EP0206253A1 - Circuit supplying an electric load from a solar generator - Google Patents

Circuit supplying an electric load from a solar generator Download PDF

Info

Publication number
EP0206253A1
EP0206253A1 EP86108341A EP86108341A EP0206253A1 EP 0206253 A1 EP0206253 A1 EP 0206253A1 EP 86108341 A EP86108341 A EP 86108341A EP 86108341 A EP86108341 A EP 86108341A EP 0206253 A1 EP0206253 A1 EP 0206253A1
Authority
EP
European Patent Office
Prior art keywords
circuit
solar generator
current
short
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86108341A
Other languages
German (de)
French (fr)
Other versions
EP0206253B1 (en
Inventor
Günther Dipl.-Ing. Mieth (FH)
Ulf Dipl.-Ing. Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT86108341T priority Critical patent/ATE58603T1/en
Publication of EP0206253A1 publication Critical patent/EP0206253A1/en
Application granted granted Critical
Publication of EP0206253B1 publication Critical patent/EP0206253B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S136/00Batteries: thermoelectric and photoelectric
    • Y10S136/291Applications
    • Y10S136/293Circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/906Solar cell systems

Definitions

  • the invention relates to a circuit arrangement as specified in the preamble of claim 1.
  • Such a circuit arrangement is already known from DE-OS 2 043 423.
  • the known circuit arrangement is a two-point controller, which is fed from a solar generator.
  • the two-point controller is designed and dimensioned so that the current emitted by the solar generator is in a predetermined ratio to the short-circuit current of a reference solar generator.
  • This ratio is determined using the characteristic field of the solar generator as the factor by which the short-circuit current is to be multiplied in order to obtain the current at the operating point of maximum power.
  • a test cell belonging to the solar cell generator serves as the reference solar generator.
  • the solar generator feeding the consumer and the solar generator whose short-circuit current is measured are therefore of the same design. In this way, the operating point of maximum power is achieved with good approximation in a large temperature range of the solar generator and this with relatively simple means.
  • the circuit arrangement is used in particular to charge a battery or to feed consumers that are buffered with the aid of a battery.
  • the proposed type of current adjustment can also be advantageous for other consumers if the greatest possible utilization of the solar generator is aimed for.
  • the circuit arrangement can be part of a regulator or an arrangement for so-called forward regulation, in which the actuator is controlled in a predetermined dependence on the measured short-circuit current. Since the test cell is permanently loaded by a measuring resistor, it is not available for supplying the consumer. In addition, the measured value of the short-circuit current of the test cell, which serves as a criterion for the short-circuit current of the solar generator, is only an approximate value, since the properties of the test cell are used to infer that of the entire solar generator.
  • a switching regulator is connected to a solar generator, with the aid of which the output voltage of the circuit arrangement is kept at a predetermined value. This is achieved in that the actual value input of the switching regulator is connected to the tap of a first voltage divider which is parallel to the output of the circuit arrangement.
  • the switching regulator has another control input that is routed internally to a reference voltage source. This control input is due to a tap of a second voltage divider, which is connected to the solar generator.
  • a photodiode is attached directly next to the solar generator and is arranged in parallel with a resistor of the second voltage divider.
  • the solar generator is to be given a maximum of power in that the reference voltage effective in connection with a voltage regulation is correspondingly influenced by the photodiode when the light irradiation changes.
  • the temperature in addition to the radiation density, the temperature also has a significant influence on the generator voltage at the operating point of maximum power.
  • the latter is not taken into account in the known circuit arrangement.
  • a typical characteristic field of a solar generator is e.g. from the brochure Solar Modules, Type Series SM36 from Interatom.
  • a particularly simple type of adaptation would be to determine the current drawn for a frequent average radiation intensity.
  • this would have the disadvantage that the possible higher current could not be used in the case of stronger radiation and the voltage would collapse in the case of weaker radiation and charging would no longer be possible.
  • the object of the invention is to design a circuit arrangement of the type mentioned at the outset in such a way that it ensures, with comparatively little effort, that the solar generator operates at a working point which in a large working area largely comes close to the working point of maximum power.
  • the object is achieved by the measures specified in the characterizing part of claim 1.
  • the short-circuit current of the solar generator feeding the load is evaluated periodically.
  • the short circuit current of the solar generator is measured particularly precisely and with particularly low power consumption.
  • the circuit arrangement therefore works with a particularly good efficiency.
  • circuit arrangement is expediently designed in the manner specified in the characterizing part of patent claim 2.
  • the pulse-pause ratio of the pulse train that closes the first controllable switch can in particular be 1: 1000, so that the efficiency is practically not impaired.
  • the battery 9 is fed from the solar generator 1 via a control device.
  • the main circuit H runs from the positive pole of the solar generator 1 via the diode 31 which is polarized in the forward direction, the inductor 4 and the diode 5 which is polarized in the forward direction to the positive pole of the battery 9 and from the negative pole of the battery 9 via the measuring resistor 7 to the negative pole of the solar generator 1.
  • a series connection of the electronic switch 24 controlled by the clock generator 21 and the short-circuit current measured value 2 is located in a first transverse branch.
  • the resistor 22 can be arranged in a longitudinal branch between the solar generator 1 and the first transverse branch instead of in the first transverse branch. Lower losses result from an arrangement in the first transverse branch.
  • the capacitor 32 lies between the connection point of the diode 31 with the inductor 4 on the one hand and the connection point of the resistor 7 and the load 9 on the other hand.
  • the electronic switch 6 which is controlled by the control circuit 8, is located in a third transverse branch.
  • the control circuit 8 is supplied with voltage from the solar generator 1 in a manner not shown.
  • the negative pole of the battery 9 also serves as a ground connection or reference potential.
  • the setpoint input 82 of the control circuit 8 is connected to the output of the sample and hold circuit 23 of the setpoint generator 2a.
  • the actual value input 81 of the control circuit 8 is connected to the terminal of the current measuring resistor 7 facing away from the battery 9.
  • the storage choke 4, the electronic switch 6 and the rectifier 5 represent the power components of a step-up converter known per se.
  • the switch expediently consists of a semiconductor component.
  • the converter charges the battery 9 from the solar generator 1.
  • the control device or control circuit 8 compares the current of the solar generator measured at the measuring resistor 7 with the value of the short-circuit current measuring resistor 22 measured at the short-circuit current measuring resistor 22 and regulates the current to a predetermined fraction of the respective measured value of the short-circuit current.
  • the regulated current results from the pulse-pause ratio of the pulses that close the second switch.
  • the pulse-pause ratio can be achieved by pulse duration modulation for a fixed switching frequency or by varying the frequency for a fixed pulse duration.
  • the capacitor 32 serves to provide the step-up converter with the necessary current pulses and also with a sufficient input voltage during the short periods in which the short-circuit current is measured.
  • the diode 31 ensures that the capacitor 32 is not discharged when the electronic switch 24 is closed.
  • control circuit 8 switches to voltage regulation and prevents a further rise in voltage or switches back to the lower value for trickle charging, as a result of which the current consumed can decrease.
  • the productivity of the solar generator is then no longer fully utilized.
  • the measuring resistor 7 measures the direct current output by the solar generator 1. If one arranges the measuring resistor in deviation from FIG. 1 between the capacitor 32 and the switch 6, a voltage corresponding to the direct current can be obtained by averaging or eliminating the alternating current component caused by the switch 6.
  • a series circuit comprising the source-drain path of the field-effect transistor 24a and the short-circuit current measuring resistor 22 is connected in parallel to the 36-volt solar generator 1.
  • the field-effect transistor 24a forms the electronic switch 24 1 and is periodically closed by clock pulses from the clock generator 21.
  • the clock 21 consists of the clock module 21 a and the external circuit shown.
  • the field effect transistor 24a is driven by the clock generator 21 via an inverter stage.
  • the clock generator 21 emits pulses at intervals of 100 msec, the duration of each of which is 100 ⁇ sec.
  • the pulse duty factor of the measuring pulses with which the short-circuit current of the solar generator 1 is measured is therefore 1: 1000.
  • the time module 21 b derives sampling pulses from the 100 usec pulses of the clock module 21a, the duration of which is only about 85 to 90 usec, so that the last 10 to 15% of the pulse width of the measuring pulse is not evaluated.
  • the sampling and holding circuit 23 is connected with its sampling pulse input c3 to the output b3 of the time module 21b. Since the scanning pulse always ends before the short-circuit current measuring pulse, decay processes of the measuring pulse cannot falsify the value to be stored in the scanning and holding circuit.
  • the source electrode of the field effect transistor 24 connected to the measuring resistor 22 is connected to the measuring pulse input c7 of the sample and hold circuit 23.
  • the sample and hold circuit 23 outputs a reference voltage proportional to the short-circuit current of the solar generator 1 at its output 82.
  • FIG. 2 An embodiment of the device for measuring the solar generator short-circuit current with design information is shown in FIG. 2.
  • connection number for the integrated circuit concerned.
  • connection number is preceded by an “a” for the clock module 21 a and a “b” in the time module 21 b.
  • the positive auxiliary voltage + U H and the negative auxiliary voltage -U H are, for example, ⁇ 12 V.
  • the auxiliary voltages are generated using a conventional device, which is not shown in the figures.
  • This device can contain a charging capacitor connected to the solar generator via a decoupling diode.
  • a stabilization circuit with a transistor in the series branch and a Zener diode as a setpoint generator in the cross branch can be connected to the charging capacitor.
  • a constant current diode is expediently located parallel to the base collector path of the transistor.
  • the voltage stabilized in this way is expediently fed to a converter module which outputs the positive auxiliary voltage + U H and the negative auxiliary voltage -U H.
  • An integrated circuit of type SI 7661 can be used as a converter module.
  • FIG. 3 shows a control circuit for controlling a field effect transistor 6a, which forms the switch 6 of the circuit arrangement according to FIG. 1.
  • the operational amplifier 84 is connected with its plus input to the output 82 of the sample and hold circuit 23 according to FIG. 1 or FIG. 2.
  • the measuring resistor 7 is on one side at the reference potential of the operational amplifier 84.
  • the other side of the measuring resistor 7 is connected to the minus input of the operational amplifier 84 via a further resistor.
  • There is a voltage across the measuring resistor 7 which is proportional to the instantaneous value of the current which is taken from the solar generator.
  • the residual ripple of the measuring voltage is reduced with the help of the RC element 7a.
  • the output of the operational amplifier 84 is connected to the connection d5 of the pulse width modulator 87.
  • the pulse width modulator 87 outputs permanently modulated control pulses for controlling the field effect transistor 6a at its output d7 as a function of the control deviation. This is achieved in that the variable supplied to the input d5 and proportional to the control deviation is compared with a sawtooth voltage supplied to the input d6.
  • the sawtooth voltage is generated using the oscillator 85, the frequency of which is, for example, 50 kHz.
  • the inverter 86 Between the output of the oscillator 85 and the input d5 of the pulse width modulator 87 there is the inverter 86, which distributes the edges of the output pulses of the oscillator 85. Between the output of the pulse width modulator 87 and the gate electrode of the field effect transistor 6a there is a chain circuit comprising the inverter 88, which also serves to increase the pulse edges, and the inverter 89, which serves as a driver.
  • a voltage proportional to the control deviation is obtained from the reference voltage coming from the sample and hold circuit 23 and from the actual value measured at the measuring resistor 7.
  • the value of the measuring resistor is e.g. 8 m S
  • the short-circuit current measuring resistor 22 has e.g. a value of 6.8 m n.
  • the resistance ratio of the resistors 7 and 22 is 0.85 in this case. This is the predetermined ratio of the current drawn from the solar generator to the measured short-circuit current of the solar generator.
  • the storage capacitor 32 has e.g. a capacity of 8000 uF and forms a low-resistance voltage source for the charge controller connected to it.
  • the rectifier 31 prevents the storage capacitor 32 from being able to discharge via the short-circuit current measuring resistor 22.
  • FIG. 3 An embodiment of the control circuit with design information is shown in FIG. 3.
  • An integrated module LM 393 serves both as oscillator 85 and as pulse width modulator 87.
  • An integrated component 4049 B is used as the inverter 86 and 88 and as the driver 89, the driver being formed by four inverters connected in parallel.
  • the designations of the connections of the oscillator 85 and the pulse width modulator 87 contain the connection numbers customary in the integrated modules LM 393. These connection numbers are preceded by a "d".
  • the characteristic curve field of a solar generator shown in FIG. 4 shows characteristic curves for different radiation densities E as parameters.
  • the voltage depends to a large extent on the temperature and the operating point of maximum power is therefore significantly influenced by the temperature of the solar generator.
  • the influence of temperature on the current is comparatively small.
  • an operating point is selected at which the load current in a predetermined ratio to. measured short-circuit current.
  • the predefined ratio can be determined for the solar generator used in each case by dividing the current at the operating point of maximum power by the associated short-circuit current for the relevant characteristic curves and forming an average value from the quotients obtained in this way.
  • Fig. 1 shows a preferred embodiment of the invention, which contains a step-up converter as a current regulator.
  • the generator voltage is increased to the required charging or consumer voltage.
  • step-up converters with exclusive regulation of the output voltage there is the advantage that the controller does not attempt to draw such a large current from the solar generator that the generator voltage breaks down.
  • step-up converter instead of the step-up converter shown, other known control arrangements, in particular blocking and flow-through converters, can also be used in a corresponding manner. These are usually implemented with pulse width control and have a transformer.
  • the current emitted by the solar generator is regulated.
  • a commercially available controller module designed as an integrated circuit can serve as the control circuit 8.
  • An advantageous modification of the circuit arrangement according to FIG. 1 consists in particular in that the load current measuring resistor 7 is replaced by a short circuit and the input 81 of the control circuit 8 is omitted.
  • the control circuit 8 is designed as a so-called forward regulator, which specifies one for each measured value of the solar generator short-circuit current bene control variable for controlling the actuator 6 forms.
  • the control circuit 8 expediently contains a comparator which compares a sawtooth voltage with the measuring voltage proportional to the short-circuit current or a voltage derived therefrom and switches the electronic switch 6, which was switched on at the beginning of the sawtooth, in the event of equality of voltages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)
  • Electromechanical Clocks (AREA)

Abstract

A circuit arrangement for feeding an electrical load, solar generator provides that the current output by the solar generator has a prescribed ratio to the measured value which is a measure for the short-circuit current of the solar generator. Such a circuit arrangement has an optimally-high efficiency. This is achieved with comparatively low expense in that the short-circuit current of the solar generator is measured pulse-wise. The circuit arrangement can be employed with particular advantage for charging batteries in solar systems.

Description

Die Erfindung bezieht sich auf eine wie im Oberbegriff des Patentanspruches 1 angegebene Schaltungsanordnung.The invention relates to a circuit arrangement as specified in the preamble of claim 1.

Eine derartige Schaltungsanordnung ist bereits aus der DE-OS 2 043 423 bekannt. Bei der bekannten Schaltungsanordnung handelt es sich um einen Zweipunktregler, der aus einem Solargenerator gespeist wird. Der Zweipunktregler ist so ausgebildet und bemessen, daß der vom Solargenerator abgegebene Strom in einem vorgegebenen Verhältnis zum Kurzschlußstrom eines Referenz-Solargenerators steht.Such a circuit arrangement is already known from DE-OS 2 043 423. The known circuit arrangement is a two-point controller, which is fed from a solar generator. The two-point controller is designed and dimensioned so that the current emitted by the solar generator is in a predetermined ratio to the short-circuit current of a reference solar generator.

Dieses Verhältnis ist mit Hilfe des Kennlinienfeldes des Solargenerators als der Faktor ermittelt, mit dem der Kurzschlußstrom zu multiplizieren ist, um den Strom im Arbeitspunkt maximaler Leistung zu erhalten. Als Referenz-Solargenerator dient eine dem Solarzellengenerator angehörende Testzelle. Der den Verbraucher speisende Solargenerator und der Solargenerator, dessen Kurzschlußstrom gemessen wird, sind daher von gleicher Bauart. Auf diese Weise wird der Arbeitspunkt maximaler Leistung mit guter Näherung in einem großen Temperaturbereich des Solargenerators und dies mit relativ einfachen Mitteln erzielt. Die Schaltungsanordnung dient insbesondere zum Laden einer Batterie oder zur Speisung von Verbrauchern, die mit Hilfe einer Batterie gepuffert sind. Die vorgeschlagene Art der Stromanpassung kann jedoch auch bei anderen Verbrauchern von Vorteil sein, wenn eine möglichst große Auslastung des Solargenerators angestrebt wird. Die Schaltungsanordnung kann Bestandteil eines Reglers oder einer Anordnung zur sogenannten Vorwärtsregelung sein, bei der das Stellglied in vorgegebener Abhängigkeit von dem gemessenen Kurzschlußstrom gesteuert wird. Da die Testzelle durch einen Meßwiderstand dauernd belastet ist, steht sie für eine Speisung des Verbrauchers nicht zur Verfügung. Außerdem stellt der Meßwert des Kurzschlußstromes der Testzelle, der als Kriterium für den Kurzschlußstrom des Solargenerators dient, nur einen Näherungswert dar, da von den Eigenschaften der Testzelle auf die des ganzen Solargenerators geschlossen wird.This ratio is determined using the characteristic field of the solar generator as the factor by which the short-circuit current is to be multiplied in order to obtain the current at the operating point of maximum power. A test cell belonging to the solar cell generator serves as the reference solar generator. The solar generator feeding the consumer and the solar generator whose short-circuit current is measured are therefore of the same design. In this way, the operating point of maximum power is achieved with good approximation in a large temperature range of the solar generator and this with relatively simple means. The circuit arrangement is used in particular to charge a battery or to feed consumers that are buffered with the aid of a battery. However, the proposed type of current adjustment can also be advantageous for other consumers if the greatest possible utilization of the solar generator is aimed for. The circuit arrangement can be part of a regulator or an arrangement for so-called forward regulation, in which the actuator is controlled in a predetermined dependence on the measured short-circuit current. Since the test cell is permanently loaded by a measuring resistor, it is not available for supplying the consumer. In addition, the measured value of the short-circuit current of the test cell, which serves as a criterion for the short-circuit current of the solar generator, is only an approximate value, since the properties of the test cell are used to infer that of the entire solar generator.

Bei einer aus der Zeitschrift Elektronik 19/21.9.84, Seite 96 bekannten Schaltungsanordnung ist an einen Solargenerator ein Schaltregler angeschlossen, mit dessen Hilfe die Ausgangsspannung der Schaltungsanordnung auf einem vorgegeben Wert gehalten wird. Dies wird dadurch erreicht, daß der Istwert-Eingang des Schaltreglers an den Abgriff eines ersten Spannungsteilers angeschlossen ist, der parallel zum Ausgang der Schaltungsanordnung liegt. Der Schaltregler besitzt einen weiteren Steuereingang, der intern an eine Referenzspannungsquelle geführt ist. Dieser Steuereingang liegt an einem Abgriff eines zweiten Spannungsteilers, der an den Solargenerator angeschlossen ist. Direkt neben dem Solargenerator ist eine Photodiode angebracht, die parallel zu einem Widerstand des zweiten Spannungsteilers angeordnet ist.In a circuit arrangement known from the electronics magazine 19 / 21.9.84, page 96, a switching regulator is connected to a solar generator, with the aid of which the output voltage of the circuit arrangement is kept at a predetermined value. This is achieved in that the actual value input of the switching regulator is connected to the tap of a first voltage divider which is parallel to the output of the circuit arrangement. The switching regulator has another control input that is routed internally to a reference voltage source. This control input is due to a tap of a second voltage divider, which is connected to the solar generator. A photodiode is attached directly next to the solar generator and is arranged in parallel with a resistor of the second voltage divider.

Mit Hilfe der bekannten Schaltungsanordnung soll dem Solargenerator dadurch ein Maximum an Leistung abgewonnen werden, daß die in Verbindung mit einer Spannungsregelung wirksamen Referenzspannung bei sich ändernder Lichteinstrahlung durch die Photodiode entsprechend beeinflußt wird. Bei einem Solargenerator beeinflußt neben der Strahlungsdichte auch die Temperatur die Generatorspannung im Arbeitspunkt maximaler Leistung wesentlich. Letztere wird jedoch bei der bekannten Schaltungsanordnung nicht berücksichtigt.With the aid of the known circuit arrangement, the solar generator is to be given a maximum of power in that the reference voltage effective in connection with a voltage regulation is correspondingly influenced by the photodiode when the light irradiation changes. In the case of a solar generator, in addition to the radiation density, the temperature also has a significant influence on the generator voltage at the operating point of maximum power. However, the latter is not taken into account in the known circuit arrangement.

Ein typisches Kennlinienfeld eines Solargenerators geht z.B. aus dem Prospekt Solar Modules, Type Series SM36 der Fa. Interatom hervor.A typical characteristic field of a solar generator is e.g. from the brochure Solar Modules, Type Series SM36 from Interatom.

Eine besonders einfache Art der Anpassung wäre, den entnommenen Strom für eine Häufige mittlere Strahlungsintensität festzulegen. Das hätte aber den Nachteil, daß der mögliche höhere Strom bei stärkerer Strahlung nicht ausgenutzt werden könnte und bei schwächerer Strahlung die Spannung zusammenbrechen würde und keine Ladung mehr möglich wäre.A particularly simple type of adaptation would be to determine the current drawn for a frequent average radiation intensity. However, this would have the disadvantage that the possible higher current could not be used in the case of stronger radiation and the voltage would collapse in the case of weaker radiation and charging would no longer be possible.

Man kann andererseits daran denken, die Ergiebigkeit des Solargenerators fortwährend zu prüfen und den Strom an den aus der Ergiebigkeit resultierenden Wert maximaler Leistung anzupassen, um eine Regelung auf maximal mögliche Leistung zu erzielen. Ein solcher Regler ist jedoch wegen des erforderlichen Schaltungsaufwandes mit einem relativc großen Aufwand verbunden.On the other hand, one can think of continuously checking the yield of the solar generator and adapting the current to the value of maximum power resulting from the yield in order to achieve regulation of the maximum possible power. However, such a controller is associated with a relatively large amount of effort because of the circuitry required.

Aufgabe der Erfindung ist es, eine Schaltungsanordnung der eingangs genannten Art so auszubilden, daß sie bei vergleichsweise geringem Aufwand einen Betrieb des Solargenerators in einem Arbeitspunkt gewährleistet, der in einem großen Arbeitsbereich dem Arbeitspunkt maximaler Leistung weitgehend nahekommt.The object of the invention is to design a circuit arrangement of the type mentioned at the outset in such a way that it ensures, with comparatively little effort, that the solar generator operates at a working point which in a large working area largely comes close to the working point of maximum power.

Gemäß der Erfindung wird die gestellte Aufgabe durch die im kennzeichnenden Teil des Patentanspruches 1 angegebenen Maßnahmen gelöst. Auf diese Weise wird der Kurzschlußstrom des die Last speisenden Solargenerators periodisch ausgewertet. Der Kurzschlußstrom des Solargenerators wird besonders exakt und mit besonders geringem Leistungsverbrauch gemessen. Die Schaltungsan ordnung arbeitet daher mit einem besonders guten Wirkungsgrad.According to the invention, the object is achieved by the measures specified in the characterizing part of claim 1. In this way, the short-circuit current of the solar generator feeding the load is evaluated periodically. The short circuit current of the solar generator is measured particularly precisely and with particularly low power consumption. The circuit arrangement therefore works with a particularly good efficiency.

Im Falle einer Regelung wird die Schaltungsanordnung zweckmäßigerweise in der im kennzeichnenden Teil des Patentanspruches 2 angegebenen Weise ausgebildet.In the case of regulation, the circuit arrangement is expediently designed in the manner specified in the characterizing part of patent claim 2.

Vorteilhafte Ausgestaltungen der Erfindung gehen aus den Patentansprüchen 3 und 4 hervor. Das Impuls-Pausen-Verhältnis der Impulsfolge, die den ersten steuerbaren Schalter schließt, kann insbesondere 1:1000 sein, so daß der Wirkungsgrad praktisch nicht beeinträchtigt wird.Advantageous embodiments of the invention emerge from patent claims 3 and 4. The pulse-pause ratio of the pulse train that closes the first controllable switch can in particular be 1: 1000, so that the efficiency is practically not impaired.

Die Erfindung wird anhand des in Fig. 1 dargestellten Ausführungsbeispieles sowie anhand des in Fig. 2 gezeigten Kennlinienfeldes näher erläutert.The invention is explained in more detail using the exemplary embodiment shown in FIG. 1 and the characteristic field shown in FIG. 2.

Es zeigen

  • Fig. 1 eine Schaltungsanordnung zur Speisung einer Batterie aus einem Solargenerator, bei der der Kurzschlußstrom des speisenden Solargenerators selbst gemessen und zur Bildung der Bezugsgröße für eine Stromregelung herangezogen wird,
  • Fig. 2 eine Vorrichtung zur Messung des Solargenerator-Kurzschlußstromes für eine Schaltungsanordnung nach Fig. 1,
  • Fig. 3 eine Steuerschaltung zur Steuerung des elektroninischen Schalters eines Umrichters, ebenfalls für eine Schaltungsanordnung nach Fig. 1 und
  • Fig. 4 ein typisches Kennlinienfeld eines Solargenerators, das insbesondere die Temperaturabhängigkeit des Kurzschlußstromes zeigt.
Show it
  • 1 shows a circuit arrangement for feeding a battery from a solar generator, in which the short-circuit current of the feeding solar generator itself is measured and used to form the reference variable for current regulation,
  • 2 shows a device for measuring the solar generator short-circuit current for a circuit arrangement according to FIG. 1,
  • Fig. 3 shows a control circuit for controlling the electronic switch of a converter, also for a circuit arrangement according to Fig. 1 and
  • Fig. 4 shows a typical characteristic field of a solar generator, which shows in particular the temperature dependence of the short-circuit current.

Bei der Schaltungsanordnung nach Fig. 1 wird die Batterie 9 aus dem Solargenerator 1 über eine Regeleinrichtung gespeist. Der Hauptstromkreis H verläuft vom Pluspol des Solargenerators 1 über die in Durchlaßrichtung gepolte Diode 31, die Drossel 4 und die in Durchlaßrichtung gepolte Diode 5 zum Pluspol der Batterie 9 und vom Minuspol der Batterie 9 über den Meßwiderstand 7 zum Minuspol des Solargenerators 1.In the circuit arrangement according to FIG. 1, the battery 9 is fed from the solar generator 1 via a control device. The main circuit H runs from the positive pole of the solar generator 1 via the diode 31 which is polarized in the forward direction, the inductor 4 and the diode 5 which is polarized in the forward direction to the positive pole of the battery 9 and from the negative pole of the battery 9 via the measuring resistor 7 to the negative pole of the solar generator 1.

Parallel zum Solargenerator 1 liegt in einem ersten Querzweig eine Reihenschaltung aus dem durch den Taktgeber 21 gesteuerten elektronischen Schalter 24 und dem Kurzschlußstrom-Meßwert 2. An den Kurzschlußstrom-Meßwiderstand 22 ist die ebenfalls durch den Taktgeber 21 steuerbare Abtast-und Halteschaltung 23 angeschlossen. In Abwandlung dieser Anordnung kann der Widerstand 22 anstatt im ersten Querzweig in einem Längszweig zwischen Solargenerator 1 und erstem Querzweig angeordnet sein. Geringere Verluste ergeben sich bei einer Anordnung im ersten Querzweig.In parallel to the solar generator 1, a series connection of the electronic switch 24 controlled by the clock generator 21 and the short-circuit current measured value 2 is located in a first transverse branch. The sampling and holding circuit 23, which can also be controlled by the clock generator 21, is connected to the short-circuit current measuring resistor 22. In a modification of this arrangement, the resistor 22 can be arranged in a longitudinal branch between the solar generator 1 and the first transverse branch instead of in the first transverse branch. Lower losses result from an arrangement in the first transverse branch.

Zwischen dem Verbindungspunkt der Diode 31 mit der Drossel 4 einerseits und dem Verbindungspunkt des Widerstandes 7 und der Last 9 andererseits liegt in einem zweiten Querzweig der Kondensator 32.The capacitor 32 lies between the connection point of the diode 31 with the inductor 4 on the one hand and the connection point of the resistor 7 and the load 9 on the other hand.

Zwischen dem Verbindungspunkt der Drossel 4 mit der Diode 5 einerseits und dem Verbindungspunkt des Laststrom-Widerstandes 7 mit der Batterie andererseits liegt in einem dritten Querzweig der elektronische Schalter 6., der durch die Steuerschaltung 8 gesteuert wird.Between the connection point of the inductor 4 with the diode 5 on the one hand and the connection point of the load current resistor 7 with the battery on the other hand, the electronic switch 6, which is controlled by the control circuit 8, is located in a third transverse branch.

Die Steuerschaltung 8 wird in nicht dargestellter Weise aus dem Solargenerator 1 mit Spannung versorgt. Der Minuspol der Batterie 9 dient zugleich als Masseanschluß bzw. Bezugspotential. Der Sollwert-Eingang 82 der Steuerschaltung 8 ist an den Ausgang der Abtast-und Halteschaltung 23 des Sollwert-Gebers 2a angeschlossen. Der Istwert-Eingang 81 der Steuerschaltung 8 ist mit dem der Batterie 9 abgewandten Anschluß des Strommeßwiderstandes 7 verbunden.The control circuit 8 is supplied with voltage from the solar generator 1 in a manner not shown. The negative pole of the battery 9 also serves as a ground connection or reference potential. The setpoint input 82 of the control circuit 8 is connected to the output of the sample and hold circuit 23 of the setpoint generator 2a. The actual value input 81 of the control circuit 8 is connected to the terminal of the current measuring resistor 7 facing away from the battery 9.

Die Speicherdrossel 4, der elektronische Schalter 6 und der Gleichrichter 5 stellen die Leistungsbauteile eines an sich bekannten Hochsetzumrichters dar. Der Schalter besteht zweckmäßigerweise aus einem Halbleiterbauteil.The storage choke 4, the electronic switch 6 and the rectifier 5 represent the power components of a step-up converter known per se. The switch expediently consists of a semiconductor component.

Der Umrichter lädt die Batterie 9 aus dem Solargenerator 1. Die Regeleinrichtung bzw. Steuerschaltung 8 vergleicht den am Meßwiderstand 7 gemessenen Strom des Solargenerators mit dem am Kurzschlußstrom-Meßwiderstand 22 gemessenen Wert des Kurzschlußstromes des Solargenerators 1 und regelt den Strom auf einen vorgegebenen Bruchteil des jeweils gemessenen Wertes des Kurzschlußstromes. Der geregelte Strom ergibt sich aus dem Impuls-Pausen-Verhältnis der Impulse, die den zweiten Schalter schließen. Das Impuls-Pausen-Verhältnis kann bei fester Schaltfrequenz durch Impulsdauermodulation oder bei fester Impulsdauer durch Variieren der Frequenz erfolgen.The converter charges the battery 9 from the solar generator 1. The control device or control circuit 8 compares the current of the solar generator measured at the measuring resistor 7 with the value of the short-circuit current measuring resistor 22 measured at the short-circuit current measuring resistor 22 and regulates the current to a predetermined fraction of the respective measured value of the short-circuit current. The regulated current results from the pulse-pause ratio of the pulses that close the second switch. The pulse-pause ratio can be achieved by pulse duration modulation for a fixed switching frequency or by varying the frequency for a fixed pulse duration.

Der Kondensator 32 dient dazu, dem Hochsetzumrichter die erforderlichen Stromimpulse und auch während der kurzen Zeitabschnitte, in denen der Kurzschlußstrom gemessen wird, eine ausreichende Eingangsspannung zur Verfügung zu stellen. Die Diode 31 sorgt dafür, daß der Kondensator 32 nicht bei geschlossenem elektronischen Schalter 24 entladen wird.The capacitor 32 serves to provide the step-up converter with the necessary current pulses and also with a sufficient input voltage during the short periods in which the short-circuit current is measured. The diode 31 ensures that the capacitor 32 is not discharged when the electronic switch 24 is closed.

Nach Erreichen der maximalen Ladespannung des Akkus geht die Steuerschaltung 8 auf Spannungsregelung über und verhindert einen weiteren Spannungsanstieg oder schaltet auf den niederen Wert zur Erhaltungsladung zurück, wodurch der aufgenommene Strom absinken kann. Die Ergiebigkeit des Solargenerators wird dann nicht mehr voll ausgenutzt.After the maximum charging voltage of the rechargeable battery has been reached, the control circuit 8 switches to voltage regulation and prevents a further rise in voltage or switches back to the lower value for trickle charging, as a result of which the current consumed can decrease. The productivity of the solar generator is then no longer fully utilized.

Der Meßwiderstand 7 mißt den vom Solargenerator 1 abgegebenen Gleichstrom. Ordnet man den Meßwiderstand in Abwei chung von Fig. 1 zwischen dem Kondensator 32 und dem Schalter 6 an, so kann eine dem Gleichstrom entsprechende Spannung durch Mittelwertbildung bzw. Eliminierung des vom Schalter 6 verursachten Wechselstromanteiles gewonnen werden.The measuring resistor 7 measures the direct current output by the solar generator 1. If one arranges the measuring resistor in deviation from FIG. 1 between the capacitor 32 and the switch 6, a voltage corresponding to the direct current can be obtained by averaging or eliminating the alternating current component caused by the switch 6.

Bei der in Fig. 2 gezeigten Vorrichtung zur Messung des Solargenerator-Kurzschlußstromes liegt parallel zum 36 Volt-Solargenerator 1 eine Serienschaltung aus der Source-Drain-Strecke des Feldeffekttransistors 24a und dem Kurzschlußstrom-Meßwiderstand 22. Der Feldeffekttransistor 24a bildet den elektronischen Schalter 24 der Schaltungsanordnung nach Fig. 1 und wird durch Taktimpulse des Taktgebers 21 periodisch geschlossen. Der Taktgeber 21 besteht aus dem Taktbaustein 21 a und der gezeigten äußeren Beschaltung.In the device for measuring the solar generator short-circuit current shown in FIG. 2, a series circuit comprising the source-drain path of the field-effect transistor 24a and the short-circuit current measuring resistor 22 is connected in parallel to the 36-volt solar generator 1. The field-effect transistor 24a forms the electronic switch 24 1 and is periodically closed by clock pulses from the clock generator 21. The clock 21 consists of the clock module 21 a and the external circuit shown.

Der Feldeffekttransistor 24a wird durch den Taktgeber 21 über eine Inverterstufe angesteuert. Der Taktgeber 21 gibt im Abstand von 100msec Impulse ab, deren Dauer jeweils 100 µsec beträgt. Das Tastverhältnis der Meßimpulse, mit denen der Kurzschlußstrom des Solargenerators 1 gemessen wird, beträgt daher 1 : 1000.The field effect transistor 24a is driven by the clock generator 21 via an inverter stage. The clock generator 21 emits pulses at intervals of 100 msec, the duration of each of which is 100 μsec. The pulse duty factor of the measuring pulses with which the short-circuit current of the solar generator 1 is measured is therefore 1: 1000.

Der Zeitbaustein 21 b leitet aus den 100 usec-Impulsen des Taktbausteines 21a Abtastimpulse ab, deren Dauer nur etwa 85 bis 90 usec beträgt, so daß die letzten 10 bis 15% der Impulsbreite des Meßimpulses nicht ausgewertet werden. Die Abtast-und Halteschaltung 23 ist mit ihrem Abtastimpuls-Eingang c3 an den Ausgang b3 des Zeitbausteines 21 b angeschlossen. Da der Abtastimpuls stets vor dem Kurzschlußstrom-Meßimpuls endet, können Ausschwingvorgänge des Meßimpulses den in der Abtast-und Halteschaltung zu speichernden Wert nicht verfälschen.The time module 21 b derives sampling pulses from the 100 usec pulses of the clock module 21a, the duration of which is only about 85 to 90 usec, so that the last 10 to 15% of the pulse width of the measuring pulse is not evaluated. The sampling and holding circuit 23 is connected with its sampling pulse input c3 to the output b3 of the time module 21b. Since the scanning pulse always ends before the short-circuit current measuring pulse, decay processes of the measuring pulse cannot falsify the value to be stored in the scanning and holding circuit.

Die mit dem Meßwiderstand 22 verbundene Source-Elektrode des Feldeffekttransistors 24 ist an den Meßimpulseingang c7 der Abtast-und Halteschaltung 23 geführt. Die Abtast-und Halteschaltung 23 gibt an ihrem Ausgang 82 eine dem Kurzschlußstrom des Solargenerators 1 proportionale Referenzspannung ab.The source electrode of the field effect transistor 24 connected to the measuring resistor 22 is connected to the measuring pulse input c7 of the sample and hold circuit 23. The sample and hold circuit 23 outputs a reference voltage proportional to the short-circuit current of the solar generator 1 at its output 82.

Ein Ausführungsbeispiel der Vorrichtung zur Messung des Solargenerator-Kurzschlußstromes mit Bemessungsangaben geht aus Fig. 2 hervor.An embodiment of the device for measuring the solar generator short-circuit current with design information is shown in FIG. 2.

Dabei dient als

  • Taktbaustein 21a : der integrierte Schaltkreis TCL 555 C, als
  • Zeitbaustein 21 b : der integrierte Schaltkreis TCL
  • 555 C
  • und als
  • Feldeffekttransistor 24a ein solcher vom Typ BUZ 27.
It serves as
  • Clock module 21a: the integrated circuit TCL 555 C, as
  • Time module 21 b: the integrated circuit TCL
  • 555 C.
  • and as
  • Field effect transistor 24a is of the BUZ 27 type.

Die Bezeichnungen der Anschlüsse des Taktbausteines 21 a und des Zeitbausteines 21 b enthalten die bei dem betreffenden integrierten Schaltkreis übliche Anschlußnummer.The designations of the connections of the clock module 21 a and the time module 21 b contain the usual connection number for the integrated circuit concerned.

Um Doppelbezeichnungen zu vermeiden, ist der Anschlußnummer bei dem Taktbaustein 21 a jeweils ein "a" und bei dem Zeitbaustein 21 b ein "b" vorausgestellt.In order to avoid duplicate designations, the connection number is preceded by an "a" for the clock module 21 a and a "b" in the time module 21 b.

Die positive Hilfsspannung + UH und die negative Hilfsspannung -UH betragen z.B. ± 12 V. Die Hilfsspannungen werden mit Hilfe einer üblichen Vorrichtung erzeugt, die in den Figuren nicht dargestellt ist. Diese Vorrichtung kann einen an den Solargenerator über eine Entkopplungsdiode angeschlossenen Ladekondensator enthalten. An den Ladekondensator kann eine Stabilisierungsschaltung mit einem Transistor im Längszweig und einer Z-Diode als Sollwertgeber im Querzweig angeschlossen sein. Parallel zur Basis-Kollektorstrecke des Transistors liegt zweckmäßigerweise eine Konstantstromdiode. Die derart stabilisierte Spannung wird zweckmäßigerweise einem Konverterbaustein zugeführt, der die positive Hilfsspannung + UH und die negative Hilfsspannung -UH abgibt. Als Konverterbaustein kann z.B. ein integrierter Schaltkreis vom Typ SI 7661 Verwendung finden.The positive auxiliary voltage + U H and the negative auxiliary voltage -U H are, for example, ± 12 V. The auxiliary voltages are generated using a conventional device, which is not shown in the figures. This device can contain a charging capacitor connected to the solar generator via a decoupling diode. A stabilization circuit with a transistor in the series branch and a Zener diode as a setpoint generator in the cross branch can be connected to the charging capacitor. A constant current diode is expediently located parallel to the base collector path of the transistor. The voltage stabilized in this way is expediently fed to a converter module which outputs the positive auxiliary voltage + U H and the negative auxiliary voltage -U H. An integrated circuit of type SI 7661 can be used as a converter module.

Fig. 3 zeigt eine Steuerschaltung zur Steuerung eines Feldeffekttransistors 6a, der den Schalter 6 der Schaltungsanordnung nach Fig. 1 bildet.FIG. 3 shows a control circuit for controlling a field effect transistor 6a, which forms the switch 6 of the circuit arrangement according to FIG. 1.

Der Operationsverstärker 84 ist mit seinem Pluseingang an den Ausgang 82 der Abtast-und Halteschaltung 23 nach Fig. 1 bzw. Fig. 2 angeschlossen. Der Meßwiderstand 7 liegt auf der einen Seite am Bezugspotential des Operationsverstärkers 84. Die andere Seite des Meßwiderstandes 7 ist über einen weiteren Widerstand an den Minuseingang des Operationsverstärkers 84 geführt. Am Meßwiderstand 7 liegt eine Spannung, die dem Momentanwert des Stromes proportional ist, der dem Solargenerator entnommen wird.The operational amplifier 84 is connected with its plus input to the output 82 of the sample and hold circuit 23 according to FIG. 1 or FIG. 2. The measuring resistor 7 is on one side at the reference potential of the operational amplifier 84. The other side of the measuring resistor 7 is connected to the minus input of the operational amplifier 84 via a further resistor. There is a voltage across the measuring resistor 7 which is proportional to the instantaneous value of the current which is taken from the solar generator.

Die Restwelligkeit der Meßspannung wird mit Hilfe des RC-Gliedes 7a reduziert. Am Ausgang des Operationsverstärkers 84 liegt eine Spannung, die der Regelabweichung proportional ist.The residual ripple of the measuring voltage is reduced with the help of the RC element 7a. At the output of the operational amplifier 84 there is a voltage which is proportional to the system deviation.

Der Ausgang des Operationsverstärkers 84 ist an den Anschluß d5 des Impulsbreitenmodulators 87 geführt. Der Impulsbreitenmodulator 87 gibt an seinem Ausgang d7 in Abhängigkeit von der Regelabweichung dauermodulierte Steuerimpulse zur Steuerung des Feldeffekttransistors 6a ab. Dies wird dadurch erreicht, daß die dem Eingang d5 zugeführte, der Regelabweichung proportionale Größe mit einer dem Eingang d6 zugeführten Sägezahnspannung verglichen wird. Die Sägezahnspannung wird mit Hilfe des Oszillators 85 erzeugt, dessen Frequenz z.B. 50 kHz beträgt.The output of the operational amplifier 84 is connected to the connection d5 of the pulse width modulator 87. The pulse width modulator 87 outputs permanently modulated control pulses for controlling the field effect transistor 6a at its output d7 as a function of the control deviation. This is achieved in that the variable supplied to the input d5 and proportional to the control deviation is compared with a sawtooth voltage supplied to the input d6. The sawtooth voltage is generated using the oscillator 85, the frequency of which is, for example, 50 kHz.

Zwischen dem Ausgang des Oszillators 85 und dem Eingang d5 des Impulsbreitenmodulators 87 liegt der Inverter 86, der die Flanken der Ausgangsimpulse des Oszillators 85 versteilert. Zwischen dem Ausgang des Impulsbreitenmodulators 87 und der Gate-Elektrode des Feldeffekttransisstors 6a liegt eine Kettenschaltung aus dem ebenfalls zur Versteilerung von Impulsflanken dienenden Inverter 88 und dem als Treiber dienenden Inverter 89.Between the output of the oscillator 85 and the input d5 of the pulse width modulator 87 there is the inverter 86, which distributes the edges of the output pulses of the oscillator 85. Between the output of the pulse width modulator 87 and the gate electrode of the field effect transistor 6a there is a chain circuit comprising the inverter 88, which also serves to increase the pulse edges, and the inverter 89, which serves as a driver.

Im Operationsverstärker 84 wird aus der von der Abtast-und Halteschaltung 23 kommenden Referenzspannung und aus dem am Meßwiderstand 7 gemessenen Istwert eine der Regelabweichung proportionale Spannung gewonnen. Der Wert des Meßwiderstandes beträgt z.B. 8 m S, der Kurzschlußstrom-Meßwiderstand 22 hat z.B. einen Wert von 6,8 m n. Das Widerstandsverhältnis der Widerstände 7 und 22 beträgt in diesem Fall 0,85. Dies ist das vorgegebene Verhältnis von dem dem Solargenerator entnommenen Strom zum jeweils gemessenen Kurzschlußstrom des Solargenerators.In the operational amplifier 84, a voltage proportional to the control deviation is obtained from the reference voltage coming from the sample and hold circuit 23 and from the actual value measured at the measuring resistor 7. The value of the measuring resistor is e.g. 8 m S, the short-circuit current measuring resistor 22 has e.g. a value of 6.8 m n. The resistance ratio of the resistors 7 and 22 is 0.85 in this case. This is the predetermined ratio of the current drawn from the solar generator to the measured short-circuit current of the solar generator.

Der Speicherkondensator 32 hat z.B. eine Kapazität von 8000 uF und bildet eine niederohmige Spannungsquelle für den daran angeschlossenen Laderegler. Der Gleichrichter 31 verhindert, daß sich der Speicherkondensator 32 über den Kurzschlußstrom-Meßwiderstand 22 entladen kann.The storage capacitor 32 has e.g. a capacity of 8000 uF and forms a low-resistance voltage source for the charge controller connected to it. The rectifier 31 prevents the storage capacitor 32 from being able to discharge via the short-circuit current measuring resistor 22.

Ein Ausführungsbeispiel der Steuerschaltung mit Bemessungsangaben geht aus Fig. 3 hervor.An embodiment of the control circuit with design information is shown in FIG. 3.

Dabei dient sowohl als Oszillator 85 als auch als Impulsbreitenmodulator 87 ein integrierter Baustein LM 393.An integrated module LM 393 serves both as oscillator 85 and as pulse width modulator 87.

Als Inverter 86 und 88 sowie als Treiber 89 findet ein integrierter Baustein 4049 B Verwendung, wobei der Treiber durch vier parallel geschaltete Inverter gebildet ist. Die Bezeichnungen der Anschlüsse des Oszillators 85 und des lmpulsbreitenmodulators 87 enthalten die bei dem integrierten Bausteine LM 393 üblichen Anschlußnummern. Diesen Anschlußnummern ist jeweils ein "d" vorangestellt.An integrated component 4049 B is used as the inverter 86 and 88 and as the driver 89, the driver being formed by four inverters connected in parallel. The designations of the connections of the oscillator 85 and the pulse width modulator 87 contain the connection numbers customary in the integrated modules LM 393. These connection numbers are preceded by a "d".

Das in Fig. 4 gezeigte Kennlinienfeld eines Solargenerators zeigt Kennlinien für verschiedene Strahlungsdichten E als Parameter. Wie das Kennlinienfeld zeigt, hängt die Spannung in erheblichem Maße von der Temperatur ab und der Arbeitspunkt maximaler Leistung wird daher wesentlich von der Temperatur des Solargenerators beeinflußt. Andererseits ist der Einfluß der Temperatur auf den Strom vergleichsweise gering.The characteristic curve field of a solar generator shown in FIG. 4 shows characteristic curves for different radiation densities E as parameters. As the characteristic field shows, the voltage depends to a large extent on the temperature and the operating point of maximum power is therefore significantly influenced by the temperature of the solar generator. On the other hand, the influence of temperature on the current is comparatively small.

In dem in Fig. 4 gezeigten Kennlinienfeld soll sich jeweils ein Arbeitspunkt ergeben, bei dem je nach Strahlung und Temperatur ein möglichst großes Produkt aus Spannung und Strom verwertet und zur Batterieladung nutzbar gemacht wird. Problematisch bei der Anpassung an die Ergiebigkeit des Generators ist dabei, daß die vom Generator lieferbare Leistung außer von dessen Art und Größe von der Strahlungsintensität und von der Temperatur abhängig ist.In the characteristic field shown in FIG. 4 there is to be one operating point at which, depending on the radiation and temperature, the largest possible product of voltage and current is utilized and made usable for battery charging. The problem with adapting to the productivity of the generator is that the power that can be supplied by the generator depends not only on its type and size, but also on the radiation intensity and on the temperature.

Bei der in Fig. 1 gezeigten Schaltungsanordnung wird ein Arbeitspunkt gewählt, bei dem der Laststrom in einem vorgegebenen Verhältnis zum. gemessenen Kurzschlußstrom steht. Das vorgegebene Verhältnis läßt sich für den jeweils zur Anwendung kommenden Solargenerator dadurch ermitteln, daß für die relevanten Kennlinien jeweils der Strom im Arbeitspunkt maximaler Leistung durch den zugehörigen Kurzschlußstrom geteilt und aus den so gewonnenen Quotienten ein Mittelwert gebildet wird.In the circuit arrangement shown in Fig. 1, an operating point is selected at which the load current in a predetermined ratio to. measured short-circuit current. The predefined ratio can be determined for the solar generator used in each case by dividing the current at the operating point of maximum power by the associated short-circuit current for the relevant characteristic curves and forming an average value from the quotients obtained in this way.

Wie Untersuchungen im Rahmen der Erfindung gezeigt haben, lassen sich mit einem Bruchteil in der Größe von zwischen 80% und 90% Ergebnisse erzielen, die von dem Fall einer exakten Berechnung des Arbeitspunktes maximaler Leistung in einem vergleichsweise geringen Maße abweichen.As studies within the scope of the invention have shown, results can be obtained with a fraction in the size of between 80% and 90%, which deviate from the case of an exact calculation of the operating point of maximum power to a comparatively small extent.

Die Fig. 1 zeigt ein bevorzugtes Ausführungsbeispiel der Erfindung, das als Stromregler einen Hochsetzumrichter enthält. Dabei wird die Generatorspannung auf die erforderliche Lade- bzw. Verbraucherspannung hochgesetzt. Im Vergleich zu Hochsetzumrichtern mit ausschließlicher Regelung der Ausgangsspannung ergibt sich der Vorteil, daß der Regler nicht versucht, dem Solargenerator einen so großen Strom zu entnehmen, daß die Generatorspannung zusammenbricht.Fig. 1 shows a preferred embodiment of the invention, which contains a step-up converter as a current regulator. The generator voltage is increased to the required charging or consumer voltage. Compared to step-up converters with exclusive regulation of the output voltage, there is the advantage that the controller does not attempt to draw such a large current from the solar generator that the generator voltage breaks down.

Anstelle des gezeigten Hochsetzumrichters können in entsprechender Weise auch andere bekannte Regelanordnungen, insbesondere Sperr-und Durchflußumrichter Verwendung finden. Diese werden meist mit Impulsbreitensteuerung ausgeführt und besitzen einen Trafo.Instead of the step-up converter shown, other known control arrangements, in particular blocking and flow-through converters, can also be used in a corresponding manner. These are usually implemented with pulse width control and have a transformer.

Bei den in den Figuren gezeigten Schaltungsanordnungen wird der vom Solargenerator abgegebene Strom geregelt. Als Steuerschaltung 8 kann dabei insbesondere ein handelsüblicher, als integrierte Schaltung ausgeführter Regler-Baustein dienen.In the circuit arrangements shown in the figures, the current emitted by the solar generator is regulated. In particular, a commercially available controller module designed as an integrated circuit can serve as the control circuit 8.

Eine vorteilhafte Abwandlung der Schaltungsanordnung nach Fig. 1 besteht insbesondere darin, daß der Laststrom-Meßwiderstand 7 durch einen Kurzschluß ersetzt wird und der Eingang 81 der Steuerschaltung 8 entfällt. Diese Vereinfachung der Schaltungsanordnung ist möglich, wenn die Steuerschaltung 8 als sogenannter Vorwärtsregler ausgebildet wird, der für jeden Meßwert des Solargenerator-Kurzschlußstromes eine vorgegebene Steuergröße zur Steuerung des Stellgliedes 6 bildet. Die Steuerschaltung 8 enthält dabei zweckmäßigerweise einen Vergleicher, der eine Sägezahnspannung mit der dem Kurzschlußstrom proportionalen Meßspannung oder einer davon abgeleiteten Spannung vergleicht und bei Gleichheit bei Spannungen den elektronischen Schalter 6 abschaltet, der zu Beginn des Sägezahns eingeschaltet wurde. Durch entsprechende Gestaltung des Sägezahns läßt sich dabei eine Steuercharakteristik erzielen, bei der die Forderung, daß der Laststrom des Solargenerators in einem vorgegebenen Verhältnis zum Kurzschlußstrom des Solargenerators steht, mit vergleichsweise geringem Aufwand und mit einer für die Praxis ausreichenden Übereinstimmung erreicht wird.An advantageous modification of the circuit arrangement according to FIG. 1 consists in particular in that the load current measuring resistor 7 is replaced by a short circuit and the input 81 of the control circuit 8 is omitted. This simplification of the circuit arrangement is possible if the control circuit 8 is designed as a so-called forward regulator, which specifies one for each measured value of the solar generator short-circuit current bene control variable for controlling the actuator 6 forms. The control circuit 8 expediently contains a comparator which compares a sawtooth voltage with the measuring voltage proportional to the short-circuit current or a voltage derived therefrom and switches the electronic switch 6, which was switched on at the beginning of the sawtooth, in the event of equality of voltages. By designing the sawtooth accordingly, a control characteristic can be achieved in which the requirement that the load current of the solar generator is in a predetermined ratio to the short-circuit current of the solar generator can be achieved with comparatively little effort and with an agreement that is sufficient for practical use.

Claims (5)

1. Schaltungsanordnung zu Speisung einer elektrischen Last (9) aus einem Solargenerator (1) mit einem Eingang (E) zum Anschluß des Solargenerators (1) und mit einem Ausgang (A) zum Anschluß der elektrischen Last (9), wobei zwischen dem Eingang (E) und dem Ausgang (A) ein durch eine Steuerschaltung (8) steuerbares Stellglied (6) angeordnet ist und die Steuerschaltung (8) mit einem Referenzspannungseingang (82) an einen durch einen Lichtsensor steuerbaren Referenzspannungsgeber (2) angeschlossen ist, wobei der Referenzspannungsgeber (2) eine Anordnung zur Messung eines Kriteriums für den Kurzschlußstrom eines Solargenerators (1) ist und das Stellglied (6) durch die Steuerschaltung (8) derart steuerbar ist, daß der dem Solargenerator entnommene Strom in einem vorgegebenen Verhältnis zum jeweiligen Meßwert des Kriteriums für den Kurzschlußstrom des Solargenerators (1) steht,
dadurch gekennzeichnet,
daß der Referenzspannungsgeber (2) durch eine Serienschaltung aus einem durch Taktimpulse eines Taktgebers (21) periodisch schließbaren ersten steuerbaren Schalter (24) und einem Kurzschlußstrom-Meßwiderstand (22) zur Messung des Solargenerator-Kurzschlußstromes und eine an den Kurzschlußstrom-Meßwiderstand (22) angeschlossene Abtast-und Halteschaltung (23) gebildet ist und mit dem Eingang (E) zum Anschluß des Solargenerators (1) verbunden ist.
1. Circuit arrangement for supplying an electrical load (9) from a solar generator (1) with an input (E) for connecting the solar generator (1) and with an output (A) for connecting the electrical load (9), between the input (E) and the output (A) is arranged by a control circuit (8) controllable actuator (6) and the control circuit (8) is connected with a reference voltage input (82) to a reference voltage transmitter (2) controllable by a light sensor, the Reference voltage generator (2) is an arrangement for measuring a criterion for the short-circuit current of a solar generator (1) and the actuator (6) can be controlled by the control circuit (8) in such a way that the current drawn from the solar generator is in a predetermined ratio to the respective measured value of the criterion stands for the short-circuit current of the solar generator (1),
characterized,
that the reference voltage transmitter (2) by means of a series circuit comprising a first controllable switch (24) which can be periodically closed by clock pulses from a clock generator (21) and a short-circuit current measuring resistor (22) for measuring the solar generator short-circuit current and one connected to the short-circuit current measuring resistor (22) connected sample and hold circuit (23) is formed and connected to the input (E) for connecting the solar generator (1).
2. Schaltungsanordnung nach Anspruch 1, wobei in bekannter Weise die Steuerschaltung (8) einen Vergleicher enthält, der zusätzlich zum Referenzspannungseingang (82) einen Istwert-Eingang - (81) aufweist und mit dem Istwert-Eingang (81) an einen Istwert-Geber angeschlossen ist und wobei das Stellglied derart steuerbar ist, daß die vom Istwert-Geber abgegebene Meßspannung wenigstens näherungsweise den Wert der Referenzspannung annimmt,
dadurch gekennzeichnet,
daß die Steuerschaltung (8) mit ihrem lstwert-Eingang (81) an einen im Hauptstromkreis (H) angeordneten, den Istwert-Geber bildenden Last-Meßwiderstand (7) zur Messung des dem Solargenerator entnommenen Stromes angeschlossen ist und daß der Meßwiderstand (7) derart bemessen ist, daß die Referenzspannung und die Meßspannung dann miteinander übereinstimmen, wenn der dem Solargenerator (1) entnommene Strom in einem vorgegebenen Verhältnis zum jeweiligen Kurzschlußstrom des Solargenerators - (1) steht.
2. Circuit arrangement according to claim 1, wherein in a known manner the control circuit (8) contains a comparator which, in addition to the reference voltage input (82), has an actual value input - (81) and with the actual value input (81) to an actual value transmitter is connected and the actuator can be controlled in such a way that the measuring voltage emitted by the actual value transmitter at least approximately assumes the value of the reference voltage,
characterized,
that the control circuit (8) with its actual value input (81) is connected to a load measuring resistor (7) arranged in the main circuit (H) and forming the actual value transmitter for measuring the current drawn from the solar generator, and that the measuring resistor (7) is dimensioned such that the reference voltage and the measuring voltage match each other when the current drawn from the solar generator (1) is in a predetermined ratio to the respective short-circuit current of the solar generator - (1).
3. Schaltungsanordnung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die Last (9) über einen Schaltregler an dem ersten steuerbaren Schalter (24) angeschlossen ist, und daß der Schaltregler in einem Längszweig eine Speicherdrossel (4) und in einem Querzweig einen durch die Steuerschaltung (8) steuerbaren zweiten steuerbaren Schalter (6) enthält und daß die Last - (9) über eine Diode (5) an den zweiten steuerbaren Schalter (6) angeschlossen ist und daß zwischen dem ersten steuerbaren Schalter (24) und dem Schaltregler eine Speicheranordnung mit einer Diode (31) in einem Längszweig und mit einem Kondensator (32) in einem Querzweig angeordnet ist.
3. Circuit arrangement according to claim 1 or 2,
characterized,
that the load (9) is connected to the first controllable switch (24) via a switching regulator, and that the switching regulator has a storage choke (4) in a longitudinal branch and a second controllable switch (6) controllable by the control circuit (8) in a transverse branch. contains and that the load - (9) is connected via a diode (5) to the second controllable switch (6) and that between the first controllable switch (24) and the switching regulator a memory arrangement with a diode (31) in a series branch and with a capacitor (32) is arranged in a transverse branch.
4. Schaltungsanordnung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß das Impuls-Pausen-Verhältnis der den ersten steuerbaren Schalter (24) steuernden Impulsfolge kleiner als 1:10 ist.
4. Circuit arrangement according to one of claims 1 to 3,
characterized,
that the pulse-pause ratio of the pulse train controlling the first controllable switch (24) is less than 1:10.
5. Schaltungsanordnung nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß der Referenzspannungsgeber (2) einen an den Taktgeber (21) angeschlossenen Zeitbaustein - (21a) enthält und daß die Abtast-und Halteschaltung durch den Zeitbaustein (21a) derart steuerbar ist, daß der am Meßwiderstand (22) auftretende Spannungsimpuls nur in einem zeitlichen Teilbereich ausgewertet wird.
5. Circuit arrangement according to one of claims 1 to 4,
characterized,
that the reference voltage generator (2) contains a time module - (21a) connected to the clock generator (21) and that the sample and hold circuit can be controlled by the time module (21a) in such a way that the voltage pulse occurring at the measuring resistor (22) occurs only in one time Sub-area is evaluated.
EP86108341A 1985-06-20 1986-06-19 Circuit supplying an electric load from a solar generator Expired - Lifetime EP0206253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86108341T ATE58603T1 (en) 1985-06-20 1986-06-19 CIRCUIT ARRANGEMENT FOR POWERING AN ELECTRICAL LOAD FROM A SOLAR GENERATOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3522080 1985-06-20
DE3522080 1985-06-20

Publications (2)

Publication Number Publication Date
EP0206253A1 true EP0206253A1 (en) 1986-12-30
EP0206253B1 EP0206253B1 (en) 1990-11-22

Family

ID=6273740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86108341A Expired - Lifetime EP0206253B1 (en) 1985-06-20 1986-06-19 Circuit supplying an electric load from a solar generator

Country Status (7)

Country Link
US (1) US4695785A (en)
EP (1) EP0206253B1 (en)
JP (1) JPS6249421A (en)
AT (1) ATE58603T1 (en)
AU (1) AU579804B2 (en)
CA (1) CA1256942A (en)
DE (1) DE3675695D1 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030494C1 (en) * 1990-09-26 1992-04-23 Helmut 6753 Enkenbach De Jelonnek Solar power generator setter - has indicator in centre of concentric circles calibrated in ambient temperatures
EP0535322A1 (en) * 1991-09-28 1993-04-07 Siegenia-Frank Kg Electrical power supply device for a minimal tension - DC consumer
WO1998013918A1 (en) * 1996-09-24 1998-04-02 Siemens Aktiengesellschaft Circuit arrangement to provide electronic tripping devices with an electricity supply
US5962489A (en) * 1992-07-16 1999-10-05 Basf Aktiengesellschaft Heteroaromatic compounds and crop protection agents containing them
ITUD20120218A1 (en) * 2012-12-18 2014-06-19 Univ Degli Studi Trieste CONTROL SYSTEM OF A PHOTOVOLTAIC SYSTEM AND ITS CONTROL METHOD
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH676515A5 (en) * 1986-12-19 1991-01-31 Stuart Maxwell Watkinson
DE3721075C1 (en) * 1987-06-26 1989-01-26 Trilux Lenze Gmbh & Co Kg DC power supply circuit
JPH01102299U (en) * 1987-12-25 1989-07-10
DE3830016A1 (en) * 1988-01-29 1989-08-10 Philips Patentverwaltung CIRCUIT ARRANGEMENT FOR POWERING A LOAD
US4978829A (en) * 1988-05-27 1990-12-18 Nada Electronics Limited Electric discharge machining power supply circuit
US4873480A (en) * 1988-08-03 1989-10-10 Lafferty Donald L Coupling network for improving conversion efficiency of photovoltaic power source
US5028861A (en) * 1989-05-24 1991-07-02 Motorola, Inc. Strobed DC-DC converter with current regulation
JP2749656B2 (en) * 1989-08-16 1998-05-13 株式会社放電精密加工研究所 Power supply circuit for electric discharge machining
JPH0379307U (en) * 1989-11-29 1991-08-13
US5027051A (en) * 1990-02-20 1991-06-25 Donald Lafferty Photovoltaic source switching regulator with maximum power transfer efficiency without voltage change
DE4017860A1 (en) * 1990-06-02 1991-12-05 Schottel Werft ENERGY RECOVERY SYSTEM, IN PARTICULAR PROPELLER SHIP DRIVE, WITH POWER FROM A SOLAR GENERATOR
US5235266A (en) * 1990-06-02 1993-08-10 Schottel-Werft Josef Becker Gmbh & Co. Kg Energy-generating plant, particularly propeller-type ship's propulsion plant, including a solar generator
US5397976A (en) * 1993-09-28 1995-03-14 Space Systems/Loral, Inc. Control system for voltage controlled bilateral current source
JP3271730B2 (en) * 1994-04-28 2002-04-08 キヤノン株式会社 Power generation system charge control device
US5659465A (en) * 1994-09-23 1997-08-19 Aeroviroment, Inc. Peak electrical power conversion system
US6316925B1 (en) 1994-12-16 2001-11-13 Space Systems/Loral, Inc. Solar array peak power tracker
US6081104A (en) * 1998-11-20 2000-06-27 Applied Power Corporation Method and apparatus for providing energy to a lighting system
FR2832870B1 (en) * 2001-08-14 2006-08-04 Somfy IMPROVEMENT FOR PHOTOVOLTAIC TYPE CHARGER
US7288921B2 (en) * 2004-06-25 2007-10-30 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for providing economic analysis of power generation and distribution
FR2904127B1 (en) * 2006-07-19 2008-10-17 Somfy Sas METHOD FOR OPERATING AN AUTONOMOUS DOMOTIC SENSOR DEVICE FOR DETECTING THE EXISTENCE AND / OR MEASURING THE INTENSITY OF A PHYSICAL PHENOMENON
JP2008035609A (en) * 2006-07-28 2008-02-14 Sharp Corp Switching power circuit
US9431828B2 (en) * 2006-11-27 2016-08-30 Xslent Energy Technologies Multi-source, multi-load systems with a power extractor
JP5047908B2 (en) * 2008-09-02 2012-10-10 日本電信電話株式会社 Maximum power control device and maximum power control method
US8384356B2 (en) * 2009-09-25 2013-02-26 Qi Deng Self contained power source
US8159238B1 (en) * 2009-09-30 2012-04-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for in-situ health monitoring of solar cells in space
US9063559B2 (en) * 2010-03-09 2015-06-23 Texas Instruments Incorporation Battery charger and method for collecting maximum power from energy harvester circuit
US9257892B2 (en) 2010-09-20 2016-02-09 Danmarks Tekniske Universitet Method and device for current driven electric energy conversion
WO2012046317A1 (en) * 2010-10-06 2012-04-12 トヨタ自動車株式会社 Output control device for solar battery
EP2748916B1 (en) 2011-08-22 2016-04-13 Franklin Electric Company Inc. Power conversion system
EP2763318B1 (en) * 2011-09-29 2021-03-17 Fuji Electric Co., Ltd. Load driving circuit
HRPK20120648B3 (en) 2012-08-08 2015-05-08 Icat D.O.O. Solar cells integrated into fiberglass boat hull
EP3314752B1 (en) 2015-06-26 2020-09-30 Newport Corporation Method for measuring one or more characteristics of one or more photovoltaic cells
US20230231389A1 (en) * 2022-01-14 2023-07-20 Solaredge Technologies Ltd. Power System Including a Power Storage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043423A1 (en) * 1970-09-02 1972-03-09 Messerschmitt Boelkow Blohm Optimal regulator
FR2175653A1 (en) * 1972-03-17 1973-10-26 Labo Cent Telecommunicat
EP0029743A1 (en) * 1979-11-26 1981-06-03 Solarex Corporation Method of and apparatus for enabling output power of solar panel to be maximised
GB2158621A (en) * 1984-05-11 1985-11-13 Mitsubishi Electric Corp Control circuit for variable speed electric motor driven by solar battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1804130A1 (en) * 1968-10-19 1970-04-30 Dornier System Gmbh Process for the automatic optimization of a product made up of two physical quantities
US4272806A (en) * 1979-06-08 1981-06-09 Eastman Kodak Company DC to DC Converter adjustable dynamically to battery condition
JPS603725A (en) * 1983-06-21 1985-01-10 Sharp Corp Voltage limiting circuit
US4604567A (en) * 1983-10-11 1986-08-05 Sundstrand Corporation Maximum power transfer system for a solar cell array
US4494180A (en) * 1983-12-02 1985-01-15 Franklin Electric Co., Inc. Electrical power matching system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043423A1 (en) * 1970-09-02 1972-03-09 Messerschmitt Boelkow Blohm Optimal regulator
FR2175653A1 (en) * 1972-03-17 1973-10-26 Labo Cent Telecommunicat
EP0029743A1 (en) * 1979-11-26 1981-06-03 Solarex Corporation Method of and apparatus for enabling output power of solar panel to be maximised
GB2158621A (en) * 1984-05-11 1985-11-13 Mitsubishi Electric Corp Control circuit for variable speed electric motor driven by solar battery

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030494C1 (en) * 1990-09-26 1992-04-23 Helmut 6753 Enkenbach De Jelonnek Solar power generator setter - has indicator in centre of concentric circles calibrated in ambient temperatures
EP0535322A1 (en) * 1991-09-28 1993-04-07 Siegenia-Frank Kg Electrical power supply device for a minimal tension - DC consumer
US5962489A (en) * 1992-07-16 1999-10-05 Basf Aktiengesellschaft Heteroaromatic compounds and crop protection agents containing them
WO1998013918A1 (en) * 1996-09-24 1998-04-02 Siemens Aktiengesellschaft Circuit arrangement to provide electronic tripping devices with an electricity supply
US6150739A (en) * 1996-09-24 2000-11-21 Siemens Ag Circuit configuration for supplying power to electronic tripping device
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12046940B2 (en) 2006-12-06 2024-07-23 Solaredge Technologies Ltd. Battery power control
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US12032080B2 (en) 2006-12-06 2024-07-09 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12027970B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12027849B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US12107417B2 (en) 2006-12-06 2024-10-01 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12068599B2 (en) 2006-12-06 2024-08-20 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US12055647B2 (en) 2007-12-05 2024-08-06 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US12094306B2 (en) 2012-01-30 2024-09-17 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
WO2014097190A2 (en) 2012-12-18 2014-06-26 Universita' Degli Studi Di Trieste Method to control a photovoltaic plant and corresponding control apparatus
ITUD20120218A1 (en) * 2012-12-18 2014-06-19 Univ Degli Studi Trieste CONTROL SYSTEM OF A PHOTOVOLTAIC SYSTEM AND ITS CONTROL METHOD
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US12119758B2 (en) 2013-03-14 2024-10-15 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring

Also Published As

Publication number Publication date
DE3675695D1 (en) 1991-01-03
AU579804B2 (en) 1988-12-08
CA1256942A (en) 1989-07-04
AU5910586A (en) 1986-12-24
ATE58603T1 (en) 1990-12-15
JPS6249421A (en) 1987-03-04
EP0206253B1 (en) 1990-11-22
US4695785A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
EP0206253B1 (en) Circuit supplying an electric load from a solar generator
DE60101991T2 (en) DC to DC converter
DE102005055160B4 (en) Control circuit for current and voltage control in a switching power supply
DE2729978C2 (en)
EP0162341B1 (en) Electronic switching power supply
DE3111776C2 (en) Stereo amplifier system
DE19618882A1 (en) Circuit for supplying electric load such as fan or storage battery of vehicle from solar generator
DE2445337C2 (en) Circuit arrangement for the transmission of electrical measured value signals
DE69206507T2 (en) Control device for an AC generator of a vehicle.
DE2845511A1 (en) BATTERY CHARGING CIRCUIT
DE2818067C2 (en) Device for feeding a load
DE4243943A1 (en) AC rectifier including voltage-dropping DC=DC converter - restricts duration of flow of DC from bridge rectifier into prim. winding of transistor-switched transformer
DE3608082C2 (en)
DE2831997A1 (en) CONTROL DEVICE FOR A SEWING MACHINE PULSE MOTOR
DE3248388C2 (en) Electronic ignition circuit for an internal combustion engine
EP0664602B1 (en) Flyback converter with regulated output voltage
DE3101375C2 (en) Circuit arrangement for the regulated supply of a consumer
DE3221916C2 (en) Pulse width control circuit
EP0169461A1 (en) Circuit arrangement for supplying electrical appliances with direct voltage
DE19646666A1 (en) Charging system for battery driven electrical vehicle
EP0576831B1 (en) Lead-acid battery charging device
DE19618881B4 (en) Circuit arrangement for the power supply of an electrical load by means of a solar generator, in particular in a vehicle
EP0152913B1 (en) Circuit arrangement for a flyback converter
WO1990003059A1 (en) Battery charger
DE1938481B2 (en) Power supply device, in particular for a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870127

17Q First examination report despatched

Effective date: 19880902

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19901122

Ref country code: NL

Effective date: 19901122

Ref country code: FR

Effective date: 19901122

Ref country code: GB

Effective date: 19901122

Ref country code: SE

Effective date: 19901122

Ref country code: BE

Effective date: 19901122

REF Corresponds to:

Ref document number: 58603

Country of ref document: AT

Date of ref document: 19901215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3675695

Country of ref document: DE

Date of ref document: 19910103

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920914

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301