EP0203694B1 - Improved particle spray gun - Google Patents

Improved particle spray gun Download PDF

Info

Publication number
EP0203694B1
EP0203694B1 EP86302813A EP86302813A EP0203694B1 EP 0203694 B1 EP0203694 B1 EP 0203694B1 EP 86302813 A EP86302813 A EP 86302813A EP 86302813 A EP86302813 A EP 86302813A EP 0203694 B1 EP0203694 B1 EP 0203694B1
Authority
EP
European Patent Office
Prior art keywords
electrode
deflector
resistive
electrostatic
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86302813A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0203694A2 (en
EP0203694A3 (en
Inventor
John Sharpless
Alan J. Knobbe
Kenneth A. White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of EP0203694A2 publication Critical patent/EP0203694A2/en
Publication of EP0203694A3 publication Critical patent/EP0203694A3/en
Application granted granted Critical
Publication of EP0203694B1 publication Critical patent/EP0203694B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes

Definitions

  • This invention relates to particle spray equipment and more particularly to a particle spray gun for electrostatically applying coating particles to an ar- tide to be coated.
  • Coating applied electrostatically to an object to be coated can be either in the form of electrostatically charged solid particles, i.e., powder, or electrostatically charged liquid particles which have been atomized using a variety of well known techniques or principles, including air impingement atomization, airless or hydrostatic pressure atomization, and/or electrostatic atomization.
  • This invention is useful with both liquid and powder spray coating applications.
  • the particulate or powder is commonly conveyed to a spray device, often termed a "gun", by air under pressure and is then sprayed from an opening in the forward end, or nozzle, of the gun in the form of a powder-entrained air stream which is projected along a path from the gun toward the object to be coated.
  • a spray device often termed a "gun”
  • an electrical charge is preferably imparted to the particles by an electrode maintained at a high voltage which is mounted to the gun nozzle proximate to the path of the powder coating stream.
  • the charged particles are then electrostatically attracted toward the object to be coated which is held at electrical ground potential, enhancing the efficiency with which charged parti- des sprayed from the gun are deposited on the target article.
  • the article is generally conveyed through an oven where the powder coating material is heated and fused onto the surface of the article to permanently bond it thereto.
  • Electrostatic powder spray guns typically include a mechanical powder deflector mounted at the nozzle end of the gun.
  • the deflector is in the shape of a cone and is disposed axially in the flow path of the powder being sprayed from the gun, deflecting the powder into a conical spray pattern. That is, the deflector is impacted by the powder coating material being sprayed from the gun in the nozzle region and directs the powder radially outwardly to form a conical spray pattern.
  • Electrostatic liquid spray gun systems customarily include a source of pressurized liquid which conveys the liquid coating to the gun via a hose where it is emitted from the nozzle in a stream of atomized particles.
  • Atomization can be produced by impingement of the liquid stream with air in the region of the nozzle, which is known as air atomization.
  • the liquid coating can be highly pressurized such that upon exit from the nozzle atomization results, which is termed hydrostatic or airless atomization.
  • the liquid is subjected to electrostatic forces which effectively atomize the liquid.
  • transfer efficiency One of the objectives in the design of an electrostatic spray gun, either liquid or powder, is to maximize the efficiency with which charged coating parti- des sprayed from the gun are deposited on the article being coated. This is called the "transfer efficiency". It is generally believed by those skilled in the art that transfer efficiency can be increased by increasing the charge on the particles and/or by increasing the strength of the, electrostatic field between the gun and the article being coated.
  • U.S. Patent No. 4 027 050 describes an electrostatic spray coating apparatus comprising a particle spray device with an opening through which a stream of particles is sprayed in a path towards an article to be coated.
  • a plurality of conductors are arranged so that one of their ends extends into the opening, their other ends being connected to a high voltage source.
  • an electrostatic spray coating apparatus comprises a particle spray device having an opening therein from which a stream of particles is sprayed in a path in a forward direction toward an article to be electrostatically coated and an electrode comprising a substantial number of closely spaced electrode elements located immediately proximate but not extending significantly into the opening through which the particle stream passes to be to be electrostatically charged in its path toward the article to be coated, the electrode elements being connectable to an electrostatic voltage source for establishing a plurality of corona charging points to enhance transfer efficiency characterised in that a particle deflector constructed of electrically non-conductive material is located in the particle path for deflecting the par- tide stream, the deflector having a surface upon which the particle stream impinges and as a result thereof becomes deflected, the plurality of electrode elements being located proximate the deflector surface past which the deflected particle stream passes to be electrostatically charged in its path toward the article to be coated.
  • the deflector has a) a rear surface upon which the forwardly directed powder stream impinges and as a result thereof becomes deflected into the desired stream configuration, b) a front surface facing the forward direction, and c) a substantial number of electrode elements circumferentially spaced around the perimeter of the deflector which are connected to a high voltage source via associated resistive paths incorporated in the deflector. These electrode elements collectively function as the multi-point electrode to provide a plurality of corona charging points when the electrode is energized.
  • the multi-point electrode is in the form of a fibrous resistive sheet constructed from a material such as silicon carbide, which is incorporated in the deflector between the front and rear surfaces thereof to define as its periphery, which is proximate to the deflector periphery, a large number of radially arranged electrode elements which establish a plurality of corona charging points past which the deflected powder stream passes to be electrostatically charged as the powder particles are sprayed from the gun.
  • a fibrous resistive sheet constructed from a material such as silicon carbide
  • the resistive sheet located radially inwardly of the electrode elements functions as resistive paths incorporated in the deflector through which the electrode elements are energized from a suitable high voltage source. While a silicon carbide material is preferred for use as the resistive sheet in this embodiment, other fibrous resistive materials may also be suitable.
  • the peripheral edge of the silicon carbide sheet includes the ends of the many silicon carbide fibers forming the resistive sheet and these fiber ends form a multitude of radially arranged electrode elements which establish a plurality of corona charging points which charge the powder particles as they are sprayed.
  • This deflector structure is believed to both increase the charge transferred to the powder particles, and to increase the strength of the electrostatic field between the gun and the workpiece, to enhance coating transfer efficiency.
  • the deflector structure particularly the resistive paths and plural circumferentially-arranged electrode elements is relatively inexpensive, easy to manufacture, and durable. It is also readily replaceable should such become necessary.
  • the silicon carbide sheet preferably has a centrally disposed high voltage terminal region remote from the edge thereof for establishing an electrically resistive current flow path through the sheet between the central terminal region whereat high voltage is supplied and the peripheral edge whereat corona charging of the powder particles occurs from the many silicon carbide fiber ends.
  • This resistive path constitutes a relatively large resistor and functions to minimize ignition hazards due to inadvertent discharge of electrical energy capacitively stored in the spray coating system of which the gun is a major component.
  • the circumferentially spaced electrode elements around the deflector perimeter are in the form of discrete, fixed electrodes in the form of electrically conductive needles or wires which project radially outwardly from the perimeter of the deflector.
  • Each of the discrete electrodes is connected to a high voltage source via a discrete resistor embodied in the deflector. If desired the radially disposed electrodes can be made flush with the deflector periphery in lieu of projecting outwardly therefrom, thereby reducing the likelihood of electrode damage.
  • the deflector is provided with a relatively narrow silicon carbide ribbon or thread, which function as circumferentially arranged electrode elements, via discrete resistors embodied in the deflector which are radially disposed and circumferentially spaced within the deflector.
  • the resistors function to minimize ignition hazards due to inadvertent electrical energy discharges, thereby enhancing the safety of the gun.
  • the nozzle located at the forward end of the non-conductive gun barrel is provided with an electrostatic shield.
  • the shield is disposed outwardly and rearwardly of the perimeter of the deflector whereat the corona charging points are located which electrostatically charge the deflected powder stream as it passes through the annular opening between the nozzle and the conically- shaped deflector which is radially disposed in the powder flow path.
  • the electrostatic shield is formed by flaring the end of the nozzle in the region surrounding the forward end of the conical deflector, particularly the perimeter thereof from which extend the corona charging points. In practice the electrostatic shield has been found to significantly improve the transfer efficiency when compared to a similarly-constructed spray device which does not have the electrostatic shield.
  • the corona zone proximate the periphery of the deflector is approximately midway between the grounded gun handle or mounting member which is located rearwardly thereof and the electrically-grounded object being coated which is located forwardly thereof.
  • the distance between the grounded object being coated and the corona charging zone is approximately ten inches, which is approximately the same as the distance between the corona zone at the gun nozzle and the rearwardly-located electrically-grounded gun handle or mounting member.
  • the electrically-charged coating particles issuing from the gun nozzle are as close to the grounded article being coated as is the grounded gun handle or mounting member, with the result that some charged particles are electrostatically attracted to the grounded gun handle or mounting member, impairing the efficiency of the coating transfer process.
  • the gun handle or mounting hardware, provides an attraction to some of the charged particles
  • a corona current path is set up between the deflector and the grounded handle which causes the available electrical energy for charging at the deflector to be reduced by parasitic discharge.
  • This reduction in available charging energy at the deflector results in a corresponding reduction in transfer efficiency. Therefore, by inclusion of the electrostatic shield of this invention, the effect of the electrically-grounded gun handle or mount in terms of attracting electrostatically- charged particles and of providing a parasitic current leakage path is substantially reduced, with the result that transfer efficiency is significantly increased. This is a substantial improvement in transfer efficiency in comparison to the result if the electrostatic shielding in the nozzle surrounding the deflector periphery is omitted.
  • the electrostatic shield can be used advantageously with guns, manual or automatic, which are designed to spray coating particles of either the atomized liquid or powder type.
  • the multi-point electrode may be in the form of a disc with a sawtooth perimeter.
  • the entire disc may be fabricated of resistive, semiconductive or conductive material.
  • the disc may be of a composite construction with an inner circular section, and an outer annular section with teeth at the periphery.
  • the inner and/or outer sections may be conductive, resistive, or semiconductive solid sheet, fibrous or mesh material.
  • a series of electrical wires connected to the annular section may be used to transport high voltage to the toothed periphery thereof.
  • the multi-point electrode may be a disc-shaped mesh of conductive, semiconductive, or resistive wire, or nonconductive wire having a cladding of conductive, semiconductive, or resistive material.
  • the deflector is fabricated of injection molded material containing silicon carbide or other resistive fibers, particularly at the perimeter thereof, which function as multi-point electrodes.
  • the deflector may also include semiconductive, resistive, or conductive material to transport the high voltage to the silicon carbide fibers at the deflector perimeter.
  • a multi-point electrode could be provided by mounting a large number of electrodes in the deflector perimeter to function as multiple electrodes.
  • the multi-point electrode aspect while described in connection with a powder gun having a deflector, is also useful in atomized liquid spray devices.
  • the multi-point electrode is mounted in the nozzle region proximate the path of atomized liquid particles being emitted from the nozzle toward the article to be coated in much the same manner that the multi-point electrode is mounted in the deflector of a powder gun proximate the path of the emitted powder particles.
  • the spray device 10 is in the form of a gun having an electrically grounded conductive handle 11 and a nonconductive or insulative barrel 12 which at its forward end terminates in a flared nozzle 14 having a central flared opening 15 from which projects a combined powder deflector and electrode charging assembly 16.
  • the preferred embodiment of the spray gun can be constructed in accordance with the teachings of pending United States patent application Serial No. 681,501, filed December 13,1984, entitled "Improved Powder Spray Gun", in the name of Thomas E. Hollstein, David E. O'Ryan, and Joseph C. Waryu, assigned to the assignee of the present application.
  • the entire disclosure of application Serial No. 681,501 is incorporated herein by reference.
  • the barrel 12 includes an internal powder entry chamber 17 which at its rearward end communicates with a powder-entrained pressurized air supply hose 13a via a port 13 in the barrel wall.
  • the internal powder entry chamber 17 at its forward end communicates with the nozzle opening 15 via a tapered bore 19 and intermediate chamber 21.
  • a nonconductive mounting stub 22 for the deflector and electrode assembly 16 extends axially and forwardly from a nonconductive spider 25 located within the intermediate chamber 21.
  • Extending axially and rearwardly from the spider 25 is an electrically insulated conductive path 29 incorporating a conductor 76 (to be described) which extends through a stepped diameter bore 30a and 30b where it makes an appropriate connection with an insulated high voltage supply cable 26 which passes through the handle 11 exiting the butt thereof at 24 where it connects to a remote high voltage electrostatic power supply (not shown).
  • the handle 11 is provided with a movable trigger 34 which when activated supplies pressurized powder-entrained air to the powder entry chamber 17 via hose 13a. Trigger 34 also energizes the remote high voltage supply to provide high voltage electrostatic power to an electrical conductor 70 (later described) which is axially disposed within the powder deflector 16.
  • the conductor 70 is connected to the high voltage supply by high voltage cable 24, 26 and the electrically insulated conductive path 29 which passes through the mounting stub 22 and spider 25.
  • the powder-entrained air passes under pressure from the entry chamber 17 successively through the tapered bore 19 and intermediate chamber 21 to the flared nozzle opening 15 whereat it is diverted into a conical path and electrostatically charged by the electrode, to be described, incorporated in the powder deflector and electrode charging assembly 16.
  • the powder exits the nozzle opening in a generally conical pattern of electrostatically charged particles for impingement upon an electrically grounded article (not shown) to be coated.
  • the powder deflector and electrode charging assembly 16 is generally conical in shape having a circular flat front surface 40 and a conical rear surface 42. Front surface 40 could also be convex or concave, if desired.
  • a resistive sheet electrode in the form of a circular wafer or disc 44 is located in a boundary region between the front and rear surfaces 40 and 42. The edge 46 of the resistive electrode sheet or disc 44 is preferably flush with the edges 40' and 42' of the front and rear surfaces 40 and 42.
  • the powder deflector and electrode charging assembly 16 is a composite or sandwich assembly which includes the intermediate resistive electrode disc 44, a circular insulating disc 40a having a diameter equal to that of the resistive electrode disc 44, and a conical insulating section 42a the rearward surface of which constitutes the powder deflecting conical surface 42.
  • the conical section 42a, resistive electrode disc 44, and disc 40a can be permanently assembled to form an integral unit utilizing commercially available adhesives.
  • the resistive sheet could be molded into the deflector.
  • the resistive electrode disc 44 is fabricated of nonwoven silicon carbide fabric embodying randomly oriented silicon carbide fibers or filaments in a resin matrix.
  • the silicon carbide fibers of filaments from which the fabric is made have the physical and electrical characteristics of Nicalon fiber of the general type disclosed in United States Patent No. 4 100 233 and commercially available from Nippon Carbon Co., Ltd., Tokyo, Japan, and Dow Corning, Midland, Michigan.
  • the silicon carbide fibers are heat treated to provide a specific resistivity of 1 X 10 3 ohm-cm., and a fiber diameter in the approximate range of 10-15 microns.
  • Nicalon continuous silicon carbide fiber in one commercially available form, is physically characterized as follows:
  • the specific resistivity of Nicalon silicon carbide fiber which is uniform throughout the fiber and independent of fiber flexure, can be varied by heat treating the fiber at different temperatures subsequent to spinning.
  • the variation in specific resistivity as a function of heat treating temperature can vary by a factor of approximately 10 4 from approximately 10 2 ohm-cm to 106 ohm-cm.
  • the Nicalon continuous silicon carbide fibers can be formed into woven fabric, as well as nonwoven fabric of random fiber orientation.
  • the resistive silicon carbide disc 44 can be fabricated of resin impregnated Nicalon fabric composite, glass Nicalon fabric composite, and/or Nicalon fibers in a ceramic matrix.
  • the insulative front disc 40a and insulative conical deflector 42a can be fabricated of a variety of nonconductive materials including glass-filled Teflon plastic, Delrin plastic, and the like.
  • the deflector/electrode assembly 16 is mounted to the stub 22 by the axial engagement of a reduced diameter section 22a at the forward end of the mounting stub 22 and a blind hole or bore 64 formed in the rear central portion of the conical deflector 42a.
  • the bore 64 and reduced diameter end 22a of the stub 22 are dimensioned to provide a snug sliding fit therebetween.
  • Conductive path 29 includes an electrical conductor (or electrode) 70 which projects axially from the end of the mounting stub 22 into a suitably provided axial passage in the conical deflector section 42a to establish electrical contact with the resistive disc 44.
  • the conductor 70 is connected to the electrically conductive core of the cable 26 via a resistor 75 and electrical conductor 76 which constitute further elements of conductive path 29, and which are in electrical series circuit arrangement between the conductor 70 and the conductive core of the high voltage cable 26.
  • the trigger 34 when the trigger 34 is activated, powder-entrained pressurized air is introduced into the internal powder entry chamber 17 via the hose 13a whereupon it flows through the tapered bore 19 into the intermediate chamber 21 where it passes through the spider 25 and impinges on the rear surface 42 of the conical deflector 42a which causes the path of the powder to deflect and form a conical path as it exits the flared opening 15 of the nozzle 14 toward the article or target substrate to be coated (not shown). Activation of the trigger 34 also energizes a remote power supply (not shown) to cause high voltage electrostatic energy to be supplied to the resistive charging disc 44 via the electrical path previously described.
  • a remote power supply not shown
  • a corona discharge is produced at the multitude of resistive material fiber ends 46a located around the perimeter 46 of the resistive charging disc 44, causing electrostatic charge to be imparted to the stream of powder as it exits the flared opening 15 of nozzle 14 subsequent to deflection by the rear concial deflecting surface 42.
  • the nonconductive, flared outer portion of the nozzle 14, which is located outwardly and rearwardly of the corona charging zone proximate perimeter 46, functions as an electrostatic shield which effectively shields electrostatically-charged coating particles at the exit end of the nozzle from the electrically grounded handle 11, reducing the tendency of a parasitic leakage current to be set up between the deflector and the handle 11.
  • the grounded handle 11 would tend to electrostatically attract the charged coating particles, setting up an undesirable leakage current, and thereby reducing the charging energy available at the deflector and the transfer efficiency. This is particularly true in view of the fact that the grounded handle is typically located at approximately the same distance from the corona charging zone, albeit rearwardly thereof, as the object being coated which is electrically grounded and located forwardly of the gun nozzle. Tests have shown that removal of the portion of the flared nozzle 14 located radially beyond the perimeter 46 of the deflector, which in turn eliminates the electrostatic shielding between the deflector perimeter and the electrically-grounded handle 11, significantly reduces the transfer efficiency.
  • the forward extremity or lip 14a of the nozzle 14 is located slightly rearwardly relative to the edge 46 of the resistive electrode sheet 44, the position of the lip 14a relative to the electrode sheet edge 46 can be varied, such as by locating the flared nozzle mouth or lip 14a radially opposite the electrode sheet edge 46a or forwardly thereof (leftwardly as viewed in Figure 2).
  • flared nozzle mouth or lip 14a Regardless of the exact location of flared nozzle mouth or lip 14a relative to the edge 46 of the resistive sheet 44, at least a portion of the nonconductive flared nozzle 14a must be located radially outwardly and rearwardly of the corona charging zone proximate edge 46 of resistive sheet 44 such that electrostatic shielding is provided between the electrostatic charging corona zone and the electrically-grounded handle 11.
  • the electrostatic shield is described in connection with its use in a powder gun. As noted, it can also be used to advantage in a liquid coating gun wherein charged atomized paint particles are proximate the gun nozzle.
  • the electrostatic spray gun of this invention has been found to prevent ignition when subjected to standard ignition tests performed by Nord- son Corporation, assignee of the present application.
  • the disc 44 provides a resistance of 1.0 Megohm - 1.5 Megohm when measured between the center which contacts conductor 70 and the periphery 46.
  • the composite or sandwich construction of the combined powder deflector and electrode charging assembly 16 is extremely durable and inexpensive, and yet is very effective both as a deflector and as an electrostatic charging electrode configuration.
  • the charging disc can be mounted on the front surface 40, such that it faces forward and is exposed, rather than be sandwiched between member 40a and 42a.
  • the sandwich construction is preferred.
  • the deflector 16 is principally fabricated of insulative sections 40a and 42a. If desired, the deflector could be fabricated of resistive or semiconductive material, or possibly even conductive material, providing the multi-point electrode is located at the periphery thereof. With such a construction, suitable resistance is preferably provided in series with the multi-point electrode to avoid unsafe electrical discharges of electrical energy stored in the gun should the multi-point electrode be accidentally grounded.
  • the nonconductive deflector 100 is seen to have the same general overall shape as the deflector of the embodiment of Figures 1-4. More particularly, the deflector 100 has a rear surface 102 against which the particle-entrained air stream is directed in a generally axial (horizontally as viewed in Figure 6) direction as it exits from the nozzle of the gun in a forward (leftwardly as viewed in Figure 6) direction.
  • the deflector 100 also includes a generally circular flat front surface 104, which if desired could be either concave or convex.
  • Embodied in the deflector 100 and projecting radially outwardly from the periphery 106 thereof in a direction transverse to the deflected path of the powder stream are a plurality of electrode elements 108, for example, in the form of electrically conductive wires or needles.
  • the electrode elements 108 of which there are six shown in the preferred embodiment of Figures 5 and 6, although a lesser or greater number can be used, are circumferentially spaced at substantially equal intervals around the periphery 106 of the deflector.
  • the resistors 112 which are incorporated in the body of the deflector between front and rear surfaces 104 and 102, have a resistance, in the presently preferred embodiment, of, for example, 10 Megohms, although other resistance values may be used, if desired.
  • the radially projecting electrodes 108 could be made flush with the perimeter 106 of the deflector 100, thereby avoiding the possibility of damage to the electrodes.
  • deflector 130 includes a front surface 134, a rear surface 132, and a perimeter 136.
  • the deflector 130 shown in Figures 7 and 8 incorporates in its body a plurality of resistive circuit paths in the form of radially disposed discrete resistors 142 which at their inner end have leads 142b which are connected in common to an axially disposed electrical conductor 144 which in turn is connected to a remote high voltage source (not shown).
  • the radially outward ends of resistors 142 have leads 142a which terminate in a circumferential groove 148 formed in the periphery 136 of the deflector 130.
  • Located in the groove 148 is a circumferentially-disposed silicon carbide thread or narrow ribbon 150.
  • resistor leads 142a are electrically connected with their respectively proximately located segments 130a of the silicon carbide thread 150. If desired, a resistive material other than silicon carbide can be used for the peripherally located ribbon or thread 150.
  • corona charging takes place at the radially outboard ends of the electrodes 108 past which the powder passes on its path toward the object to be coated.
  • corona occurs at the point where the electrode joins the periphery 106 of the deflector.
  • corona occurs at random locations around the surface of the thread 150. If the thread 150 is fabricated of intertwined fibers of short length relative to the circumference of the deflector perimeter 106, corona will most probably occur where the fibers terminate since the ends thereof 150a (see Figure 8) function as electrodes to form corona charging points. If the silicon carbide thread does not contain short lengths of fiber with plural randomly located ends, corona will occur at randomly located points around the periphery of the silicon carbide thread 150, the location of which points will change more or less continuously.
  • the thread 150 in deflector groove 148 is effectively a continuous circular electrode comprised of six arcuate electrode elements or segments which are interconnected end-to-end.
  • the continuous circular electrode 130 functions in a manner analagous to that of the periphery 46 of the disc-shaped resistive sheet 44 of Figures 1-4 which, in effect, at its periphery is also a continuous circular electrode comprising plural peripheral arcuate electrode elements or segments connected end-to-end.
  • the multi-point electrode can take the form of a sawtooth edge 200 on the periphery of a disc 202, as shown in Figure 9.
  • the disc may be fabricated of the same material throughout, such as a resistive, semiconductive, or conductive material.
  • the disc 202' may be a composite having an annular outer section 203 with teeth 200' at the periphery, and an inner circular section 205, as shown in Figure 10.
  • the inner section 205 and/or the outer section 203 may be resistive, semiconductive, or conductive.
  • disc 44 instead of being entirely of silicon carbide fabric, or other resistive material, as shown in Figure 4, could be of composite construction as shown in Figure 11. More particularly, the resistive fabric 210 could be annular shaped, with the remainder of the disc 211 comprising an inner circular disc 212 of resistive, conductive, or semiconductive solid sheeting.
  • the electrode could be constructed of screen or mesh, with the strands thereof being resistive, conductive, or semiconductive wire or nonconductive wire clad with resistive, conductive, or semiconductive material.
  • Figure 12 depicts an insulative gun barrel 230 having a longitudinal circular cross-sectional bore 231 terminating in an opening 232 in face 233 from which is emitted coating particles.
  • an insulative column 234 Located coaxially within the bore 231 is an insulative column 234, at the outer end of which a multi-point electrode 235 is mounted.
  • Electrode 235 may alternatively be constructed like any of the electrode configurations or structures shown in Figures 4-11. In the Fig. 12 embodiment, like Figs. 4-11, electrode 235 has a peripheral edge 235' which includes multiple electrodes projecting therefrom.
  • the electrode 235 connects to a source of electrostatic voltage via an electrical conductor (not shown) located with column 234.
  • the device of Figure 12 provides a circular spray pattern.
  • Figure 13 depicts an insulative barrel 240 having an upper rectangular cross-sectional longitudinal bore 241 and a lower rectangular cross-sectional longitudinal bore 242 separated by an insulative longitudinal column 243.
  • Mounted on the outer end of column 243 is an electrode 244 having an upper multi-point electrode edge 244 and a lower multi- point electrode edge 245 for charging coating particles emitted from upper and lower bores 243 and 242, respectively.
  • Electrode 244 is constructed similarly to electrode 235 of Figure 12.
  • the electrode 244 connects to a high voltage supply via an electrical conductor (not shown) within column 243.
  • the embodiment of Figure 13 provides a flat fan- shaped spray pattern.
  • inventions of Figures 5-13 like the embodiment of Figures 1-4, provide improved transfer efficiency due to the multi-point electrode configuration, and constitutes electrode assemblies which are inexpensive and simple in construction.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Coating By Spraying Or Casting (AREA)
EP86302813A 1985-04-18 1986-04-15 Improved particle spray gun Expired EP0203694B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US72439285A 1985-04-18 1985-04-18
US724392 1985-04-18
US79135285A 1985-10-25 1985-10-25
US791352 1985-10-25

Publications (3)

Publication Number Publication Date
EP0203694A2 EP0203694A2 (en) 1986-12-03
EP0203694A3 EP0203694A3 (en) 1987-01-07
EP0203694B1 true EP0203694B1 (en) 1989-07-05

Family

ID=27110970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86302813A Expired EP0203694B1 (en) 1985-04-18 1986-04-15 Improved particle spray gun

Country Status (8)

Country Link
EP (1) EP0203694B1 (da)
JP (1) JPH0724794B2 (da)
KR (1) KR940006020B1 (da)
AU (1) AU580147B2 (da)
CA (1) CA1254030A (da)
DE (1) DE3664185D1 (da)
DK (1) DK175486A (da)
IN (1) IN166961B (da)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819879A (en) * 1985-10-25 1989-04-11 Nordson Corporation Particle spray gun
EP0236794B1 (de) * 1986-03-13 1991-01-02 ITW Gema AG Elektrostatische Sprüheinrichtung für Beschichtungspulver
FR2620354B2 (fr) * 1987-02-12 1990-01-05 Sames Sa Dispositif de projection electrostatique de produit en poudre
US4784331A (en) * 1987-05-27 1988-11-15 Nordson Corporation Electrostatic spray gun device and cable assembly
US4811898A (en) * 1987-09-21 1989-03-14 Nordson Corporation Electrostatic powder spray gun with adjustable deflector and electrostatic shield
WO1991006376A1 (en) * 1989-11-06 1991-05-16 Frederick David Haig Spray gun with corona and tubular electrodes
DE59800278D1 (de) * 1998-08-07 2000-10-26 Abb Research Ltd Pulversprüheinrichtung mit interner und externer Aufladung
US20040256503A1 (en) * 2003-05-08 2004-12-23 Young Roy Earl Shielded electrode
DE102011055660B4 (de) * 2011-11-23 2013-09-05 P+S Pulverbeschichtungs- Und Staubfilteranlagen Gmbh Verfahren zum Ausbringen von Pulver mittels einer Pulversprühpistole und Pulversprühpistole zur Durchführung des Verfahrens
WO2023232199A2 (de) * 2022-06-03 2023-12-07 P+S Pulverbeschichtungs- Und Staubfilteranlagen Gmbh Verfahren zum ausbringen von pulver und pulversprühdüse zur durchführung des verfahrens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR92033E (fr) * 1967-03-22 1968-09-13 Sames Mach Electrostat Appareil nouveau et perfectionné pour le poudrage électrostatique d'objets
US3327948A (en) * 1964-07-07 1967-06-27 Cosmic Inc Method of electrostatic coating including velocity reduction
FR2172612A5 (da) * 1972-02-18 1973-09-28 Air Ind
US4027050A (en) * 1975-07-10 1977-05-31 Frederic David Haig Method and apparatus for electrostatic coating
CH598871A5 (da) * 1975-07-29 1978-05-12 Air Ind
US4627903A (en) * 1982-07-26 1986-12-09 Exxon Research & Engineering Company Electrode for an electrostatic atomizing device
DE3412694A1 (de) * 1983-04-07 1984-10-11 Kopperschmidt-Mueller GmbH & Co KG, 7057 Winnenden Verfahren und vorrichtung zum elektrostatischen aufspruehen von pulverteilchen auf eine zu beschichtende oberflaeche
JPS6053355U (ja) * 1983-09-21 1985-04-15 トリニティ工業株式会社 静電塗装装置

Also Published As

Publication number Publication date
IN166961B (da) 1990-08-11
DK175486A (da) 1986-10-19
JPS6297654A (ja) 1987-05-07
CA1254030A (en) 1989-05-16
KR940006020B1 (ko) 1994-07-02
EP0203694A2 (en) 1986-12-03
DK175486D0 (da) 1986-04-17
DE3664185D1 (en) 1989-08-10
JPH0724794B2 (ja) 1995-03-22
AU5579086A (en) 1986-10-23
KR860007968A (ko) 1986-11-10
EP0203694A3 (en) 1987-01-07
AU580147B2 (en) 1989-01-05

Similar Documents

Publication Publication Date Title
US4819879A (en) Particle spray gun
US4576827A (en) Electrostatic spray coating system
US4765539A (en) Electrostatic spraying apparatus
CA1303345C (en) Apparatus for coating workpieces electrostatically
CA1082911A (en) Electrostatic spray coating apparatus
EP0203694B1 (en) Improved particle spray gun
EP0600397B1 (en) Nonincendive rotary atomizer
EP0379373A1 (en) Electrostatic rotary atomizing liquid spray coating apparatus
GB1589435A (en) Electrostatic spray coating gun
EP0059045A1 (en) Electrostatic powder spray gun nozzle
EP0230341B1 (en) Electrostatic spray nozzle
US5647543A (en) Electrostatic ionizing system
EP0644711B1 (en) Ionizing air gun
EP0381689B1 (en) Electrostatic powder spray gun with adjustable deflector and electrostatic shield
US4634058A (en) Powder spray gun
US5904294A (en) Particle spray apparatus and method
EP0837735B1 (en) Electrostatic nozzles for abrasive and conductive liquids
WO1988009221A1 (en) Electrostatic spray gun device and cable assembly
US4611762A (en) Airless spray gun having tip discharge resistance
US3793049A (en) Electrostatic coating method
US3446183A (en) Coating system
US3630442A (en) Electrostatic coating method and apparatus
CA1219437A (en) Rotary atomizer spray painting device
KR800001711Y1 (ko) 분사패턴의 조정이 가능한 분체도장용 분사노즐

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870109

17Q First examination report despatched

Effective date: 19870903

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3664185

Country of ref document: DE

Date of ref document: 19890810

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930316

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930329

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930430

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940430

BERE Be: lapsed

Owner name: NORDSON CORP.

Effective date: 19940430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 86302813.0

Effective date: 19941110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990315

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990319

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990323

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030618

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050415