EP0203952B1 - Aimant solenoidal sans fer - Google Patents

Aimant solenoidal sans fer Download PDF

Info

Publication number
EP0203952B1
EP0203952B1 EP85905842A EP85905842A EP0203952B1 EP 0203952 B1 EP0203952 B1 EP 0203952B1 EP 85905842 A EP85905842 A EP 85905842A EP 85905842 A EP85905842 A EP 85905842A EP 0203952 B1 EP0203952 B1 EP 0203952B1
Authority
EP
European Patent Office
Prior art keywords
magnet
coil
rods
current
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85905842A
Other languages
German (de)
English (en)
Other versions
EP0203952A1 (fr
Inventor
Guy Aubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0203952A1 publication Critical patent/EP0203952A1/fr
Application granted granted Critical
Publication of EP0203952B1 publication Critical patent/EP0203952B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength

Definitions

  • the invention relates to a solenoidal magnet, without iron, comprising one or more coils whose technological structure is derived from that of a conventional Bitter coil; the invention more particularly relates to improvements making it possible to improve the homogeneity of the magnetic field generated by such a type of magnet.
  • Bitter coils are well known for the production of strong magnetic fields.
  • the structure proposed by Bitter is a coil made up of metallic annular discs, split to form as many turns and connected to define a substantially helical winding with flat turns.
  • the stacking of the discs is maintained by a plurality of tie rods.
  • This structure is advantageous because it allows efficient cooling of the magnet by making holes in the rings (and in the insulators separating these discs), these holes being arranged in the same configuration from one disc to another to materialize a set of channels parallel to the axis of the coil, in which circulates a cooling fluid, for example deionized water, kerosene or oil.
  • a cooling fluid for example deionized water, kerosene or oil.
  • the invention proposes to perfect such a type of magnet so that the magnetic field generated in a sphere of interest of prescribed radius, the center of which coincides with the center of symmetry of this magnet is of very good homogeneity.
  • a preferred field of application of the invention is indeed that of nuclear magnetic resonance imaging (NMR) where it is necessary to have a relatively high magnetic field (0.15 to 1.5 teslas) with a very high homogeneity, of the order of 1 to 10 parts per million (ppm). With a sufficiently long Bitter coil, a certain homogeneity can be obtained around the center of symmetry of this coil.
  • NMR nuclear magnetic resonance imaging
  • the invention therefore relates to a coiled magnet comprising at least one Bitter type coil, essentially consisting of a substantially helical winding materialized by a stack, with interposition of insulation, of annular discs, each comprising a cut materializing a turn, said turns being connected to each other, characterized in that it comprises one or more conductors ensuring the return of the current to one of the axial ends of the magnet, shaped (s) and / or arranged (s) for distributing the flow of said current longitudinally over a cylindrical surface coaxial with said coil.
  • these rods are preferably the tie rods (or some of them) whose primary function is to maintain the stack of discs of the Bitter coil.
  • the connection of two adjacent turns is simply obtained by shaping each disc of insulation, interposed between the two conductive rings, so that it comprises a sector-shaped cut and by clamping the stack of conductive discs and insulating discs between two end plates, by means of the tie rods mentioned above.
  • the electrical contact between two adjacent turns is thus established through the corresponding cutout. laying under the effect of tightening, the construction of the magnet being greatly facilitated.
  • the fact of posing the problem of obtaining a very uniform field from Bitter coil (s) leads to recognize in this arrangement another cause of disturbance of the magnetic field. Indeed, the variation in current density at each turn in the contact sector is another cause of non-uniformity.
  • the invention also relates to a magnet according to the above definition, characterized in that each end of the turn has a recess and that two adjacent turns are connected end to end by welding of such recesses of complementary shapes.
  • FIG. 1 schematically represents an exploded perspective of a conventional Bitter magnet 11 essentially used to produce an intense magnetic field inside the central hole 12 defined by a stack of annular conductive discs 13 (typically made of copper or aluminum) comprising each a cut 14, here a radial slot, transforming each disc 13 into a turn.
  • the magnetic field generated is oriented along the axis zz '.
  • Thin insulating discs 15 similar to discs 13 are interposed therebetween to isolate the turns. Instead of a fine cut, they each have a large sector-shaped cutout 17, to allow the turns to be connected by simply clamping the stack between two end plates such as 18, by means of a plurality tie rods 19 regularly distributed over a cylindrical surface coaxial with the axis zz '.
  • the conductive discs 13 and the insulating discs 15 are pierced with holes 20 made in the same configuration from one disc to another, so as to define a plurality of channels parallel to the axis zz ', in which a fluid circulates. cooling.
  • the concentration of holes 20 is greater towards the center of the disc because, in a Bitter coil, the current density at a point of a flat turn is inversely proportional to the distance from the point considered to the axis zz '.
  • the heating is therefore greater at the heart of the mass of conductors, hence the need to increase the number of cooling fluid channels in the vicinity of the hole 12.
  • the magnet in FIGS. 2 to 4 is derived from the conventional structure described with reference to FIG. 1.
  • the similar structural elements are identified by the same numerical references increased by 100.
  • the coil of Bitter 111 therefore has a central hole 112, conductive discs 113 and insulating discs 115.
  • the discs 113 and 115 have the same configuration of holes 120 and the stack of discs 113 and 115 is clamped by tie rods 119 between two annular end plates 118a, 118b.
  • the holes 120 made in the discs 113 and 115 are in concordance to define a plurality of longitudinal channels 121, parallel to the axis zz '.
  • the general proportions of the coil have been adapted for application to NMR imaging.
  • the external diameter and especially the internal diameter of the discs are increased to release a sufficient volume to be able to accommodate an elongated human being.
  • the adjacent turns are no longer connected by contact of the faces of the discs in the vicinity of the cuts but by welding of the ends of the turn.
  • the ends of each turn comprise for this purpose recesses of complementary shapes 122, 123 and two adjacent turns (see FIG. 2) are connected end to end by welding two recesses of complementary shapes.
  • an insulating disc 115 is shown between the two adjacent turns connected end to end.
  • the insulating disc is for example cut from a thin dielectric film, but it can be envisaged to remove it if the conductive discs are made of aluminum and the insulator is produced by anodizing these discs. In the case of the use of insulating discs cut from a dielectric material, these are cut radially and connected end to end as the turns are welded.
  • the magnet comprises one or more conductors ensuring the return of the current to one of the axial ends of the magnet, shaped (s) and / or arranged (s) to distribute the flow of said current longitudinally on a cylindrical surface coaxial with the coil or coils constituting the magnet.
  • the configuration which, in theory, best meets this definition is a cylindrical tubular casing, external to the coil, coaxial with the latter and connected by one of its axial ends to one of the end plates, by example plate 118b. It is shown that the flow of current in this tubular casing does not create a disturbing magnetic field in the central hole 112.
  • the abovementioned coaxial cylindrical surface is in this case that of the tubular casing itself.
  • this tubular casing can be replaced by a sufficient number of longitudinal rods, regularly distributed over a fictitious cylindrical surface 124, these rods being connected together so as to define a kind of squirrel cage and this cage being connected in series, as a whole, with said coil. So these rods are traversed by substantially equal fractions of the total current flowing through the coil or coils.
  • the tie rods 119 are used as current return rods. These tie rods are isolated from the conductive discs 113 and it suffices that the tie rods are connected to the end plate 118b if the coil 111 is single or to the corresponding plate of the coil closest to the axial end of the magnet to which none power supply cable is not connected.
  • the plate 118b distributes the current between the tie rods.
  • the tie rods 119 pass through the plate 118a while being isolated from the latter while this plate 118a comprises as many connection terminals 125 as there are tie rods, disposed respectively in the vicinity of each of them to allow the power supply of the magnet from a set of pairs of conductive wires.
  • each pair the conductive wires are arranged parallel to one another so as not to produce a stray field and in the example described, each pair of conductive wires in question forms a cable 126 with a coaxial structure.
  • any disturbing magnetic field (which could have been created by a "sulk including the magnet and its connection wires if these had been respectively connected to the axial ends of the magnet) is eliminated in the vicinity of the magnet. .
  • the fact of using the tie rods (or the tubular casing) to bring the current towards an axial end of the magnet with the additional advantage of compensating for the axial component of the current which circulates in the Bitter coil, due to the pitch d winding propeller.
  • This component is weak and does not create any field along the axis zz '. It modifies little the module of the field but only its orientation. The compensation of this longitudinal component of current by the currents which circulate in the tie rods thus brings back the orientation of the magnetic field along the axis zz '.
  • connection structure illustrated in Figure 3 can be used for the passage of current between the coils if the magnet has more than one.
  • all the end plates of the coils are similar to the plate 118a and two neighboring coils are connected by as many coaxial cables as there are of tie rods.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Aimant de Bitter à homogénéïté de champ améliorée. Selon l'invention, on utilise les tirants (119) de l'empilement de disques (113) pour ramener le courant vers l'une des extrémités axiales de l'aimant sans créer de champ parasite. Application à l'imagerie par RMN.

Description

  • L'invention concerne un aimant solénoïdal, sans fer, comportant une ou plusieurs bobines dont la structure technologique est dérivée de celle d'une bobine de Bitter classique ; l'invention a plus particulièrement pour objet des perfectionnements permettant d'améliorer l'homogénéité du champ magnétique engendré par un tel type d'aimant.
  • Les bobines de Bitter sont bien connues pour la production de champs magnétiques intenses. En théorie, la structure proposée par Bitter est un bobinage constitué de disques annulaires métalliques, fendus pour former autant de spires et raccordés pour définir un enroulement sensiblement hélicoïdal à spires plates. L'empilement des disques est maintenu par une pluralité de tirants. Cette structure est avantageuse car elle permet un refroidissement efficace de l'aimant en pratiquant des trous dans les anneaux (et dans les isolants séparant ces disques), ces trous étant disposés suivant une même configuration d'un disque à l'autre pour matérialiser un ensemble de canaux parallèles à l'axe de la bobine, dans lesquels circule un fluide de refroidissement, par exemple de l'eau désionisée, du kérozène ou de l'huile.
  • L'invention propose de perfectionner un tel type d'aimant pour que le champ magnétique engendré dans une sphère d'intérêt de rayon prescrit, dont le centre est confondu avec le centre de symétrie de cet aimant soit d'une très bonne homogénéité. Un domaine d'application privilégié de l'invention est en effet celui de l'imagerie par Résonance Magnétique Nucléaire (RMN) où il est nécessaire de disposer d'un champ magnétique relativement élevé (0,15 à 1,5 teslas) avec une très grande homogénéité, de l'ordre de 1 à 10 parties par million (ppm). Avec une bobine de Bitter suffisamment longue, on peut obtenir une certaine homogénéité autour du centre de symétrie de cette bobine. Cette homogénéité sera plus facilement atteinte et avec une structure plus compacte soit en faisant varier l'épaisseur des disques le long de l'axe des bobines soit en alignant plusieurs bobines de Bitter le long d'un axe commun, les longueurs des bobines et leurs espacements étant choisis pour réaliser l'homogénéité requise. Ces solutions font l'objet d'autres demandes de brevet déposées par la Demanderesse. Les perfectionnements selon l'invention s'appliquent aussi bien à un aimant à bobine unique qu'à un aimant à plusieurs bobines alignées.
  • Il peut en effet subsister d'autres causes structurelles d'inhomogénéité du champ magnétique engendré ou des causes de perturbation de ce champ magnétique.
  • Parmi celles-ci, il faut particulièrement prendre en considération la façon dont le courant est appliqué à l'aimant. En effet, si on établit classiquement la liaison entre la source d'alimentation et l'aimant au moyen de deux conducteurs respectivement connectés aux extrémités axiales de l'aimant, des perturbations de champ engendrées par ces conducteurs peuvent dégrader l'homogénéité du champ dans la sphère d'intérêt. L'invention vise en premier lieu à résoudre ce problème.
  • Dans cet esprit, l'invention concerne donc un aimant bobiné comportant au moins une bobine de type Bitter, essentiellement constituée d'un enroulement sensiblement hélicoïdal matérialisé par un empilement, avec interposition d'isolant, de disques annulaires, comportant chacun une coupure matérialisant une spire, lesdites spires étant connectées les unes aux autres, caractérisé en ce qu'il comporte un ou plusieurs conducteurs assurant le retour du courant vers l'une des extrémités axiales de l'aimant, conformé(s) et/ou disposé(s) pour répartir l'écoulement dudit courant longitudinalement sur une surface cylindrique coaxiale à ladite bobine.
  • Cette façon de « ramener le courant parallèlement à l'axe de l'aimant et tout autour de celui-ci ne crée aucune perturbation de champ dans l'espace interne de l'aimant. En outre, grâce à l'agencement défini ci-dessus, les amenées de courant se trouvent à la même extrémité axiale de l'aimant. Les fils d'alimentation peuvent donc être facilement agencés parallèlement par paires pour éviter de créer toute perturbation. On utilise de préférence des câbles à structure coaxiale. La concrétisation du concept énoncé ci-dessus peut se traduire par un unique conducteur tubulaire entourant la bobine et connecté à l'une des extrémités axiales de celle-ci pour ramener le courant. Cet agencement a en outre l'avantage de former une sorte de cage de Faraday qui, dans le cas de l'application à l'imagerie par RMN, protège les antennes radiofréquence des perturbations extérieures. On peut aussi réaliser une approximation de cette enveloppe tubulaire en réalisant le retour du courant au moyen de plusieurs tiges longitudinales régulièrement réparties sur ladite surface cylindrique, ces tiges étant connectées en parallèle entre elles et en série dans leur ensemble avec ladite bobine de façon à être parcourues par des fractions sensiblement égales du courant total qui traverse ladite bobine. Dans ce second mode de réalisation possible, ces tiges sont de préférence les tirants (ou certains d'entre eux) dont la fonction première est de maintenir l'empilement de disques de la bobine de Bitter.
  • D'autre part, selon un mode de réalisation actuellement très répandu de l'aimant de Bitter, le raccordement de deux spires adjacentes est simplement obtenu en conformant chaque disque d'isolant, intercalé entre les deux anneaux conducteurs, de façon qu'il comporte une découpe en forme de secteur et en serrant l'empilement de disques conducteurs et de disques isolants entre deux plateaux d'extrémité, au moyen des tirants mentionnés ci-dessus. Le contact électrique entre deux spires adjacentes est ainsi établi au travers de la découpe correspondante sous l'effet du serrage, la construction de l'aimant en étant grandement facilité. Cependant, le fait de se poser le problème d'obtenir un champ très uniforme à partir de bobine(s) de Bitter conduit à reconnaître dans cet agencement une autre cause de perturbation du champ magnétique. En effet, la variation de densité de courant à chaque tour dans le secteur de contact est une autre cause d'inhomogénéité. Dans cet esprit, l'invention concerne aussi un aimant selon la définition qui précède, caractérisé en ce que chaque extrémité de spire comporte un embrèvement et que deux spires adjacentes sont connectées bout à bout par soudure de tels embrèvements de formes complémentaires.
  • L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront mieux à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue en perspective d'une bobine de Bitter classique ;
    • la figure 2 est une vue de détail de deux spires adjacentes illustrant l'une des modifications de la bobine de Bitter ;
    • la figure 3 est une vue schématique en demi- coupe longitudinale d'un aimant conforme à l'invention, et
    • la figure 4 est une vue partielle de l'aimant de la figure 3 suivant la coupe IV-IV de celle-ci.
  • La figure 1 représente schématiquement une perspective éclatée d'un aimant de Bitter 11 classique essentiellement utilisé pour produire un champ magnétique intense à l'intérieur du trou central 12 défini par un empilement de disques annulaires conducteurs 13 (typiquement en cuivre ou en aluminium) comportant chacun une coupure 14, ici une fente radiale, transformant chaque disque 13 en une spire. Le champ magnétique engendré est orienté suivant l'axe zz'. De minces disques isolants 15 semblables aux disques 13 sont intercalés entre ceux-ci pour isoler les spires. Au lieu d'une fine coupure, ils comportent chacun une large découpe 17 en forme de secteur, pour permettre le raccordement des spires par le simple serrage de l'empilement entre deux plateaux d'extrémité tels que 18, au moyen d'une pluralité de tirants 19 régulièrement répartis sur une surface cylindrique coaxiale à l'axe zz'. Les disques conducteurs 13 et les disques isolants 15 sont percés de trous 20 pratiqués suivant la même configuration d'un disque à l'autre, de façon à définir une pluralité de canaux parallèles à l'axe zz', dans lesquels circule un fluide de refroidissement. La concentration de trous 20 est plus importante vers le centre du disque car, dans une bobine de Bitter, la densité de courant en un point d'une spire plate est inversement proportionnelle à la distance du point considéré à l'axe zz'. L'échauffement est donc plus important au coeur de la masse de conducteurs, d'où la nécessité d'augmenter le nombre de canaux de fluide de refroidissement au voisinage du trou 12.
  • L'aimant des figures 2 à 4 est dérivé de la structure classique décrite en référence à la figure 1. Les éléments de structure analogues sont repérés par les mêmes références numériques augmentées de 100. La bobine de Bitter 111 comporte donc un trou central 112, des disques conducteurs 113 et des disques isolants 115. Les disques 113 et 115 comportent la même configuration de trous 120 et l'empilement des disques 113 et 115 est serré par des tirants 119 entre deux plateaux d'extrémité annulaires 118a, 118b. Les trous 120 pratiqués dans les disques 113 et 115 sont en concordance pour définir une pluralité de canaux longitudinaux 121, parallèles à l'axe zz'. Dans l'exemple de la figure 3, les proportions générales de la bobine ont été adaptées pour une application à l'imagerie par RMN. Le diamètre externe et surtout le diamètre interne des disques sont augmentés pour dégager un volume suffisant pour pouvoir accueillir un être humain allongé.
  • Selon l'une des modifications de la structure classique décrite ci-dessus, les spires adjacentes ne sont plus connectées par contact des faces des disques au voisinage des coupures mais par soudures des extrémités de spire. Les extrémités de chaque spire comportent à cet effet des embrèvements de formes complémentaires 122, 123 et deux spires adjacentes (voir figure 2) sont reliées bout à bout par soudure de deux embrèvements de formes complémentaires. Sur la figure 2 un disque isolant 115 est représenté entre les deux spires adjacentes raccordées bout à bout. Dans la pratique, le disque isolant est par exemple découpé dans un mince film diélectrique mais on peut envisager de le supprimer si les disques conducteurs sont en aluminium et que l'isolant est réalisé par une anodisation de ces disques. Dans le cas de l'utilisation de disques isolants découpés dans un matériau diélectrique, ceux-ci sont coupés radialement et raccordés bout à bout au fur et à mesure des soudures des spires.
  • Par ailleurs, selon une caractéristique importante de l'invention, l'aimant comporte un ou plusieurs conducteurs assurant le retour du courant vers l'une des extrémités axiales de l'aimant, conformé(s) et/ou disposé(s) pour répartir l'écoulement dudit courant longitudinalement sur une surface cylindrique coaxiale à la ou les bobines constituant l'aimant. La configuration qui, en théorie, répond le mieux à cette définition est une enveloppe tubulaire cylindrique, extérieure à la bobine, coaxiale à celle-ci et connectée par l'une de ses extrémités axiales à l'un des plateaux d'extrémité, par exemple le plateau 118b. On montre que l'écoulement de courant dans cette enveloppe tubulaire ne crée pas de champ magnétique perturbateur dans le trou central 112. La surface cylindrique coaxiale précitée est dans ce cas celle de l'enveloppe tubulaire elle-même. Cependant, cette enveloppe tubulaire peut être remplacée par un nombre suffisant de tiges longitudinales, régulièrement réparties sur une surface cylindrique fictive 124, ces tiges étant connectées entre elles de façon à définir une sorte de cage d'écureuil et cette cage étant connectée en série, dans son ensemble, avec ladite bobine. Ainsi, ces tiges sont parcourues par des fractions sensiblement égales du courant total qui traverse la ou les bobines. Dans le mode de réalisation des figures 2 à 4, on utilise les tirants 119 en tant que tiges de retour de courant. Ces tirants sont isolés des disques conducteurs 113 et il suffit que les tirants soient connectés au plateau d'extrémité 118b si la bobine 111 est unique ou au plateau correspondant de la bobine la plus proche de l'extrémité axiale de l'aimant à laquelle aucun câble d'amenée de courant n'est connecté. Dans ce cas, le plateau 118b assure la répartition du courant entre les tirants. En revanche, si on considère la première extrémité axiale citée à laquelle sont connectés les câbles d'amenée de courant (c'est-à-dire l'extrémité matérialisée par le plateau d'extrémité 118a si la bobine 111 est unique ou si c'est la bobine la plus proche de ladite première extrémité) les tirants 119 traversent le plateau 118a en étant isolés de celui-ci tandis que ce plateau 118a comporte autant de bornes de raccordement 125 que de tirants, disposées respectivement au voisinage de chacun d'eux pour permettre l'alimentation électrique de l'aimant à partir d'un ensemble de paires de fils conducteurs. Dans chaque paire, les fils conducteurs sont agencés parallèlement l'un à l'autre pour ne pas produire de champ parasite et dans l'exemple décrit, chaque paire de fils conducteurs en question forme un câble 126 à structure coaxiale. Ainsi, tout champ magnétique perturbateur (qui aurait pu être créé par une « boude incluant l'aimant et ses fils de raccordement si ceux-ci avaient été respectivement reliés aux extrémités axiales de l'aimant) se trouve éliminé au voisinage de l'aimant. Le fait d'utiliser les tirants (ou l'enveloppe tubulaire) pour ramener le courant vers une extrémité axiale de l'aimant à l'avantage supplémentaire de compenser la composante axiale du courant qui circule dans la bobine de Bitter, due au pas d'hélice de l'enroulement. Cette composante est faible et ne crée aucun champ suivant l'axe zz'. Elle modifie peu le module du champ mais seulement son orientation. La compensation de cette composante longitudinale de courant par les courants qui circulent dans les tirants ramène donc l'orientation du champ magnétique suivant l'axe zz'.
  • En outre, la structure de raccordement illustrée à la figure 3 peut être utilisée pour le passage du courant entre les bobines si l'aimant en comporte plus d'une. Dans ce cas, tous les plateaux d'extrémité des bobines (excepté celui qui est situé à l'autre extrémité axiale de l'aimant) sont semblables au plateau 118a et deux bobines voisines sont connectées par autant de câbles coaxiaux qu'il y a de tirants.
  • L'invention n'est pas limitée au mode de réalisation qui vient d'être décrit. En outre, il est à noter que si l'on a défini certains éléments de structure (une enveloppe tubulaire, des tiges ou des tirants) comme assurant « le retour » du courant, c'était pour mieux mettre en évidence la fonction nouvelle de ces éléments de structure mais qu'il est bien évident que l'agencement décrit ci-dessus est protégé dans les revendications qui suivent indépendamment du sens conventionnel du courant qui circule dans la ou les bobines et les éléments de structure précités. L'invention couvre aussi tous les équivalents techniques des moyens mis en jeu si ceux-ci le sont dans le cadre des revendications qui suivent.

Claims (10)

1. Aimant solénoïdal comportant au moins une bobine de type Bitter, essentiellement constituée d'un enroulement sensiblement hélicoïdal matérialisé par un empilement, avec interposition d'isolant, de disques conducteurs (113) comportant chacun une coupure matérialisant une spire, lesdites spires étant connectées les unes aux autres, caractérisé en ce qu'il comporte un ou plusieurs conducteurs (119) assurant le retour du courant vers l'une des extrémités axiales de l'aimant, conformé(s) et/ou disposé(s) pour repartir l'écoulement dudit courant longitudinalement sur une surface cylindrique (124) coaxiale à ladite bobine (111).
2. Aimant solénoïdal selon la revendication 1, caractérisé en ce qu'il comporte un unique conducteur tubulaire entourant ladite bobine, connecté en série par rapport à celle-ci.
3. Aimant solénoïdal selon la revendication 1, caractérisé en ce qu'il comporte plusieurs tiges longitudinales (119) régulièrement réparties sur ladite surface cylindrique (124) et en ce que ces tiges sont connectées entre elles de façon à définir une sorte de cage d'écureuil, cette cage étant connectée en série, dans son ensemble, avec ladite bobine, de façon que lesdites tiges soient parcourues par des fractions sensiblement égales du courant total qui traverse ladite bobine.
4. Aimant selon la revendication 3, du type dans lequel ledit empilement de disques (113) est maintenu au moyen de tirants isolés, caractérisé en ce que lesdites tiges longitudinales sont constituées par au moins certains desdits tirants (119).
5. Aimant selon la revendication 3 ou 4, du type dans lequel ledit empilement de la ou chaque bobine est serré entre deux plateaux d'extrémité conducteurs, caractérisé en ce que les tiges longitudinales voisines du plateau d'extrémité (118b) situées à l'autre extrémité axiale dudit aimant sont électriquement connectées à ce plateau pour assurer la répartition du courant entre lesdites tiges longitudinales (119).
6. Aimant selon la revendication 5, caractérisé en ce que des tiges longitudinales précitées traversent le plateau d'extrémité (118a) situé à la première extrémité axiale citée de l'aimant tout en étant électriquement isolées de celui-ci et en ce que ce plateau d'extrémité comporte autant de bornes de raccordement (125) que de telles tiges (119) situées respectivement au voisinage de chacune d'elles pour permettre l'alimentation électrique dudit aimant à partir d'un nombre égal de paires de fils conducteurs parallèles.
7. Aimant selon la revendication 6, caractérisé en ce que chaque paire de fils conducteurs est un câble (126) à structure coaxiale.
8. Aimant selon la revendication 6 ou 7, comportant plusieurs bobines alignées le long d'un axe commun, caractérisé en ce que deux bobines voisines sont connectées par autant de câbles coaxiaux qu'il y a de tiges précitées.
9. Aimant bobiné selon l'une des revendications précédentes, caractérisé en ce que chaque extrémité de spire comporte un embrèvement et que deux spires adjacentes sont reliées bout à bout par soudure de tels embrèvements (122, 123) de formes complémentaires.
10. Aimant bobiné selon l'une des revendications précédentes, caractérisé en ce que lesdits disques conducteurs (113) sont en aluminium et que l'isolant précité est réalisé par une anodisation de ces anneaux.
EP85905842A 1984-12-14 1985-11-29 Aimant solenoidal sans fer Expired EP0203952B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8419193A FR2574982B1 (fr) 1984-12-14 1984-12-14 Aimant solenoidal sans fer
FR8419193 1984-12-14

Publications (2)

Publication Number Publication Date
EP0203952A1 EP0203952A1 (fr) 1986-12-10
EP0203952B1 true EP0203952B1 (fr) 1989-11-02

Family

ID=9310627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85905842A Expired EP0203952B1 (fr) 1984-12-14 1985-11-29 Aimant solenoidal sans fer

Country Status (5)

Country Link
US (1) US4808956A (fr)
EP (1) EP0203952B1 (fr)
DE (1) DE3574073D1 (fr)
FR (1) FR2574982B1 (fr)
WO (1) WO1986003881A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618016A1 (fr) * 1987-07-10 1989-01-13 Thomson Cgr Dispositif de refroidissement d'un aimant resistif
FR2621731B1 (fr) * 1987-10-09 1990-02-09 Thomson Cgr Bobine, aimant comprenant une telle bobine, dispositif d'imagerie par rmn comportant un tel aimant et procede de realisation d'un tel aimant
JPH0245902A (ja) * 1988-08-08 1990-02-15 Kanazawa Univ 交流強磁場用成層渦電流型コイル
US4965521A (en) * 1989-08-11 1990-10-23 Spectroscopy Imaging Systems Method and apparatus for compensating eddy current effects in a magnetic resonance device having pulsed magnetic field gradients
US6876288B2 (en) * 2002-03-29 2005-04-05 Andrey V. Gavrilin Transverse field bitter-type magnet
DE102009016042B4 (de) * 2009-04-02 2011-02-10 Randolf Hoche Voice-Coil-Actuator und Verfahren zum Herstellen desselben
ITRM20130711A1 (it) * 2013-12-20 2015-06-21 Imaging Technology Abruzzo S R L Apparato e metodo di imaging simultaneo tramite risonanza di spin elettronico e risonanza di spin nucleare
CN113539638A (zh) * 2021-07-06 2021-10-22 辽宁意思德电气有限公司 一种大容量电感

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281737A (en) * 1963-09-26 1966-10-25 Gen Electric Superconductive solenoid
DE3133432A1 (de) * 1981-08-24 1983-03-03 Siemens AG, 1000 Berlin und 8000 München Hochfrequenzfeld-einrichtung in einer kernspinresonanz-apparatur
DE3375345D1 (en) * 1982-01-15 1988-02-18 Fdx Patents Holding Co Composite coils for toroidal field coils and method of using same
US4517516A (en) * 1983-04-08 1985-05-14 Varian Associates, Inc. NMR Probe coil form structure
US4694255A (en) * 1983-11-04 1987-09-15 General Electric Company Radio frequency field coil for NMR
GB8334374D0 (en) * 1983-12-23 1984-02-01 Picker Int Ltd Coil arrangements
GB8405066D0 (en) * 1984-02-27 1984-04-04 Picker Int Ltd Coil arrangements
US4500860A (en) * 1984-07-05 1985-02-19 General Electric Company Winding support and method for NMR magnet axisymmetric correction coils
FR2567647B1 (fr) * 1984-07-10 1987-12-18 Thomson Cgr Dispositif de creation et/ou de reception d'un champ magnetique alternatif pour appareil exploitant la resonance magnetique nucleaire

Also Published As

Publication number Publication date
EP0203952A1 (fr) 1986-12-10
FR2574982A1 (fr) 1986-06-20
US4808956A (en) 1989-02-28
WO1986003881A1 (fr) 1986-07-03
FR2574982B1 (fr) 1987-01-16
DE3574073D1 (de) 1989-12-07

Similar Documents

Publication Publication Date Title
EP0222786B1 (fr) Cyclotron
EP0203952B1 (fr) Aimant solenoidal sans fer
EP0381580B1 (fr) Dispositif d'alimentation haute tension pour tube à rayons X
EP0017529A1 (fr) Condensateur céramique de puissance
EP0600759A1 (fr) Machine électromagnétique à induction linéaire à répartition de flux magnétique optimisée et utilisation
WO1986003882A1 (fr) Aimant solenoidal a champ magnetique homogene
FR2675629A1 (fr) Cathode pour tube a rayons x et tube ainsi obtenu.
EP1432073B1 (fr) Antenne colinéaire du type coaxial alterné
EP0215832B1 (fr) Aimant solenoidal a haute homogeneite de champ magnetique
EP0221921B1 (fr) Aimant solenoidal sans fer
EP0221920B1 (fr) Aimant solenoidal a haute homogeneite de champ magnetique
FR2462712A1 (fr) Dispositif de mesure de tensions alternatives elevees dans des installations de distribution haute tension
EP0794545B1 (fr) Interrupteur ou disjoncteur électrique sous vide
EP0005396B1 (fr) Circuit hyperfréquence à cavité résonnante équipée de paires de diodes périphériques
EP0667628B1 (fr) Bobine supraconductrice à transition générale
EP0678886A1 (fr) Disjoncteur à moyenne ou haute tension
EP0737988A1 (fr) Bobine fixe d'induction d'un lanceur à induction solénoidal, ainsi qu'un lanceur à induction solénoidal pourvu d'une telle bobine
WO1986005625A1 (fr) Aimant solenoidal a disques annulaires de type bitter
FR2670963A1 (fr) Generateur d'impulsions electriques, du type a inductance saturable.
FR2632804A1 (fr) Accelerateur electrostatique de particules, a fonctionnement en regime impulsionnel
FR2709369A1 (fr) Bobinage supraconducteur, notamment pour limiteur de courant.
FR2668387A1 (fr) Reacteur a decharges electriques de proximite notamment pour la production d'ozone.
BE864223A (fr) Generateur de haute tension compact et leger
CH361055A (fr) Moteur électrique universel à pôles saillants et à au moins deux vitesses
FR2856838A1 (fr) Transformateur redresseur moyenne haute frequence et dispositif d'alimentation en faisant application

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE GB NL

17Q First examination report despatched

Effective date: 19890201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC CGR SA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891020

Year of fee payment: 5

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3574073

Country of ref document: DE

Date of ref document: 19891207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901018

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911129

GBPC Gb: european patent ceased through non-payment of renewal fee