EP0206926B1 - Polymeric dielectric material with a high dielectric permittivity - Google Patents

Polymeric dielectric material with a high dielectric permittivity Download PDF

Info

Publication number
EP0206926B1
EP0206926B1 EP86401317A EP86401317A EP0206926B1 EP 0206926 B1 EP0206926 B1 EP 0206926B1 EP 86401317 A EP86401317 A EP 86401317A EP 86401317 A EP86401317 A EP 86401317A EP 0206926 B1 EP0206926 B1 EP 0206926B1
Authority
EP
European Patent Office
Prior art keywords
mol
vinylidene fluoride
weight
trifluoroethylene
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86401317A
Other languages
German (de)
French (fr)
Other versions
EP0206926A1 (en
Inventor
Dominique Broussoux
François Micheron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0206926A1 publication Critical patent/EP0206926A1/en
Application granted granted Critical
Publication of EP0206926B1 publication Critical patent/EP0206926B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • H01G4/186Organic dielectrics of synthetic material, e.g. derivatives of cellulose halogenated

Definitions

  • the present invention relates to dielectric materials formed from polymers and which have a high dielectric permittivity.
  • PVF 2 polyvinylidene fluoride
  • a dielectric material often used for the manufacture of capacitors is polyvinylidene fluoride (PVF 2 ) which has interesting dielectric properties. It can be obtained in the form of thin films. However, due to technological difficulties, it is difficult to obtain films with a thickness of less than 5 mm. This imposes limitations on the volume capacity of the PVF 2 capacitors since this capacity is inversely proportional to the square of the thickness of the dielectric. We have therefore sought to improve, by different treatments, the dielectric permittivity values of PVF 2 for ranges of temperatures and frequencies as wide as possible. It is also sought to bring the range of optimal operating temperatures closer to ambient temperature.
  • PVF 2 polyvinylidene fluoride
  • Uniaxial or biaxal mechanical stretching increases the value of the permittivity or dielectric constant by approximately 20%.
  • the relative dielectric constant then passes for PVF 2 from 10 to 12.
  • the stretching induced by rolling makes it possible to obtain values between 13 and 15.
  • copolymers rather than the homopolymers, for example the copolymer of vinylidene fluoride and of trifluoroethylene denoted P (VF 2 -TrFE) or also P (VF 2 -VF 3 ).
  • Dielectric properties of such a copolymer are described in the articles CHEMICAL ABSTRACTS, vol. 99, no. 18, October 31, 1983, page 24, abstract no. 140761t, Columbus, Ohio, US; N. KOIZUMI et al .: "Dielectric behavior of copolymers of vinylidene fluoride and trifluoroethylene", and CHEMICAL ABSTRACTS, vol. 99, no. 26, 26 December 1983, page 23, abstract no.
  • terpolymers have appeared, for example the terpolymer of vinylidene fluoride, trifluoroethylene and hexafluoropropene denoted P (VF 2 -TrFE-HFP) or the terpolymer of vinylidene fluoride, tifluoroethylene and trifluorochloroethylene denoted P (VF 2 -TrFE-TrFCIE).
  • P VF 2 -TrFE-HFP
  • P terpolymer of vinylidene fluoride, tifluoroethylene and trifluorochloroethylene
  • the invention provides alloys of ferroelectric polymers at different Curie temperatures, these alloys making it possible to optimize the dielectric properties over a wide range of temperatures and frequencies. These alloys can be produced on the basis of copolymers, on the basis of a homopolymer and on one or more copolymers or else on the basis of terpolymers.
  • the subject of the invention is therefore a dielectric material with a high dielectric constant based on ferroelectric polymers of the vinylidene fluoride copolymer and terpolymer type, characterized in that it consists of an alloy of ferroelectric polymers at different Curie temperatures.
  • the ferroelectric polymers can be copolymers of vinylidene fluoride and of trifluoroethylene P (VF 2 -VF 3 ).
  • the alloy can comprise two or three copolymers of this type.
  • the alloy can also be produced from a homopolymer such as PVF 2 and a copolymer such as P (VF 2 -VF 3 ).
  • Ferroelectric polymers can be terpolymers, which has the advantage of enlarging the zone with a high dielectric constant when the temperature varies.
  • the alloys can be obtained by mixing two terpolymers or by mixing a terpolymer with a copolymer.
  • polymer will be understood broadly, that is to say encompassing copolymers and terpolymers.
  • the various alloys will be produced by mixing in the molten phase of the various components on a mixer with heated rollers for a temperature of approximately 200 ° C.
  • the mixtures are then pressed in the form of thin films from 100 to 120 ⁇ m thick by compression at a temperature of around 180 ° C and cooled by quenching in water to limit crystallization.
  • the samples are covered with metallizations, for example aluminum, on their main faces in order to be able to measure their dielectric constant E r and their loss factor tg8.
  • the measurements will be made for a frequency of 100 Hz and over a temperature range varying from -10 ° C to 140 ° C.
  • FIG. 1 is a diagram showing the evolution of the dielectric constant ⁇ r as a function of the temperature expressed in degrees Celsius for various polymers of the known art. These are copolymers of vinylidene fluoride and trifluoroethylene, ie P (VF 2 -VF 3 ) for different compositions.
  • Curve 1 relates to a copolymer noted 70/30, that is to say where the proportion of vinylidene fluoride is involved for 70% in molar proportion of constituents and trifluoroethylene 30%.
  • Curve 2 relates to the same type of copolymer but in a 60/40 proportion.
  • curve 3 relates to a composition of 50/50 proportion.
  • these copolymers exhibit a phase transition of the ferroelectric type at a temperature above ambient temperature and which is a function of the proportions of its constituents. This transition gives rise to a maximum of the dielectric constant ⁇ r which is relatively high (around 40). This transition is accompanied by a change in crystal structure from the polar phase to the non-polar phase. It will be assumed that the maximum dielectric constant corresponds to the Curie temperature.
  • the maximum dielectric constant is located at a relatively high temperature (80 ° C. for the 50/50 composition) and that this maximum only exists for a range of temperatures. quite limited.
  • the dielectric constant decreases rapidly when the temperature changes from the Curie temperature to the ambient temperature.
  • the 60/40 composition goes from about 42 for 100 ° C to about 10 for 20 ° C
  • curve 4 represents the variation of sr as a function of the temperature in the case of polyvinylidene fluoride. It is therefore found that it is possible to substantially increase the dielectric constant thanks to the copolymers but for high temperatures and for restricted temperature ranges.
  • FIG. 2 is a diagram representing the variation of the dielectric constant ⁇ r with the temperature for alloys according to the invention. These are alloys between copolymers of vinylidene fluoride and trifluoroethylene of different concentrations. Alloy A, corresponding to curve 5, contains 50% by weight of a 60/40 composition and 50% of a 70/30 composition. This alloy has a plateau in dielectric behavior with er of the order of 40 from 110 ° C while this value is only from 10 to 25 ° C. The amplitude of the plateau varies only by a few units in a range of temperatures of around forty degrees. This is an interesting characteristic although the plateau occurs at relatively high temperatures.
  • Alloy B corresponding to curve 6, contains 70% by weight of a 50/50 composition and 30% of a 60/40 composition. This alloy has, around 70 ° C, a maximum of 45 to er. The constant then decreases to 30 for a temperature of the order of 120 ° C. The maximum dielectric constant is high for an average temperature but the plate is still quite narrow.
  • the loss factor is less than 0.03 up to 90 ° C.
  • FIG. 3 is a diagram representing the variation of the dielectric constant er with the temperature for other alloys according to the invention. These are alloys produced from three copolymers of vinylidene fluoride and ethylene trifluoride of compositions 50/50, 60/40 and 70/30 taken in different proportions.
  • Alloy C corresponding to curve 7, has an equal proportion by weight for the three compositions.
  • Alloy D corresponding to curve 8 has a proportion by weight of 45% for the composition 50/50, 35% for the composition 60/40 and 20% for the composition 70/30.
  • the plateau has a fairly constant value ( ⁇ r between 35 and 40) for a wide range of temperatures (between 75 and 140 ° C). It is the low percentage of the composition 70/30 in the alloy D (see curve 8) which causes a drop in the dielectric constant for temperatures above 105 ° C.
  • the dielectric losses are less than 0.04 up to 110 ° C.
  • FIG. 4 is a diagram representing the exothermic heat flow FCE for the alloy C.
  • the curve 9 represents the variation of dielectric constant sr as a function of the temperature. It corresponds to curve 7 in FIG. 3.
  • Curve 10 represents the exothermic heat flow of this alloy as a function of the temperature. The measurement of this heat flux was carried out by differential thermal analysis or DSC according to Anglo-Saxon terminology (Differential Scanning Calorimetry). Curve 10 presents, for the temperature range corresponding to the plateau of curve 9, a trough where several significant temperatures can be noted. The three temperatures Tc i , Tc 2 and Tc 3 are thus noted. The first two are clearly visible on curve 10 since they correspond to minimum heat fluxes. The third corresponds to an inflection point on curve 10.
  • Tci corresponds to the Curie temperature of the composition 50/50
  • Tc3 corresponds to the Curie temperature of the composition 70/30
  • Tc 2 corresponds to the Curie temperature of the composition 60/40. So we can plan that the width of the plate with a dielectric constant which is substantially constant with the temperature will depend on the greater or lesser difference between the Curie temperatures of the different compositions. So that the plateau approaches the ambient temperature, it will therefore be necessary for the Curie temperature of one of the constituents to approach it.
  • FIG. 5 is a diagram representing the variation of the dielectric constant er with the temperature for other alloys according to the invention.
  • These are alloys made from the PVF 2 homopolymer and copolymers of vinylidene fluoride and trifluoroethylene. These alloys can be represented by the notation: PVF 2 + P (VF 2 NF 3 ).
  • the type of copolymer (60/40 or 70/30 for example) used in the mixture is decisive for the temperature positioning of the plate and for the value of er on this plate.
  • the alloy E is represented in FIG. 5 by curve 11.
  • Alloy F composed of 60% by weight of PVF 2 and 40% of a 70/30 copolymer has a maximum dielectric constant (around 30) from 110 ° C (see curve 12).
  • FIG. 6 is a diagram representing the variation of the electrical constant ⁇ r with the temperature in the case of terpolymers.
  • Curve 13 relates to a terpolymer T i of trifluoroethylene, vinylidene fluoride and hexafluoropropene HFP which will be denoted P (VF 3 - VF 2 - HFP) and the proportions of which in moles in the mixture are respectively 35, 60 and 5%.
  • Curves 14 and 15 relate to terpolymers (respectively T 2 and Ts) of trifluoroethylene, vinylidene fluoride and trifluorochloroethylene which will be denoted P (VF 3 - VF 2 - TrFCIE).
  • FIG. 7 is a diagram representing the variation of the dielectric constant er with the temperature in the case of alloys of terpolymers together or with a copolymer.
  • Alloy H is formed by 30% by weight of T i and 70% by T 2 and corresponds to curve 17. This curve has an extended temperature plateau (between 60 and 130 ° C), of high value and relatively constant ( E r from 45 to 50). Under these conditions, this alloy is particularly advantageous.
  • the alloy is formed from 70% by weight of terpolymer T 3 and 30% of copolymer VF 2 - VFs of proportions 60/40 (60% by weight of VF 2 for 40% by weight of VF s ).
  • This alloy corresponds to curve 18.
  • This curve does not have an extended plateau, but alloy I makes it possible to obtain a material with a dielectric constant of between 20 and 30 for a range of temperatures ranging from 20 to 100 °. C and the maximum of which is around 80 ° C.
  • the present invention is not limited to the examples cited above. It applies to all ferroelectric polymer alloys.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

La présente invention concerne les matériaux diélectriques formés à partir de polymères et qui présentent une permittivité diélectrique élevée.The present invention relates to dielectric materials formed from polymers and which have a high dielectric permittivity.

Un matériau diélectrique souvent employé pour la fabrication de condensateurs est le polyfluorure de vinylidène (PVF2) qui possède d'intéressantes propriétés diélectriques. Il peut être obtenu sous forme de films minces. Toutefois, du fait de difficultés technologiques, il est difficile d'obtenir des films d'épaisseur inférieure à 5 mm. Ceci impose des limitations pour la capacité volumique des condensateurs en PVF2 puisque cette capacité est inversement proportionnelle au carré de l'épaisseur du diélectrique. On a donc cherché à améliorer, par différents traitements, les valeurs de permittivité diélectrique du PVF2 pour des gammes de températures et de fréquences aussi étendues que possible. On cherche aussi à ce que la gamme de températures d'utilisation optimale se rapproche de température ambiante.A dielectric material often used for the manufacture of capacitors is polyvinylidene fluoride (PVF 2 ) which has interesting dielectric properties. It can be obtained in the form of thin films. However, due to technological difficulties, it is difficult to obtain films with a thickness of less than 5 mm. This imposes limitations on the volume capacity of the PVF 2 capacitors since this capacity is inversely proportional to the square of the thickness of the dielectric. We have therefore sought to improve, by different treatments, the dielectric permittivity values of PVF 2 for ranges of temperatures and frequencies as wide as possible. It is also sought to bring the range of optimal operating temperatures closer to ambient temperature.

L'étirement mécanique uniaxial ou biaxal permet d'accroître la valeur de la permittivité ou constante diélectrique d'environ 20%. La constante diélectrique relative passe alors pour le PVF2 de 10 à 12. L'étirement induit par laminage permet d'obtenir des valeurs comprises entre 13 et 15.Uniaxial or biaxal mechanical stretching increases the value of the permittivity or dielectric constant by approximately 20%. The relative dielectric constant then passes for PVF 2 from 10 to 12. The stretching induced by rolling makes it possible to obtain values between 13 and 15.

Une autre solution consiste à mélanger le PVF2 avec des poudres ferroélectriques à constantes diélectriques élevées (comprises entre 1000 et 2000). Cette technique, apparue comme un moyen simple et efficace d'augmenter la valeur de la constante eu diélectrique jusqu'aux environs de 40 ou 50, a l'inconvénient majeur d'interdire définitivement l'obtention de films d'épaisseur inférieure à 50 µm.Another solution consists in mixing PVF 2 with ferroelectric powders with high dielectric constants (between 1000 and 2000). This technique, which appeared as a simple and effective means of increasing the value of the dielectric constant to around 40 or 50, has the major drawback of definitively prohibiting the obtaining of films with a thickness of less than 50 μm. .

Une autre possibilité consiste à utiliser les copolymères plutôt que les homopolymères, par exemple le copolymère de fluorure de vinylidène et de trifluoroéthylène noté P(VF2-TrFE) ou encore P(VF2-VF3). Des propriétés diélectriques d'un tel copolymère sont décrites dans les articles CHEMICAL ABSTRACTS, vol. 99, no. 18, 31 octobre 1983, page 24, résumé no. 140761t, Columbus, Ohio, US; N. KOIZUMI et al.: "Dielectric behavior of copolymers of vinylidene fluoride and trifluoroethylene", et CHEMICAL ABSTRACTS, vol. 99, no. 26, 26 décembre 1983, page 23, résumé no. 213226j, Columbus, Ohio, US; K. KIMURA et al.: "Ferroelectric properties of vinylidene fluoride-trifluoroethylene copolymer thin films". Ce copolymère a la particularité de présenter une transition de phase de type ferroélectrique à une température supérieure à la température ambiante et qui est fonction du rapport VF2NF3. Néanmoins, le domaine de températures où la constante diélectrique est élevée (er entre 40 et 50) est limité.Another possibility consists in using the copolymers rather than the homopolymers, for example the copolymer of vinylidene fluoride and of trifluoroethylene denoted P (VF 2 -TrFE) or also P (VF 2 -VF 3 ). Dielectric properties of such a copolymer are described in the articles CHEMICAL ABSTRACTS, vol. 99, no. 18, October 31, 1983, page 24, abstract no. 140761t, Columbus, Ohio, US; N. KOIZUMI et al .: "Dielectric behavior of copolymers of vinylidene fluoride and trifluoroethylene", and CHEMICAL ABSTRACTS, vol. 99, no. 26, 26 December 1983, page 23, abstract no. 213226j, Columbus, Ohio, US; K. KIMURA et al .: "Ferroelectric properties of vinylidene fluoride-trifluoroethylene copolymer thin films". This copolymer has the particularity of having a phase transition of the ferroelectric type at a temperature higher than ambient temperature and which is a function of the ratio VF2NF3. However, the temperature range where the dielectric constant is high (between 40 and 50) is limited.

Plus récemment sont apparus des terpolymères, par exemple le terpolymère de fluorure de vinylidène, de trifluoroéthylène et d'hexafluoropropène noté P(VF2-TrFE-HFP) ou le terpolymère de fluorure de vinylidène, de tifluoroéthylène et de trifluorochloroéthylène noté P(VF2-TrFE-TrFCIE). Ces terpolymères présentent encore un caractère ferroélectrique mais les transitions à la température de Curie sont diffuses. Il en résulte que le domaine des températures pour lequel le matériau possède une constante diélectrique élevée est élargie par rapport à celui des copolymères, mais encore insuffisamment.More recently, terpolymers have appeared, for example the terpolymer of vinylidene fluoride, trifluoroethylene and hexafluoropropene denoted P (VF 2 -TrFE-HFP) or the terpolymer of vinylidene fluoride, tifluoroethylene and trifluorochloroethylene denoted P (VF 2 -TrFE-TrFCIE). These terpolymers still exhibit a ferroelectric character but the transitions at the Curie temperature are diffuse. As a result, the temperature range for which the material has a high dielectric constant is enlarged compared to that of the copolymers, but still insufficiently.

Afin de pallier ces inconvénients, l'invention propose des alliages de polymères ferroélectriques à températures de Curie différentes, ces alliages permettant d'optimiser les propriétés diélectriques sur une gamme de températures et de fréquences étendue. Ces alliages peuvent être réalisés à base de copolymères, à base d'un homopolymère et d'un ou plusieurs copolymères ou encore à base terpolymères.In order to overcome these drawbacks, the invention provides alloys of ferroelectric polymers at different Curie temperatures, these alloys making it possible to optimize the dielectric properties over a wide range of temperatures and frequencies. These alloys can be produced on the basis of copolymers, on the basis of a homopolymer and on one or more copolymers or else on the basis of terpolymers.

L'invention a donc pour objet un matériau diélectrique à constante diélectrique élevée à base de polymères ferroélectriques de type copolymères et terpolymères de fluorure de vinylidène, caractérisé en ce qu'il est constitué d'un alliage de polymères ferroélectriques à températures de Curie différentes.The subject of the invention is therefore a dielectric material with a high dielectric constant based on ferroelectric polymers of the vinylidene fluoride copolymer and terpolymer type, characterized in that it consists of an alloy of ferroelectric polymers at different Curie temperatures.

Les polymères ferroélectriques peuvent être des copolymères de fluorure de vinylidène et de trifluoroéthylène P(VF2-VF3). L'alliage peut comporter deux ou trois copolymères de ce type.The ferroelectric polymers can be copolymers of vinylidene fluoride and of trifluoroethylene P (VF 2 -VF 3 ). The alloy can comprise two or three copolymers of this type.

L'alliage peut également être réalisé à partir d'un homopolymère tel le PVF2 et d'un copolymère tel le P(VF2-VF3).The alloy can also be produced from a homopolymer such as PVF 2 and a copolymer such as P (VF 2 -VF 3 ).

Les polymères ferroélectriques peuvent être des terpolymères ce qui a l'avantage d'agrandir la zone à constante diélectrique élevée lorsque la température varie.Ferroelectric polymers can be terpolymers, which has the advantage of enlarging the zone with a high dielectric constant when the temperature varies.

Les alliages peuvent être obtenus par mélange de deux terpolymères ou par mélange d'un terpolymère avec un copolymère.The alloys can be obtained by mixing two terpolymers or by mixing a terpolymer with a copolymer.

L'invention sera mieux comprise et d'autres avantages apparaîtront au moyen de la description qui va suivre et des figures annexées parmi lesquelles:

  • - la figure 1 est un diagramme se rapportant à différents polymères de l'art connu,
  • - les figures 2 et 3 sont des diagrammes représentant l'évolution de la constante diélectrique relative en fonction de la température pour des matériaux selon l'invention,
    • la figure 4 est un diagramme représentant le flux de chaleur exothermique pour un matériau selon l'invention,
    • les figures 5 et 7 sont des diagrammes représentant l'évolution de la constante diélectrique avec la température pour des matériaux selon l'invention,
    • la figure 6 est un diagramme illustrant la variation de la constante diélectrique avec la température pour des terpolymères.
The invention will be better understood and other advantages will appear from the following description and the appended figures, among which:
  • FIG. 1 is a diagram relating to various polymers of the known art,
  • FIGS. 2 and 3 are diagrams representing the evolution of the relative dielectric constant as a function of the temperature for materials according to the invention,
    • FIG. 4 is a diagram representing the exothermic heat flow for a material according to the invention,
    • FIGS. 5 and 7 are diagrams representing the evolution of the dielectric constant with the temperature for materials according to the invention,
    • FIG. 6 is a diagram illustrating the variation of the dielectric constant with the temperature for terpolymers.

Dans ce qui suit, le terme polymère sera compris au sens large, c'est-à-dire englobant les copolymères et les terpolymères.In what follows, the term polymer will be understood broadly, that is to say encompassing copolymers and terpolymers.

Les différents alliages seront réalisés par malaxage en phase fondue des différents composants sur un mélangeur à rouleaux chauffants pour une température d'environ 200°C. Les mélanges sont ensuite pressés sous forme de films minces de 100 à 120 µm d'épaisseur par compression à une température d'environ 180°C et refroidis par trempe dans l'eau afin de limiter la cristallisation. Puis les échantillons sont recouverts de métallisations, par exemple en aluminium, sur leurs faces principales afin de pouvoir mesurer leur constante diélectrique Er et leur facteur de perte tg8. Les mesures seront effectuées pour une fréquence de 100 Hz et sur une gamme de température variant de -10°C à 140°C.The various alloys will be produced by mixing in the molten phase of the various components on a mixer with heated rollers for a temperature of approximately 200 ° C. The mixtures are then pressed in the form of thin films from 100 to 120 µm thick by compression at a temperature of around 180 ° C and cooled by quenching in water to limit crystallization. Then the samples are covered with metallizations, for example aluminum, on their main faces in order to be able to measure their dielectric constant E r and their loss factor tg8. The measurements will be made for a frequency of 100 Hz and over a temperature range varying from -10 ° C to 140 ° C.

La figure 1 est un diagramme montrant l'évolution de la constante diélectrique εr en fonction de la température exprimée en degrés Celsius pour différents polymères de l'art connu. Il s'agit de copolymères de fluorure de vinylidène et de trifluoréthylène soit P(VF2-VF3) pour différentes compositions. La courbe 1 se rapporte à un copolymère noté 70/30, c'est-à-dire où la proportion de fluorure de vinylidène intervient pour 70 % en proportion molaire de constituants et le trifluoroéthylène 30 %. La courbe 2 se rapporte au même type de copolymère mais pour une proportion 60/40. De même, la courbe 3 se rapporte à une composition de proportion 50/50. Comme on le distingue très bien sur ce diagramme, ces copolymères présentent une transition de phase de type ferroélectrique à une température supérieure à la température ambiante et qui est fonction des proportions de ses constituants. Cette transition donne lieu à un maximum de la constante diélectrique εr qui est relativement élevée (autour de 40). Cette transition s'accompagne d'un changement de structure cristalline de la phase polaire à la phase non polaire. On admettra que le maximum de constante diélectrique correspond à la temperature de Curie.FIG. 1 is a diagram showing the evolution of the dielectric constant εr as a function of the temperature expressed in degrees Celsius for various polymers of the known art. These are copolymers of vinylidene fluoride and trifluoroethylene, ie P (VF 2 -VF 3 ) for different compositions. Curve 1 relates to a copolymer noted 70/30, that is to say where the proportion of vinylidene fluoride is involved for 70% in molar proportion of constituents and trifluoroethylene 30%. Curve 2 relates to the same type of copolymer but in a 60/40 proportion. Similarly, curve 3 relates to a composition of 50/50 proportion. As can be clearly seen on this diagram, these copolymers exhibit a phase transition of the ferroelectric type at a temperature above ambient temperature and which is a function of the proportions of its constituents. This transition gives rise to a maximum of the dielectric constant εr which is relatively high (around 40). This transition is accompanied by a change in crystal structure from the polar phase to the non-polar phase. It will be assumed that the maximum dielectric constant corresponds to the Curie temperature.

On constate, d'après le diagramme de la figure 1, que le maximum de constante diélectrique se situe à une température relativement élevée (80°C pour la composition 50/50) et que ce maximum n'existe que pour une gamme de températures assez restreinte. La constante diélectrique diminue rapidement lorsque la température passe de la température de Curie à la température ambiante. Par exemple, la composition 60/40 passe d'environ 42 pour 100°C à environ 10 pour 20°CIt can be seen from the diagram in FIG. 1 that the maximum dielectric constant is located at a relatively high temperature (80 ° C. for the 50/50 composition) and that this maximum only exists for a range of temperatures. quite limited. The dielectric constant decreases rapidly when the temperature changes from the Curie temperature to the ambient temperature. For example, the 60/40 composition goes from about 42 for 100 ° C to about 10 for 20 ° C

A titre de comparaison, la courbe 4 représente la variation de sr en fonction de la température dans le cas du polyfluorure de vinylidène. On constate donc qu'il est possible d'accroître sensiblement la constante diélectrique grâce aux copolymères mais pour des températures élevées et pour des gammes de températures restreintes.By way of comparison, curve 4 represents the variation of sr as a function of the temperature in the case of polyvinylidene fluoride. It is therefore found that it is possible to substantially increase the dielectric constant thanks to the copolymers but for high temperatures and for restricted temperature ranges.

La figure 2 est un diagramme représentant la variation de la constante diélectrique εr avec la température pour des alliages selon l'invention. Il s'agit d'alliages entre des copolymères de fluorure de vinylidène et de trifluoroéthylène de concentration différentes. L'alliage A, correspondant à la courbe 5 , contient 50% en poids d'une composition 60/40 et 50% d'une composition 70/30. Cet alliage présente un plateau dans le comportement diélectrique avec er de l'ordre de 40 à partir de 110°C alors que cette valeur n'est que de 10 à 25°C. L'amplitude du plateau ne varie que de quelques unités dans une gamme de températures d'une quarantaine de degrés. C'est une caractéristique intéressante bien que le plateau se présente à des températures relativement élevées.FIG. 2 is a diagram representing the variation of the dielectric constant εr with the temperature for alloys according to the invention. These are alloys between copolymers of vinylidene fluoride and trifluoroethylene of different concentrations. Alloy A, corresponding to curve 5, contains 50% by weight of a 60/40 composition and 50% of a 70/30 composition. This alloy has a plateau in dielectric behavior with er of the order of 40 from 110 ° C while this value is only from 10 to 25 ° C. The amplitude of the plateau varies only by a few units in a range of temperatures of around forty degrees. This is an interesting characteristic although the plateau occurs at relatively high temperatures.

L'alliage B, correspondant à la courbe 6, contient 70 % en poids d'une composition 50/50 et 30 % d'une composition 60/40. Cet alliage présente, autour de 70°C, un maximum de 45 pour er. La constante diminue ensuite jusqu'à 30 pour une température de l'ordre de 120°C. La constante diélectrique maximale est élevée pour une température moyenne mais le plateau est encore assez étroit.Alloy B, corresponding to curve 6, contains 70% by weight of a 50/50 composition and 30% of a 60/40 composition. This alloy has, around 70 ° C, a maximum of 45 to er. The constant then decreases to 30 for a temperature of the order of 120 ° C. The maximum dielectric constant is high for an average temperature but the plate is still quite narrow.

Pour ces alliages, le facteur de perte est inférieur à 0,03 jusqu'à 90°C.For these alloys, the loss factor is less than 0.03 up to 90 ° C.

La figure 3 est un diagramme représentant la variation de la constante diélectrique er avec la température pour d'autres alliages selon l'invention. Il s'agit d'alliages réalisés à partir de trois copolymères de fluorure de vinylidène et de trifluorure d'éthylène de compositions 50/50, 60/40 et 70/30 pris en proportions différentes.FIG. 3 is a diagram representing the variation of the dielectric constant er with the temperature for other alloys according to the invention. These are alloys produced from three copolymers of vinylidene fluoride and ethylene trifluoride of compositions 50/50, 60/40 and 70/30 taken in different proportions.

L'alliage C, correspondant à la courbe 7, présente une proportion en poids égale pour les trois compositions. L'alliage D, correspondant à la courbe 8 présente une proportion en poids de 45 % pour la composition 50/50, 35% pour la composition 60/40 et 20 % pour la composition 70/30. On note, pour les deux mélanges, la présence d'un plateau débutant aux environs de la température de Curie de la composition 50/50 soit 75°C. Pour l'alliage C, le plateau a une valeur assez constante (εr entre 35 et 40) pour une large gamme de températures (entre 75 et 140°C). C'est le faible pourcentage de la composition 70/30 dans l'alliage D (voir la courbe 8) qui entraîne une baisse de la constante diélectrique pour les températures supérieures à 105°C.Alloy C, corresponding to curve 7, has an equal proportion by weight for the three compositions. Alloy D, corresponding to curve 8, has a proportion by weight of 45% for the composition 50/50, 35% for the composition 60/40 and 20% for the composition 70/30. We note, for the two mixtures, the presence of a plateau starting at around the Curie temperature of the composition 50/50, ie 75 ° C. For alloy C, the plateau has a fairly constant value (εr between 35 and 40) for a wide range of temperatures (between 75 and 140 ° C). It is the low percentage of the composition 70/30 in the alloy D (see curve 8) which causes a drop in the dielectric constant for temperatures above 105 ° C.

Pour ce type d'alliages, les pertes diélectriques sont inférieures à 0,04 jusqu'à 110°C.For this type of alloy, the dielectric losses are less than 0.04 up to 110 ° C.

La figure 4 est un diagramme représentant le flux de chaleur exothermique FCE pour l'alliage C. La courbe 9 représente la variation de constante diélectrique sr en fonction de la température. Elle correspond à la courbe 7 de la figure 3. La courbe 10 représente le flux de chaleur exothermique de cet alliage en fonction de la température. La mesure de ce flux de chaleur a été effectuée par analyse thermique différentielle ou DSC d'après la terminologie anglo-saxonne (Différential Scanning Calorimetry). La courbe 10 présente, pour la gamme de température correspondant au plateau de la courbe 9, un creux où l'on peut relever plusieurs températures significatives. On relève ainsi les trois températures Tci, Tc2 et Tc3. Les deux premières sont bien visibles sur la courbe 10 puisqu'elles correspondent à des minimums de flux de chaleur. La troisième correspond à un point d'inflexion de la courbe 10. L'intérêt de cette courbe est qu'elle illustre bien le fait que le mélange de plusieurs copolymères ferroélectriques à températures de Curie différents donne un alliage dont la transition de Curie est une combinaison des différentes transitions de Curie. On remarque l'étalement de la transition comprise entre Tci (environ 75°C) et Tc3 (environ 105°C). Tci correspond à la température de Curie de la composition 50/50 et Tc3 à la température de Curie de la composition 70/30. Tc2 correspond à la température de Curie de la composition 60/40. On peut prévoir ainsi que la largeur du plateau à constante diélectrique sensiblement constante avec la température dépendra de la différence plus ou moins grande existant entre les températures de Curie des différentes compositions. Pour que le plateau se rapproche de la température ambiante, il faudra donc que la température de Curie de l'un des constituants s'en rapproche.FIG. 4 is a diagram representing the exothermic heat flow FCE for the alloy C. The curve 9 represents the variation of dielectric constant sr as a function of the temperature. It corresponds to curve 7 in FIG. 3. Curve 10 represents the exothermic heat flow of this alloy as a function of the temperature. The measurement of this heat flux was carried out by differential thermal analysis or DSC according to Anglo-Saxon terminology (Differential Scanning Calorimetry). Curve 10 presents, for the temperature range corresponding to the plateau of curve 9, a trough where several significant temperatures can be noted. The three temperatures Tc i , Tc 2 and Tc 3 are thus noted. The first two are clearly visible on curve 10 since they correspond to minimum heat fluxes. The third corresponds to an inflection point on curve 10. The advantage of this curve is that it illustrates well the fact that the mixture of several ferroelectric copolymers at different Curie temperatures gives an alloy of which the Curie transition is a combination of the different Curie transitions. Note the spread of the transition between Tci (approximately 75 ° C) and Tc 3 (approximately 105 ° C). Tc i corresponds to the Curie temperature of the composition 50/50 and Tc3 corresponds to the Curie temperature of the composition 70/30. Tc 2 corresponds to the Curie temperature of the composition 60/40. So we can plan that the width of the plate with a dielectric constant which is substantially constant with the temperature will depend on the greater or lesser difference between the Curie temperatures of the different compositions. So that the plateau approaches the ambient temperature, it will therefore be necessary for the Curie temperature of one of the constituents to approach it.

La figure 5 est un diagramme représentant la variation de la constante diélectrique er avec la température pour d'autres alliages selon l'invention. Il s'agit d'alliages réalisés à partir de l'homopolymère PVF2 et de copolymères de fluorure de vinylidène et de trifluoroéthylène. On peut représenter ces alliages par la notation : PVF2 + P(VF2NF3). Le type de copolymère (60/40 ou 70/30 par exemple) employé dans le mélange est déterminant pour le positionnement en température du plateau et pour la valeur de er sur ce plateau. Ainsi sur la figure 5, le maximum de constante diélectrique (Er=30) est observé à partir de 80°C pour l'alliage E contenant 40% en poids de PVF2 pour 60 % d'un copolymère 60/40. L'alliage E est représenté à la figure 5 par la courbe 11.FIG. 5 is a diagram representing the variation of the dielectric constant er with the temperature for other alloys according to the invention. These are alloys made from the PVF 2 homopolymer and copolymers of vinylidene fluoride and trifluoroethylene. These alloys can be represented by the notation: PVF 2 + P (VF 2 NF 3 ). The type of copolymer (60/40 or 70/30 for example) used in the mixture is decisive for the temperature positioning of the plate and for the value of er on this plate. Thus in FIG. 5, the maximum dielectric constant ( E r = 3 0) is observed from 80 ° C. for the alloy E containing 40% by weight of PVF 2 for 60% of a 60/40 copolymer. The alloy E is represented in FIG. 5 by curve 11.

L'alliage F composé de 60 % en poids de PVF2 et de 40% d'un copolymère 70/30 présente un maxima de constante diélectrique (environ 30) à partir de 110°C (voir la courbe12).Alloy F composed of 60% by weight of PVF 2 and 40% of a 70/30 copolymer has a maximum dielectric constant (around 30) from 110 ° C (see curve 12).

La diffraction de rayons X sur ces mélanges ne montre pas de cristallisation en phase p du PVF2 mais une cristallisation en phase α, phase thermo- dynamiquement la plus stable.X-ray diffraction on these mixtures does not show p-phase crystallization of PVF 2, but crystallization in α-phase, the thermodynamically most stable phase.

La figure 6 est un diagramme représentant la variation de la constante électrique εr avec la température dans le cas de terpolymères. La courbe 13 est relative à un terpolymère Ti de trifluoroéthylène, de fluorure de vinylidène et d'hexafluoropropè- ne HFP que l'on notera P(VF3 - VF2 - HFP) et dont les proportions en moles dans le mélange sont respectivement 35, 60 et 5 %. Les courbes 14 et 15 sont relatives à des terpolymères (respectivement T2 et Ts) de trifluoroéthylène, de fluorure de vinylidène et de trifluorochloroéthylène que l'on notera P(VF3 - VF2 - TrFCIE). Pour la courbe 14, les proportions en moles des parties dans le mélange sont respectivement de 35, 60 et 5 %. Pour la courbe 15, les proportions en moles sont respectivement de 35, 55 et 10 %. On constate que pour ces terpolymères, les maximums de sr correspondent à des températures plus basses que pour les copolymères de la figure 1 et pour des valeurs de εr de même ordre de grandeur. On constate malheureusement l'absence de plateau comme pour les copolymères.FIG. 6 is a diagram representing the variation of the electrical constant εr with the temperature in the case of terpolymers. Curve 13 relates to a terpolymer T i of trifluoroethylene, vinylidene fluoride and hexafluoropropene HFP which will be denoted P (VF 3 - VF 2 - HFP) and the proportions of which in moles in the mixture are respectively 35, 60 and 5%. Curves 14 and 15 relate to terpolymers (respectively T 2 and Ts) of trifluoroethylene, vinylidene fluoride and trifluorochloroethylene which will be denoted P (VF 3 - VF 2 - TrFCIE). For curve 14, the proportions in moles of the parts in the mixture are respectively 35, 60 and 5%. For curve 15, the proportions in moles are respectively 35, 55 and 10%. It can be seen that for these terpolymers, the maximums of sr correspond to lower temperatures than for the copolymers of FIG. 1 and for values of εr of the same order of magnitude. Unfortunately, there is an absence of a plateau as for the copolymers.

La figure 7 est un diagramme représentant la variation de la constante diélectrique er avec la température dans le cas d'alliages de terpolymères entre eux ou avec un copolymère. La courbe 16 se rapport à un alliage G formé de 30 % en poids de Ti et de 70% de Ts. L'alliage G présente un maximum de constante diélectrique (εr = 35) autour de 55°C à la température de Curie observée sur le terpolymère T3 seul. On notera cependant la valeur élevée de er (environ 20) pour la température de 20°C.FIG. 7 is a diagram representing the variation of the dielectric constant er with the temperature in the case of alloys of terpolymers together or with a copolymer. Curve 16 relates to an alloy G formed of 30% by weight of Ti and 70% of Ts. Alloy G has a maximum dielectric constant (εr = 35) around 55 ° C at the Curie temperature observed on the T 3 terpolymer alone. Note however the high value of er (around 20) for the temperature of 20 ° C.

L'alliage H est formé de 30% en poids de Ti et de 70 % de T2 et correspond à la courbe 17. Cette courbe présente un plateau étendu en température (entre 60 et 130°C), de valeur élevée et relativement constante (Er de 45 à 50). Dans ces conditions, cet alliage est particulièrement intéressant.Alloy H is formed by 30% by weight of T i and 70% by T 2 and corresponds to curve 17. This curve has an extended temperature plateau (between 60 and 130 ° C), of high value and relatively constant ( E r from 45 to 50). Under these conditions, this alloy is particularly advantageous.

L'alliage est formé de 70 % en poids de terpolymère T3 et de 30 % de copolymère VF2 - VFs de proportions 60/40 (60 % en poids de VF2 pour 40 % en poids de VFs). Cette alliage correspond à la courbe 18. Cette courbe ne présente pas de plateau étendu mais l'alliage I permet l'obtention d'un matériau de constante diélectrique comprise entre 20 et 30 pour une gamme de températures s'étalant de 20 à 100°C et dont le maximum se situe autour de 80°C.The alloy is formed from 70% by weight of terpolymer T 3 and 30% of copolymer VF 2 - VFs of proportions 60/40 (60% by weight of VF 2 for 40% by weight of VF s ). This alloy corresponds to curve 18. This curve does not have an extended plateau, but alloy I makes it possible to obtain a material with a dielectric constant of between 20 and 30 for a range of temperatures ranging from 20 to 100 °. C and the maximum of which is around 80 ° C.

La présente invention ne se limite pas aux exemples cités plus haut. Elle s'applique à tous les alliages de polymères ferroélectriques.The present invention is not limited to the examples cited above. It applies to all ferroelectric polymer alloys.

D'autre part, il entre dans le cadre de l'invention d'utiliser ces matériaux pour d'autres applications. Par polarisation contrôlée, ils peuvent acquérir des propriétés piézoélectriques ou pyroélectriques caractéristiques des ferroélectriques à transistions diffuses.On the other hand, it is within the scope of the invention to use these materials for other applications. By controlled polarization, they can acquire piezoelectric or pyroelectric properties characteristic of ferroelectrics with diffuse transistions.

Claims (13)

1. A dielectric material having a high dielectric constant, basically constituted of ferroelectric polymers of the vinylidene fluoride copolymeric and terpolymeric type, characterized in that it is constituted of an alloy of ferroelectric polymers having different Curie temperatures.
2. A dielectric material according to claim 1, characterized in that said ferroelectric polymers are copolymers of vinylidene fluoride and of trifluoroethylene.
3. A dielectric material according to claim 2, characterized in that the alloy is constituted by 50% by weight of a copolymer comprising 60 Mol% of vinylidene fluoride and 40 Mol% of trifluoroethylene, and by 50% by weight of a copolymer comprising 70 Mol% of vinylidene fluoride and 30 Mol% of tri- fluororethylene.
4. A dielectric material according to claim 2, characterized in that the alloy is constituted by 30% by weight of a copolymer comprising 60 Mol% of vinylidene fluoride and 40 Mol% of trifluoroethylene, and by 70% by weight of a copolymer comprising 50 Mol% of vinylidene fluoride and 50 Mol% of tri- fluororethylene.
5. A dielectric material according to claim 2, characterized in that the alloy is constituted by one third by weight of a copolymer comprising 50 Mol% of vinylidene fluoride and 50 Mol% of trifluoroethylene, by one third by weight of a copolymer comprising 60 Mol% of vinylidene fluoride and 40 Mol% of tri- fluororethylene, and by one third by weight of a copolymer comprising 70 Mol% of vinylidene fluoride and 30 Mol% of trifluoroethylene.
6. A dielectric material according to claim 2, characterized in that the alloy is constituted by 45% by weight of a copolymer comprising 50 Mol% of vinylidene fluoride and 50 Mol% of trifluoroethylene, by 35% by weight of a copolymer comprising 60 Mol% of vinylidene fluoride and 40 Mol% of trifluoror- ethylene and by 20% by weight of a copolymer comprising 70 Mol% of vinylidene fluoride and 30 Mol% of trifluoroethylene.
7. A dielectric material according to claim 1, characterized in that the ferroelectric polymers are the polyfluoride of vinylidene (PVF2) and the copolymer of vinylidene fluoride and of trifluoroethylene.
8. A dielectric material according to claim 7, characterized in that the alloy is constituted by 40% by weight of PVF2 and by 60% of a copolymer comprising 60 Mol% of vinylidene fluoride and 40 Mol% of trifluoroethylene.
9. A dielectric material according to claim 7, characterized in that the alloy is constituted by 60% by weight of PVF2 and by 40% of a copolymer comprising 70 Mol% of vinylidene fluoride and 30 Mol% of trifluoroethylene.
10. A dielectric material according to claim 1, characterized in that the ferroelectric polymers comprise at least one terpolymer.
11. A dielectric material according to claim 10, characterized in that the alloy is constituted by 30% by weight of a terpolymer comprising 35 Mol% of trifluoroethylene, 60 Mol% of vinylidene fluoride and 5 Mol% of hexafluoropropene, and by 70% by weight of a terpolymer comprising 35 Mol% of trifluoroethylene, 55 Mol% of vinylidene fluoride and 10 Mol% of trifluorochloroethylene.
12. A dielectric material according to claim 10, characterized in that the alloy is constituted by 30% by weight of a terpolymer comprising 35 Mol% of trifluoroethylene, 60 Mol% of vinylidene fluoride and 5 Mol% of hexafluoropropene, and by 75% by weight of a terpolymer comprising 35 Mol% of trifluoroethylene, 60 Mol% of vinylidene fluoride and 5 Mol% of trifluorochloroethylene.
13. A dielectric material according to claim 10, characterized in that the alloy is constituted by 70% by weight of a terpolymer comprising 35 Mol% of trifluoroethylene, 55 Mol% of vinylidene fluoride and 10 Mol% of hexafluoropropene, and by 30% by weight of a copolymer comprising 60 Mol% of vinylidene fluoride and 40 Mol% of trifluoroethylene.
EP86401317A 1985-06-21 1986-06-17 Polymeric dielectric material with a high dielectric permittivity Expired EP0206926B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8509500 1985-06-21
FR8509500A FR2583914B1 (en) 1985-06-21 1985-06-21 DIELECTRIC MATERIALS BASED ON POLYMERS AND WITH HIGH DIELECTRIC PERMITTIVITY

Publications (2)

Publication Number Publication Date
EP0206926A1 EP0206926A1 (en) 1986-12-30
EP0206926B1 true EP0206926B1 (en) 1989-08-23

Family

ID=9320545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86401317A Expired EP0206926B1 (en) 1985-06-21 1986-06-17 Polymeric dielectric material with a high dielectric permittivity

Country Status (5)

Country Link
US (1) US4708989A (en)
EP (1) EP0206926B1 (en)
JP (1) JPS621744A (en)
DE (1) DE3665238D1 (en)
FR (1) FR2583914B1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595145B1 (en) * 1986-02-28 1989-03-31 Thomson Csf MEMORY VIEWING SYSTEM
JP2536758B2 (en) * 1987-06-19 1996-09-18 理化学研究所 Polymer film
FR2617631A1 (en) * 1987-06-30 1989-01-06 Thomson Csf MULTILAYER CAPACITOR BASED ON FERROELECTRIC POLYMER
JPH043419Y2 (en) * 1987-07-21 1992-02-03
JP2773215B2 (en) * 1989-04-07 1998-07-09 ダイキン工業株式会社 Polymer dielectric material
US5167918A (en) * 1990-07-23 1992-12-01 Agency For Defence Development Manufacturing method for aluminum-lithium alloy
FR2727215B1 (en) * 1994-11-18 1996-12-20 Thomson Csf STATIC INFRARED PANORAMIC SLEEP DEVICE WITH MULTIPLE MATRIX SENSORS
FR2750487B1 (en) * 1996-06-28 2005-10-21 Thomson Csf COATING FOR THE PERSONAL PROTECTION OF A FANTASSIN
AU2001274857A1 (en) 2000-05-18 2001-12-03 Georgia Tech Research Corporation High dielectric constant nano-structure polymer-ceramic composite
US7408158B2 (en) * 2006-05-26 2008-08-05 Mengel Arthur H Gas sensor apparatus
US8552128B2 (en) * 2006-12-20 2013-10-08 Honeywell International Inc. Polymer processing simplification
JP2008309525A (en) * 2007-06-12 2008-12-25 Daikin Ind Ltd Film for infrared detection, infrared detection device, and manufacturing method of film for infrared detection
EP2133370A1 (en) * 2008-06-02 2009-12-16 Solvay Solexis S.p.A. Vinylidene fluoride and trifluoroethylene containing polymers
WO2011008940A1 (en) * 2009-07-15 2011-01-20 The Penn State Research Foundation Polymer blends of electrostrictive terpolymer with other polymers
JP5926903B2 (en) * 2011-08-22 2016-05-25 株式会社クレハ Method for producing a polymer having a desired Curie temperature
FR2987358B1 (en) * 2012-02-28 2016-10-21 Arkema France PROCESS FOR THE SYNTHESIS OF TRIFLUOROETHYLENE FROM CHLOROTRIFLUOROETHYLENE
FR2999187B1 (en) * 2012-12-11 2016-10-07 Arkema France TERPOLYMERS AND FILMS PREPARED THEREFROM
FR3031519B1 (en) 2015-01-14 2016-12-30 Arkema France COMPOSITION BASED ON ELECTROACTIVE TERPOLYMER
US11084923B2 (en) * 2015-11-30 2021-08-10 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer compositions comprising a copolymer of vinylidene fluoride and trifluoroethylene and a fluorinated elastomer
EP3523335B2 (en) 2016-10-05 2024-05-15 Solvay Specialty Polymers Italy S.p.A. Vinylidene fluoride and trifluoroethylene containing polymers latexes
JP6997365B2 (en) * 2017-01-26 2022-02-04 株式会社ケミトロニクス Piezoelectric membrane
WO2018228872A1 (en) * 2017-06-14 2018-12-20 Solvay Specialty Polymers Italy S.P.A. Piezoelectric fluoropolymer
JP7315479B2 (en) 2017-06-14 2023-07-26 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. ferroelectric fluoropolymer
FR3070041B1 (en) 2017-08-09 2019-08-30 Arkema France FORMULATIONS BASED ON ELECTROACTIVE FLUOROPOLYMERS AND THEIR APPLICATIONS
FR3070042B1 (en) 2017-08-09 2020-08-21 Arkema France ORGANIC FIELD-EFFECT TRANSISTOR CONTAINING A DIELECTRIC LAYER WITH HIGH DIELECTRIC PERMITTIVITY AND TEMPERATURE STABLE
WO2021213868A1 (en) 2020-04-21 2021-10-28 Solvay Specialty Polymers Italy S.P.A. Aqueous dispersion of vinylidene fluoride and trifluoroethylene containing polymers
CN114316909B (en) * 2022-03-03 2022-06-24 北京宇极科技发展有限公司 Fluorine-containing heat transfer fluid and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719371A (en) * 1967-09-25 1973-03-06 Boise Cascade Corp Mobile unit with improved suspension structure
US3723577A (en) * 1970-11-05 1973-03-27 Minnesota Mining & Mfg Fluorinated elastomer blends
US3864228A (en) * 1971-04-26 1975-02-04 Electronized Chem Corp Moldable and heat recoverable composition comprising an admixture of vinylidene fluoride/hexafluoropropylene copolymer and a polymer of vinylidene fluoride
JPS51137741A (en) * 1975-05-23 1976-11-27 Kureha Chem Ind Co Ltd Molded arti cles based on polyvinylidene fluoride
JPS5227597A (en) * 1975-08-27 1977-03-01 Nippon Columbia Co Ltd High molecular piezo-electric component
DE2724612C3 (en) * 1977-06-01 1980-06-19 Dynamit Nobel Ag, 5210 Troisdorf Polyvinylidene fluoride-containing compositions of increased thermal stability
FR2395289A1 (en) * 1977-06-24 1979-01-19 Ugine Kuhlmann LUBRICATED THERMOPLASTIC COMPOSITIONS BASED ON POLY (VINYLIDENE FLUORIDE)
US4115481A (en) * 1977-09-16 1978-09-19 E. I. Du Pont De Nemours And Company Fluoroelastomer blend composition
FR2525616A1 (en) * 1982-04-27 1983-10-28 Thomson Csf PIEZOELECTRIC POLYMER MATERIALS
JPS59126452A (en) * 1983-01-06 1984-07-21 Japan Synthetic Rubber Co Ltd Piezoelectric polymer material
EP0136345A4 (en) * 1983-02-24 1987-01-10 Eastman Kodak Co Poly(vinylidene fluoride) film, uses thereof, and method of manufacture.
JPS59182836A (en) * 1983-04-01 1984-10-17 Asahi Glass Co Ltd Fluorine-containing elastomer composition and lining material consisting of it
DK310484A (en) * 1983-06-30 1984-12-31 Montedison Spa ELASTOMER PREPARATION BASED ON VINYLIDEEN FLUORIDE
IT1206517B (en) * 1983-09-07 1989-04-27 Montedison Spa COMPOSITIONS COVULCANISABLE FROM FLUOROELASTOMERS BASED ON VINYLIDENE FLUORIDE AND TETRAFLUOEOETHYLENE-PROPYLENE COPOLYMERS.

Also Published As

Publication number Publication date
FR2583914A1 (en) 1986-12-26
FR2583914B1 (en) 1989-04-07
EP0206926A1 (en) 1986-12-30
US4708989A (en) 1987-11-24
DE3665238D1 (en) 1989-09-28
JPS621744A (en) 1987-01-07

Similar Documents

Publication Publication Date Title
EP0206926B1 (en) Polymeric dielectric material with a high dielectric permittivity
Yamamoto et al. Structural and electrical properties of HfLaOx films for an amorphous high-k gate insulator
He et al. Phase transition and properties of a ferroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer
Hossain et al. Chemical vapor deposition of 2D vanadium disulfide and diselenide and Raman characterization of the phase transitions
FR2534089A1 (en) ACOUSTIC SURFACE WAVE DEVICE
FR2526622A1 (en) COMPOSITE FILM, ESPECIALLY FOR THIN FILM ELECTROLUMINESCENT STRUCTURES
EP1599562B1 (en) Nematic liquid crystal mixtures for bistable display devices
FR3020808A1 (en) DIELECTRIC CERAMIC MATERIAL COMPRISING CCTO
FR2474243A1 (en) SURFACE ACOUSTIC WAVE GENERATING DEVICE
JP4392706B2 (en) Heat-meltable fluororesin composition
CA1333740C (en) Vinylidene and trifluoethylene fluoride piezoelectric copolymers
EP0266245B1 (en) Polymer film type capacitor with a high-temperature stability
Matsui et al. Thermal stability of Pt bottom electrodes for ferroelectric capacitors
Su et al. Ferroelectric and piezoelectric properties of nylon 11/poly (vinylidene fluoride) bilaminate films
Yamaguchi Effect of molecular structure in branched polyethylene on adhesion properties with polypropylene
Raman Venkatesan et al. Non-linear dielectric spectroscopy for detecting and evaluating structure-property relations in a P (VDF-TrFE-CFE) relaxor-ferroelectric terpolymer
EP3665226B1 (en) Composition of fluorinated electroactive polymers, formulation, film, electronic device and organic field-effect transistor
Dmitriev et al. Structure and piezoelectric properties of microporous polyvinylidene fluoride films
US4349502A (en) Fabrication method for unoriented phase-I PVF2
Solnyshkin et al. Pyroelectric effect in composites based on copolymer P (VDF-TrFE) and ferroelectric ceramics BPZT
El-Sayed et al. Dielectric relaxations and optical properties of polyvinylidene fluoride/chitosan films
Yang et al. Crystallizability of poly (ɛ-caprolactone) blends with poly (vinylphenol) under different conditions
EP0093038A1 (en) Piezoelectric polymeric materials
EP3325411A1 (en) Thermoelectric material based on n-type doped cobalt antimony sulphide
Mathur et al. Piezoelectricity in uniaxially stretched and plasticized nylon 11 films

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB NL

17P Request for examination filed

Effective date: 19870323

17Q First examination report despatched

Effective date: 19880609

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB NL

REF Corresponds to:

Ref document number: 3665238

Country of ref document: DE

Date of ref document: 19890928

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910524

Year of fee payment: 6

Ref country code: BE

Payment date: 19910524

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: THOMSON-CSF

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920617

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302