Such a method is known from DE-OS 3 110 186, in which coal dust is mixed with a predetermined amount of exhaust gas while supplying combustion air, and air in a predetermined amount for combustion in a reaction zone which is formed in the first combustion stage necessary air is supplied.

Durch die Zumischung von Abgas wird erreicht, daß der Kohlenstaub langsam bei niedriger Temperatur mit geringem Anteil an 02 verbrennt und die bei der Verbrennung entstehenden unverbrannten Komponenten NH3, HCN und CO und Kohlenwasserstoffe, die Zwischenprodukte aktivieren, die zur Denitrations-Reaktion geeignet sind, in großen Mengen gebildet werden, über einen längeren Zeitraum unverbrannt vorhanden sind und an dem Abbau des gebildeten NO wirksam beteiligt sind. Dabei wird Kohle, die in großer Menge als unverbrannte Komponente in der ersten Reaktionszone niedriger Temperatur vorliegt, in der zweiten Reaktionszone verbrannt.The admixture of exhaust gas ensures that the coal dust burns slowly at a low temperature with a small amount of 0 2 and the unburned components NH 3 , HCN and CO and hydrocarbons formed during the combustion activate the intermediates which are suitable for the denitration reaction , are formed in large quantities, remain unburned for a longer period of time and are effectively involved in the breakdown of the NO formed. Coal, which is present in large quantities as an unburned component in the first low temperature reaction zone, is burned in the second reaction zone.

Bei dem bekannten Verfahren kommt es noch zur einer erheblichen Bildung von Stickoxiden in der ersten Reaktionszone, da der Kohlenstaub bereits in der ersten Zone gezündet sein muß, d.h., die erste Reaktionszone ist eine Flammenzone.In the known process, there is still a considerable formation of nitrogen oxides in the first reaction zone, since the coal dust must already have been ignited in the first zone, i.e. the first reaction zone is a flame zone.

Es ist die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Verbrennung von Brennstoff in einem Strahlbrenner anzugeben, bei dem zumindest während des Leistungsbetriebs des Brenners Vorverbrennung und Endverbrennung des Brennstoffs im wesentlichen zeitlich und räumlich voneinander getrennt erfolgen.It is the object of the present invention to provide a method for the combustion of fuel in a jet burner, in which the pre-combustion and final combustion of the fuel take place at least during the power operation of the burner, essentially separated from one another in terms of time and space.

Diese Aufgabe wird durch die Merkmale im Kennzeichen des Anspruches 1 gelöst.This object is achieved by the features in the characterizing part of claim 1.

Wird das Impulsfeld von einem Gasstrahl höherer Geschwindigkeit aufgebaut, kann diese z.B. von einem Luftstrahl, Rauchgasstrahl oder einer weiteren im wesentlichen senkrecht zur Flamme brennenden anderen Flamme gebildet werden.If the pulse field is built up by a gas jet of higher speed, this can e.g. be formed by an air jet, flue gas jet or another flame that burns essentially perpendicular to the flame.

Vorzugsweise herrscht in an sich bekannter Weise (DE-OS 3 110 186) bei der Verbrennung von Kohlenstaub in der ersten Reaktionszone eine die Pyrolyse des Kohlenstaubs ermöglichende Temperatur.Preferably, in a manner known per se (DE-OS 3 110 186), when coal dust is burned in the first reaction zone, there is a temperature which enables the pyrolysis of the coal dust.

Die Einleitung einer Zündung durch ein Impulsfeld kann mit Vorteil auch bei der Verbrennung flüssiger oder gasförmiger Brennstoffe eingesetzt werden.The initiation of an ignition by means of a pulse field can advantageously also be used in the combustion of liquid or gaseous fuels.

Bei Kohlenstaub als Brennstoff kann die eine Pyrolyse ermöglichende Temperatur bis zu 800°C betragen und liegt vorzugsweise bei 600 - 700 °C. Ohne Rauchgasrückführung, insbesondere ohne innere Rauchgasrückführung, d.h., beim im wesentlichen laminarer Trägerluft-Strömung und Sekundärluft-Strömung in der ersten Reaktionszone, erfolgt bei Leistungsbetrieb des Strahlbrenners in der ersten Reaktionszone eine reine Pyrolyse des aus dem Brennermund austretenden Kohlenstaubs durch die aus dem Feuerraum einfallende Strahlung (IR-Strahlung). Es wird dabei davon ausgegangen, daß die für eine Zündung erforderliche Konzentration an OH-Radikalen in der ersten Reaktionszone zu gering ist. Der Sauerstoffgehalt in der ersten Reaktionszone liegt vorzugsweise im Bereich von 3 - 6%, vorzugsweise 5%.With coal dust as fuel, the temperature that enables pyrolysis can be up to 800 ° C and is preferably 600-700 ° C. Without flue gas recirculation, in particular without internal flue gas recirculation, i.e. in the case of essentially laminar carrier air flow and secondary air flow in the first reaction zone, when the jet burner is operating at power in the first reaction zone, the coal dust escaping from the burner mouth is purely pyrolysed by the incoming dust from the combustion chamber Radiation (IR radiation). It is assumed that the concentration of OH radicals required for ignition in the first reaction zone is too low. The oxygen content in the first reaction zone is preferably in the range of 3-6%, preferably 5%.

Um am Ende der ersten Reaktionszone, d.h. im Falle von Kohlenstaub nach Beendigung der Pyrolyse, die Endverbrennung des Brennstoffs zu erzielen, wird die Flamme am Ende der ersten Reaktionszone mit einem im wesentlichen quer zur Flamme gerichteten Impulsfeld vorgegebener Breite bestrahlt.At the end of the first reaction zone, i.e. in the case of coal dust after the pyrolysis has ended, in order to achieve the final combustion of the fuel, the flame is irradiated at the end of the first reaction zone with a pulse field of a predetermined width which is essentially transverse to the flame.

Es wird dabei davon ausgegangen, daß durch das Impulsfeld aus dem Feuerraum von der Verbrennung in der zweiten Reaktionszone (eigentliche Flammenzone) herrührende OH-Radikale im Zündbereich zumindest in den äußeren Mantel der Reaktionszone eingetragen werden und dort zu einer Zündung des Kohlenstaubs führen, d.h., das Rauchgas wird durch das Impulsfeld in die Reaktionszone eingemischt. Die Verbrennung in der zweiten Zone erfolgt vorzugsweise unter Luftüberschuß. Durch die zeitliche und räumliche Trennung von Vorverbrennung bzw. Pyrolyse und Verbrennung mit Luftüberschuß wird erreicht, daß Brennstoff-Stickstoff in erster Linie zu molekularem H2 umgewandelt wird bzw. die Bildung von «promptem» NOX auf dem Umweg über CN- und NH-Verbindungen weitgehend vermieden wird.It is assumed that the OH field from the combustion in the second reaction zone (actual flame zone) caused by the pulse field from the combustion chamber is introduced in the ignition area at least into the outer jacket of the reaction zone and there leads to ignition of the coal dust, ie, the flue gas is mixed into the reaction zone by the pulse field. The combustion in the second zone is preferably carried out with excess air. Due to the temporal and spatial separation of pre-combustion or pyrolysis and combustion with excess air, fuel nitrogen is primarily converted to molecular H 2 or the formation of “prompt” NO X via the detour via CN and NH Connections are largely avoided.

Da sich unter Umständen bei Laständerung die Flammenlänge verändert, ist es von Vorteil, wenn das Impulsfeld längs der Flammenachse verschiebbar ist. Der vorstehende Anspruch 1 fordert, daß das Impulsfeld im wesentlichen quer zur Flamme gerichtet sei. Somitfällt unter die Erfindung sowohl die Verschiebung eines senkrecht zur Flammenachse sich erstreckenden Impulsfeldes längs der Flammenachse als auch eine Verschwenkung des Impulsfeldes bezüglich der Flammenachse, soweit eine wesentliche Feldkomponente senkrecht zur Flammenachse ausgerichtet ist. Es kann jedoch auch möglich sein, daß in Richtung der Flammenachse gesehen die Breite des Impulsfeldes ausreicht, eine sichere Zündung bei verschiedenen Lastverhältnissen zu gewährleisten.Since the flame length may change when the load changes, it is advantageous if the pulse field can be moved along the flame axis. The preceding claim 1 requires that the pulse field is directed essentially across the flame. Thus, the invention includes both the displacement of a pulse field extending perpendicular to the flame axis along the flame axis and a pivoting of the pulse field with respect to the flame axis, insofar as an essential field component is oriented perpendicular to the flame axis. However, it can also be possible that the width of the pulse field is sufficient in the direction of the flame axis to ensure reliable ignition under different load conditions.

Die Erfindung ist auch auf eine Feuerung zur Durchführung des Verfahrens mit mindestens einem Strahlbrenner und einem Feuerraum gerichtet. Erfindungsgemäß ist dabei zum einen vorgesehen, daß dem Strahlbrenner mindestens ein Ultraschallgeber zugeordnet ist, dessen Ultraschallfeld im wesentlichen senkrecht zur Flammenachse des Brenners steht, und zum anderen, daß dem Strahlbrenner mindestens eine Gasstrahlquelle zugeordnet ist, dessen Gasstrahl im wesentlichen senkrecht zur Flamme des Brenners steht.The invention is also directed to a furnace for carrying out the method with at least one jet burner and a combustion chamber. According to the invention, it is provided on the one hand that at least one ultrasound transmitter is assigned to the jet burner, the ultrasound field of which is essentially perpendicular to the flame axis of the burner, and on the other hand that at least one gas jet source is assigned to the jet burner, the gas jet of which is essentially perpendicular to the flame of the burner .

Die Erfindung soll nun anhand der beigefügten Skizze im Zusammenhang mit der Verbrennung von Kohlenstaub und einem Ultraschallfeld näher erläutert werden.The invention will now be explained in more detail with reference to the attached sketch in connection with the combustion of coal dust and an ultrasonic field.

Ein Kohlenstaubstrahlbrenner 1 ist in der Wandung eines Feuerraums 2 angeordnet und wird wie bei 3 gezeigt, mit einem Strom 13 aus Kohlenstaub und Trägerluft beaufschlagt. In dem von der Wandung 2 begrenzten Feuerraum 3 bildet sich eine Flamme F mit zwei in Strahlrichtung hintereinander liegenden Zonen Z1 und Z2 aus. Dem Feuerraum wird Sekundärluft 4 im wesentlichen parallel zum Kohlestaubstrom und mit im wesentlichen gleicher Geschwindigkeit zugeführt. Weiterhin wird in den Feuerraum Tertiärluft 5 eingeleitet, die auf die zweite Zone Z2 ausgerichtet ist. In der ersten Zone Z1 herrscht eine Temperatur von 600 - 700 ° C derart, daß in der Flammenzone Z1 unter dem Einfluß der schematisch dargestellten Strahlung IR des Feuerraums eine Pyrolyse erfolgt.A coal dust jet burner 1 is arranged in the wall of a combustion chamber 2 and, as shown at 3, is supplied with a stream 13 of coal dust and carrier air. In the combustion chamber 3 delimited by the wall 2, a flame F is formed with two zones Z1 and Z2 lying one behind the other in the beam direction. Secondary air 4 is supplied to the combustion chamber essentially parallel to the coal dust flow and at essentially the same speed. It continues in the firebox Tertiary air 5 is introduced, which is aligned with the second zone Z2. A temperature of 600-700 ° C. prevails in the first zone Z1 in such a way that pyrolysis takes place in the flame zone Z1 under the influence of the schematically represented radiation IR of the combustion chamber.

Bei der gezeigten Ausführungsform ist in der Feuerraumwandung ein Ultraschallgeber 6 derart angeordnet, daß sein Ultraschallfeld im wesentlichen senkrecht zur Achse der Flamme ausgerichtet ist. Das Ultraschallfeld bewirkt eine Zündung des Kohlenstaubs am Ende der ersten Zone Z1 und der Kohlenstaub verbrennt in der Zone Z2 bei Luftüberschuß, der durch die zugeführte Sekundärluftmenge 4 und ggf. Tertiärluftmenge 5 eingestellt wird.In the embodiment shown, an ultrasonic transmitter 6 is arranged in the combustion chamber wall in such a way that its ultrasonic field is oriented essentially perpendicular to the axis of the flame. The ultrasonic field causes the coal dust to ignite at the end of the first zone Z1 and the coal dust burns in the zone Z2 when there is an excess of air which is set by the quantity of secondary air 4 supplied and, if appropriate, the quantity of tertiary air 5.

Falls die Feuerung auch unter unterschiedlichen Lastverhältnissen betrieben wird, ist vorgesehen, daß der Ultraschallgeber 6 entweder in Richtung des bei 7 dargestellten Pfeiles verschoben oder bei 8 dargestellten Pfeiles verschwenkt wird. Einem Brenner 1 kann eine Vielzahl von Ultraschallgebern zugeordnet sein. Durch die räumliche und zeitliche Trennung von Pyrolyse und Verbrennung, wobei die Verbrennung durch das Ultraschallfeld ausgelöst wird, wird eine minimale NO-Bildung erzielt.If the furnace is also operated under different load conditions, it is provided that the ultrasonic transmitter 6 is either moved in the direction of the arrow shown at 7 or pivoted at 8 shown. A plurality of ultrasound transmitters can be assigned to a burner 1. Due to the spatial and temporal separation of pyrolysis and combustion, the combustion being triggered by the ultrasound field, minimal NO formation is achieved.

Claims (7)

1. A process for burning fuel in the form of putver- ized coal, liquid or gaseous fuel, in which the latter is blown with a less than stoichiometric quantity of air through a jet burner into a furnace chamber, is present therein, in the first reaction zone, as a mainly unburned component and is burned in the second reaction zone which is downstream as viewed in the exit direction of the fuel, additional air being fed into the furnace chamber around the fuel/air stream exiting from the burner, characterized in that the first reaction zone is kept free of flue gas recycle and that the initiation of ignition at the end of the first reaction zone is effected by subjecting the jet generated by the burner to at least one momentum field of predetermined field width, which is directed essentially at right angels to the jet and consists of an ultrasonic pulse or a high-velocity gas jet.
2. A process according to claim 1, characterized in that, in the combustion of pulverized coal, a temperature allowing pyrolysis of the pulverized coal prevails in the first reaction zone in a manner known per se.
3. A process according to claim 1 or 2, characterized in that the oxygen content in the first reaction zone is in the range of 3 - 6%, preferably of 5%.
4. A process according to any of claims 1 - 3, characterized in that the combustion in the second reaction zone takes place with excess air.
5. A process according to any of claims 1 - 4, characterized in that the momentum field is displaceable along the flame axis.
6. A furnace for carrying out the process according to any of claims 1 - 5, having at least one jet burner and one furnace chamber, characterized in that the jet burner (1) is associated with at least one ultrasonic generator, the ultrasonic field of which is essentially perpendicular to the flame axis of the burner.
7. A furnace for carrying out the process according to any of claims 1 - 5, having at least one jet burner and one furnace chamber, characterized in that the jet burner is associated with at least one gas jet source, the gas jet of which is essentially perpendicular to the flame of the burner.
EP86108638A 1985-06-29 1986-06-25 Method for the combustion of a fuel with air supply in a burner Expired - Lifetime EP0207433B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3523436 1985-06-29
DE19853523436 DE3523436A1 (en) 1985-06-29 1985-06-29 METHOD FOR THE COMBUSTION OF CARBON DUST WITH THE SUPPLY OF AIR WITH A CARBON DUST BURNER

Publications (3)

Publication Number Publication Date
EP0207433A2 EP0207433A2 (en) 1987-01-07
EP0207433A3 EP0207433A3 (en) 1988-06-08
EP0207433B1 true EP0207433B1 (en) 1990-01-10

Family

ID=6274637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86108638A Expired - Lifetime EP0207433B1 (en) 1985-06-29 1986-06-25 Method for the combustion of a fuel with air supply in a burner

Country Status (2)

Country Link
EP (1) EP0207433B1 (en)
DE (2) DE3523436A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD261289A3 (en) * 1986-11-11 1988-10-26 Freiberg Brennstoffinst DEVICE FOR COMBINED ENGAGEMENT AND MONITORING OF BURNERS
DD261290A3 (en) * 1986-11-11 1988-10-26 Freiberg Brennstoffinst COMBINED FUTURE AND MONITORING DEVICE FOR BURNERS
DE4212334C1 (en) * 1992-04-13 1993-06-09 Henry 6830 Schwetzingen De Tischmacher Burning fuel oil or natural gas - with pure oxygen@ to obtain heat with high efficiency without harmful emissions, with photo:synthetic conversion using bio:reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE472812C (en) * 1923-04-16 1929-03-06 Jules Jean Deschamps Process for promoting the combustion of solid or liquid fuels in which a mixture of combustion air and fuel particles held in suspension is fed to the furnace
DE3110186A1 (en) * 1981-03-17 1982-10-07 Kawasaki Jukogyo K.K., Kobe, Hyogo Process for the combustion of pulverised coal with a pulverised-coal burner
SE458799B (en) * 1983-12-02 1989-05-08 Insako Ab SETTING AND DEVICE FOR COMBUSTION OF FLUID BRADES

Also Published As

Publication number Publication date
DE3523436C2 (en) 1987-10-29
EP0207433A3 (en) 1988-06-08
DE3523436A1 (en) 1987-01-08
DE3668233D1 (en) 1990-02-15
EP0207433A2 (en) 1987-01-07

Similar Documents

Publication Publication Date Title
DE3331989C2 (en)
DE3327597C2 (en)
DE2461078C2 (en) Process for reducing the content of nitrogen oxides, carbon monoxide and carbon in an exhaust gas, as well as a furnace for carrying out the process
DE3132224C2 (en)
DE2742505C2 (en) Process and reactor for gasifying pulverized coal
DE60102991T2 (en) Burners with low NOx emissions and processes for burning liquid and gaseous fuels
DE2908427C2 (en) Method for reducing NO ↓ X ↓ emissions from the combustion of nitrogenous fuels
EP0127746B1 (en) Method for the combustion of burnable material, and combustion chamber for the combustion of the flue gases
DE3306483A1 (en) CARBON DUST BURNER
DE3116376C2 (en)
DD291611A5 (en) METHOD AND DEVICE FOR STARTING THE BOILER OF A SOLID FUEL HEATED ENERGY GENERATION SYSTEM
DE3124986A1 (en) LOW NO (ARROW DOWN) X (ARROW DOWN) LEVEL COMBUSTION METHOD IN A PIPE TORCH, AND DETERMINED COMBUSTION DEVICE THEREFOR
DE3040830C2 (en) Method of reducing NO? X? -Emissions from the combustion of nitrogenous fuels
DE2729400C3 (en) Method and apparatus for producing carbon black
DE2750672A1 (en) HEAT GENERATION PROCESS AND DEVICE FOR ITS IMPLEMENTATION
EP1754937B1 (en) Burner head and method of combusting fuel
DE2908448A1 (en) BURNER
DE3403981C2 (en)
DE3502788C2 (en)
EP0207433B1 (en) Method for the combustion of a fuel with air supply in a burner
DE2855766A1 (en) COMBUSTION PROCESS FOR GENERATING EXHAUST GAS WITH REDUCED NITROGEN OXIDE CONTENT
EP0484777B1 (en) Method of stabilizing a combustion process
DE3537388C2 (en)
EP0787947B1 (en) Low-NOx burner with improved operating characteristics
DE3213394C2 (en) Carburetor for the production of flammable gases from solid organic substances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19881118

17Q First examination report despatched

Effective date: 19890223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 3668233

Country of ref document: DE

Date of ref document: 19900215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930512

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930519

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930707

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: DR.-ING. HANS-HARALD HALLING TE VELBERT-LANGENBERG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940630

BERE Be: lapsed

Owner name: HANS-HARALD HALLING

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST