EP0202979B1 - Polarization-selective reflecting device and method of making such a device - Google Patents

Polarization-selective reflecting device and method of making such a device Download PDF

Info

Publication number
EP0202979B1
EP0202979B1 EP86400808A EP86400808A EP0202979B1 EP 0202979 B1 EP0202979 B1 EP 0202979B1 EP 86400808 A EP86400808 A EP 86400808A EP 86400808 A EP86400808 A EP 86400808A EP 0202979 B1 EP0202979 B1 EP 0202979B1
Authority
EP
European Patent Office
Prior art keywords
reflector
antenna
metallic surfaces
polarisation
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86400808A
Other languages
German (de)
French (fr)
Other versions
EP0202979A1 (en
Inventor
Claude Aubry
Jean Bouko
Serge Drabowitch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0202979A1 publication Critical patent/EP0202979A1/en
Application granted granted Critical
Publication of EP0202979B1 publication Critical patent/EP0202979B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/195Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface wherein a reflecting surface acts also as a polarisation filter or a polarising device

Definitions

  • the main object of the invention is a device reflecting the electromagnetic waves of a polarization and its production method.
  • Specialized speed cameras are being added to modern speed cameras to collect additional information. It is essential to be able to separate electromagnetic waves belonging to various channels. It is known in Cassegrain type antennas to use crossed polarizations for the various channels. For example, a main channel works in horizontal rectilinear polarization while an additional channel works in vertical rectilinear polarization. Separation at reception takes place at an auxiliary reflector of the Cassegrain antenna, reflecting for one polarization and transparent for the other. Such reflectors were made with parallel metal wires. The parallel metal wires are embedded in a low loss dielectric, or form a screen. The known type of auxiliary reflector was not perfectly transparent for one channel without being perfectly reflective for the other. In theory, the system only works in the main planes, that is to say the horizontal plane and the vertical plane.
  • US Patent 4,144,535 describes a system which attempts to optimize simultaneously the transmission of electromagnetic waves having a first polarization and the reflection of waves having a second polarization orthogonal to the first. Thus, neither the reflection nor the transmission are completely optimized.
  • the device according to the present invention is made perfectly reflective for one of the polarizations. So the addition of an additional lane to an existing radar does not in any way disturb its operation. However, it should be noted that the reflector according to the invention is not perfectly transparent for the electromagnetic waves belonging to the additional channel.
  • FIG 1 the principle of embodiment of a reflector 1 according to the invention is illustrated.
  • an orthonormal reference frame 2 O, x , y , z The axis of z is the axis of propagation of electromagnetic energy.
  • the origin O of the reference corresponds for example to the opening of a primary source.
  • the primary source not shown is for example a rectangular monopolarization horn.
  • the opening of the primary source is the seat of uniform illumination in polarization, the electric field being, for example, parallel to the axis Ox.
  • the field radiated in space by such a source is at any point parallel to the axis Ox.
  • the lines of electric fields are circles 4 included in horizontal planes.
  • a straight line 5 passes through the origin O and through a point 42 of the part 41 of the circle 4.
  • the angle formed between the line 5 and the axis Oy.
  • the metallizations are carried out successively for a series of horizontal circles 4 belonging to the sphere 3.
  • the metallizations are for example wires of round section.
  • the wires are included in a dielectric material.
  • the diameter of the wires, their spacing and the thickness of the dielectric are chosen in a manner known to those skilled in the art. This choice is the same as for the known type of reflector with parallel metallic wires.
  • metallic surfaces are produced by depositing metallic layers on a dielectric. This realization implements the same techniques as those of the realization of printed circuits.
  • the auxiliary reflector 1 is a hyperbolic reflector.
  • the current lines obtained on the reflector 1 are sections of this reflector by the apex cones O resting on the circles C. In the example illustrated in FIG. 1, these cones are cones of revolution whose apex is located at the focal point O of the hyperboloid of revolution 1.
  • the lines 6 of current induced in the auxiliary reflector 1 are the planar sections of this reflector.
  • FIG. 3 an exemplary embodiment of a radar antenna according to the invention can be seen.
  • the antenna of FIG. 3 comprises a first source 9 and a second source 15 of electromagnetic radiation.
  • the sources 9 and 15 are for example horns with rectangular opening. Sources 9 and 15 work in orthogonal polarizations between them.
  • the antenna also includes an auxiliary reflector 1 and a main reflector 74.
  • Source 9 corresponds to the main channel of the antenna illustrated.
  • the antenna is of the Cassegrain type, the waves 19 emitted for example in horizontal polarization are first of all reflected on the auxiliary reflector 1 then on the main reflector 74.
  • the reflector 1 is perfectly reflective for the waves emitted by the source 9.
  • the radiation source 15 corresponds to an additional channel added to the antenna.
  • the antenna behaves like a monoreflective antenna.
  • the radiation 115 emitted by the source 15, for example in vertical polarization, passes through the auxiliary reflector 1 before being reflected by the main mirror 74.
  • the auxiliary reflector 1 according to the invention does not constitute an obstacle and does not present any shadow effect for the radiation emitted by the source 15.
  • auxiliary reflector 1 for the channel corresponding to the source 9 does not make it perfectly transparent for the channel corresponding to the source 15. However, this is not very troublesome for an auxiliary channel.
  • the invention applies mainly to radars with several channels.

Description

L'invention a principalement pour objet un dispositif réfléchissant les ondes électromagnétiques d'une polarisation et son procédé de réalisation.The main object of the invention is a device reflecting the electromagnetic waves of a polarization and its production method.

On adjoint aux radars modernes des voies spécialisées permettant de recueillir des informations supplémentaires. Il est essentiel de pouvoir séparer les ondes électromagnétiques appartenant à diverses voies. Il est connu dans les antennes de type Cassegrain d'utiliser des polarisations croisées pour les diverses voies. Par exemple, une voie principale travaille en polarisation rectiligne horizontale tandis qu'une voie supplémentaire travaille en polarisation rectiligne verticale. La séparation à la réception s'effectue au niveau d'un réflecteur auxiliaire de l'antenne Cassegrain, réfléchissant pour une polarisation et transparent pour l'autre. De tels réflecteurs étaient réalisés avec des fils métalliques parallèles. Les fils métalliques parallèles sont noyés dans un diélectrique à faible perte, ou constituent un grillage. Le réflecteur auxiliaire de type connu n'était pas parfaitement transparent pour une voie sans pour autant être parfaitement réfléchissant pour l'autre. En effet théoriquement le système ne fonctionne que dans les plans principaux c'est-à-dire le plan horizontal et le plan vertical.Specialized speed cameras are being added to modern speed cameras to collect additional information. It is essential to be able to separate electromagnetic waves belonging to various channels. It is known in Cassegrain type antennas to use crossed polarizations for the various channels. For example, a main channel works in horizontal rectilinear polarization while an additional channel works in vertical rectilinear polarization. Separation at reception takes place at an auxiliary reflector of the Cassegrain antenna, reflecting for one polarization and transparent for the other. Such reflectors were made with parallel metal wires. The parallel metal wires are embedded in a low loss dielectric, or form a screen. The known type of auxiliary reflector was not perfectly transparent for one channel without being perfectly reflective for the other. In theory, the system only works in the main planes, that is to say the horizontal plane and the vertical plane.

Le Brevet US 4 144 535 décrit un système qui essaie d'optimiser simultanément la transmission d'ondes électromagnétiques ayant une première polarisation et la réflexion d'ondes ayant une seconde polarisation orthogonale à la première. Ainsi, ni la réflexion ni la transmission ne sont complètement optimisées.US Patent 4,144,535 describes a system which attempts to optimize simultaneously the transmission of electromagnetic waves having a first polarization and the reflection of waves having a second polarization orthogonal to the first. Thus, neither the reflection nor the transmission are completely optimized.

Le dispositif selon la présente invention est rendu parfaitement réfléchissant pour l'une des polarisations. Ainsi l'adjonction d'une voie supplémentaire dans un radar existant ne perturbe en rien le fonctionnement de celui-ci. Toutefois, il faut signaler que le réflecteur selon l'invention n'est pas parfaitement transparent pour les ondes électromagnétiques appartenant à la voie supplémentaire.The device according to the present invention is made perfectly reflective for one of the polarizations. So the addition of an additional lane to an existing radar does not in any way disturb its operation. However, it should be noted that the reflector according to the invention is not perfectly transparent for the electromagnetic waves belonging to the additional channel.

L'invention a principalement pour objet un réflecteur d'ondes hyperfréquence comportant des surfaces métalliques et des surfaces non métalliques, principalement caractérisé par le fait qu'il est parfaitement réfléchissant pour les ondes d'une première polarisation et partiellement transparent pour les ondes d'une seconde polarisation orthogonale à la première polarisation, les surfaces métalliques se trouvent aux intersections de la surface du réflecteur avec un faisceau de droites passant par un foyer 0 dudit réflecteur et par un cercle horizontal inclus dans une sphère de centre 0 de telle manière que lesdites surfaces métalliques sont placées à l'intersection de la surface du réflecteur et des plans d'équation: ay ± cos α (cz-b²) = 0

Figure imgb0001
où y,z sont les coordonnées dans le repère O, x, y, z, a est la distance entre le sommet du réflecteur et l'intersection des asymptotes au réflecteur, c la demi-distance focale du réflecteur,
Figure imgb0002
α est un paramètre.The main object of the invention is a microwave wave reflector comprising metallic surfaces and non-metallic surfaces, mainly characterized by the fact that it is perfectly reflective for waves of a first polarization and partially transparent for waves of a second polarization orthogonal to the first polarization, the metal surfaces are at the intersections of the surface of the reflector with a beam of straight lines passing through a focal point 0 of said reflector and through a horizontal circle included in a sphere of center 0 in such a way that said metal surfaces are placed at the intersection of the reflector surface and the equation planes: ay ± cos α (cz-b²) = 0
Figure imgb0001
where y, z are the coordinates in the coordinate system O, x , y , z , a is the distance between the top of the reflector and the intersection of the asymptotes at the reflector, c the half focal length of the reflector,
Figure imgb0002
α is a parameter.

L'invention sera mieux comprise au moyen de la description ci-après et des figures annexées données comme des exemples non limitatifs parmi lesquels:

  • _ la figure 1 est un schéma explicatif;
  • _ la figure 2 est un schéma explicatif;
  • _ la figure 3 est un schéma d'un exemple de réalisation du dispositif selon l'invention.
The invention will be better understood by means of the description below and the appended figures given as nonlimiting examples among which:
  • _ Figure 1 is an explanatory diagram;
  • _ Figure 2 is an explanatory diagram;
  • _ Figure 3 is a diagram of an exemplary embodiment of the device according to the invention.

Sur les figures 1 à 3 les mêmes références désignent les mêmes éléments.In FIGS. 1 to 3, the same references designate the same elements.

Sur la figure 1, est illustré le principe de réalisation d'un réflecteur 1 selon l'invention. Sur la figure 1 on peut voir un repère orthonormé 2 O, x, y, z. L'axe de z est l'axe de propagation de l'énergie électromagnétique. L'origine O du repère correspond par exemple à l'ouverture d'une source primaire. La source primaire non illustrée est par exemple un cornet rectangulaire monopolarisation. L'ouverture de la source primaire est le siège d'une illumination uniforme en polarisation, le champ électrique étant, par exemple, parallèle à l'axe Ox. Le champ rayonné dans l'espace par une telle source est en tout point parallèle à l'axe Ox. Sur une sphère 3, de centre O, les lignes de champs électriques sont des cercles 4 inclus dans des plans horizontaux. Sur la figure 1, on a représenté en traits pleins la partie 41 du cercle 4 correspondant à une illumination réelle; ceci correspond à la directivité des sources de rayonnement.In Figure 1, the principle of embodiment of a reflector 1 according to the invention is illustrated. In Figure 1 we can see an orthonormal reference frame 2 O, x , y , z . The axis of z is the axis of propagation of electromagnetic energy. The origin O of the reference corresponds for example to the opening of a primary source. The primary source not shown is for example a rectangular monopolarization horn. The opening of the primary source is the seat of uniform illumination in polarization, the electric field being, for example, parallel to the axis Ox. The field radiated in space by such a source is at any point parallel to the axis Ox. On a sphere 3, of center O, the lines of electric fields are circles 4 included in horizontal planes. In Figure 1, there is shown in solid lines the part 41 of the circle 4 corresponding to an actual illumination; this corresponds to the directivity of the radiation sources.

Sur la figure 1 une ligne droite 5 passe par l'origine O et par un point 42 de la partie 41 du cercle 4. Notons α l'angle formé entre la droite 5 et l'axe Oy. En faisant décrire toute la partie 41 au point 42 du cercle 4 on obtient une portion de cône d'axe Oy. L'intersection 6 de ce cône avec le réflecteur 1 correspond aux métallisations à réaliser sur le réflecteur 1 pour le rendre parfaitement réfléchissant aux rayonnements de polarisation horizontale, le champ électrique parallèle à Ox.In FIG. 1, a straight line 5 passes through the origin O and through a point 42 of the part 41 of the circle 4. Let us note α the angle formed between the line 5 and the axis Oy. By making describe all the part 41 at point 42 of circle 4 we obtain a portion of cone with axis Oy. The intersection 6 of this cone with the reflector 1 corresponds to the metallizations to be carried out on the reflector 1 to make it perfectly reflecting radiation of horizontal polarization, the electric field parallel to Ox.

Les métallisations sont réalisées successivement pour une série de cercles 4 horizontaux appartenant à la sphère 3. Les métallisations sont par exemple des fils de section ronde. Dans une variante de réalisation du dispositif selon l'invention les fils sont inclus dans un matériau diélectrique. Le diamètre des fils, leur espacement ainsi que l'épaisseur du diélectrique sont choisis de façon connue à l'homme de l'art. Ce choix est le même que pour le réflecteur de type connu à fils métalliques parallèles.The metallizations are carried out successively for a series of horizontal circles 4 belonging to the sphere 3. The metallizations are for example wires of round section. In an alternative embodiment of the device according to the invention, the wires are included in a dielectric material. The diameter of the wires, their spacing and the thickness of the dielectric are chosen in a manner known to those skilled in the art. This choice is the same as for the known type of reflector with parallel metallic wires.

Dans une autre variante de réalisation du dispositif selon l'invention des surfaces métalliques sont réalisées par dépôt de couches métalliques sur un diélectrique. Cette réalisation met en oeuvre les mêmes techniques que celles de la réalisation de circuits imprimés.In another alternative embodiment of the device according to the invention, metallic surfaces are produced by depositing metallic layers on a dielectric. This realization implements the same techniques as those of the realization of printed circuits.

Pour la clarté de la figure une seule surface métallique est illustrée.For clarity of the figure only one metal surface is illustrated.

Sur la figure 2, on peut voir un schéma explicatif permettant de déterminer les lignes de courant induit dans le réflecteur auxiliaire 1. Dans l'exemple illustré le réflecteur auxiliaire 1 est un réflecteur hyperbolique. Les lignes de courant obtenues sur le réflecteur 1 sont des sections de ce réflecteur par les cônes de sommet O s'appuyant sur les cercles C. Dans l'exemple illustré sur la figure 1, ces cônes sont des cônes de révolution dont le sommet est situé au foyer O de l'hyperboloïde de révolution 1. Les lignes 6 de courant induit dans le réflecteur auxiliaire 1 sont les sections planes de ce réflecteur. Le cône des révolutions de sommet O, d'axe Oy et de demi-angle au sommet α a pour équation: (x² + z²)cos²α - y²sin²α = 0

Figure imgb0003
In FIG. 2, one can see an explanatory diagram making it possible to determine the lines of current induced in the auxiliary reflector 1. In the example illustrated the auxiliary reflector 1 is a hyperbolic reflector. The current lines obtained on the reflector 1 are sections of this reflector by the apex cones O resting on the circles C. In the example illustrated in FIG. 1, these cones are cones of revolution whose apex is located at the focal point O of the hyperboloid of revolution 1. The lines 6 of current induced in the auxiliary reflector 1 are the planar sections of this reflector. The cone of revolutions of vertex O, of axis Oy and of half-angle at vertex α has the equation: (x² + z²) cos²α - y²sin²α = 0
Figure imgb0003

Le réflecteur auxiliaire hyperbolique 1 a pour équation: b²(z-c)² - a²(x² + y²) - a²b² = 0

Figure imgb0004
où a désigne le demi-axe, la méridienne du réflecteur auxiliaire 1, c la demi-distance focale de l'hyperboloïde 1 et
Figure imgb0005
The equation for hyperbolic auxiliary reflector 1 is: b² (zc) ² - a² (x² + y²) - a²b² = 0
Figure imgb0004
where a denotes the half-axis, the meridian of the auxiliary reflector 1, c the half-focal length of the hyperboloid 1 and
Figure imgb0005

En éliminant x entre l'équation (1) et (2) on obtient: ay ± cos α (cz-b²) = 0

Figure imgb0006
By eliminating x between equation (1) and (2) we get: ay ± cos α (cz-b²) = 0
Figure imgb0006

L'équation (3) est l'équation d'un faisceau linéaire des plans paramétrés par α passant par la droite 73 fixe d'équations: y = 0

Figure imgb0007
z = b²/c
Figure imgb0008
Equation (3) is the equation of a linear bundle of planes parameterized by α passing through the straight line 73 fixed with equations: y = 0
Figure imgb0007
z = b² / c
Figure imgb0008

Soit 11 l'hyperboloïde de révolution correspondant au réflecteur auxiliaire 1. Soit 7 et 70 les asymptotes à l'hyperboloïdes de révolution 11 inclus dans le plan d'équation x = 0. Le point 8 intersection des droites 7 et 70 est le centre de symétrie de l'hyperboloïde de révolution 11. Soit J la projection du foyer 0 de l'hyperboloïde de révolution 11 sur la droite 70. I est la projection du point J sur l'axe Oz et l'intersection de la droite 73 avec le plan d'équation x = 0. Les lignes de courant 6 sur le réflecteur auxiliaire 1 sont définies comme les intersections du réflecteur 1 avec les plans d'équation (3). En remplaçant la surface du réflecteur auxiliaire 1 par une nappe de fils métalliques qui épouse les lignes de courant 6 on constitue un dispositif strictement équivalent au réflecteur auxilliare 1 pour le rayonnement ayant induit la ligne de courant 6.Let 11 be the hyperboloid of revolution corresponding to the auxiliary reflector 1. Let 7 and 70 be the asymptotes with the hyperboloid of revolution 11 included in the plane of equation x = 0. The point 8 intersection of the lines 7 and 70 is the center of symmetry of the hyperboloid of revolution 11. Let J be the projection of the focal point 0 of the hyperboloid of revolution 11 on the line 70. I is the projection of the point J on the axis Oz and the intersection of the line 73 with the equation plane x = 0. The current lines 6 on the auxiliary reflector 1 are defined as the intersections of the reflector 1 with the equation planes (3). By replacing the surface of the auxiliary reflector 1 with a layer of metallic wires which follows the current lines 6, a device is made which is strictly equivalent to the auxiliary reflector 1 for the radiation having induced the current line 6.

Sur la figure 3, on peut voir un exemple de réalisation d'antenne radar selon l'invention. L'antenne de la figure 3 comporte une première source 9 et une seconde source 15 de rayonnement électromagnétique. Les sources 9 et 15 sont par exemple des cornets à ouverture rectangulaire. Les sources 9 et 15 travaillent en polarisations orthogonales entre elles. L'antenne comporte aussi un réflecteur auxiliaire 1 et un réflecteur principal 74.In FIG. 3, an exemplary embodiment of a radar antenna according to the invention can be seen. The antenna of FIG. 3 comprises a first source 9 and a second source 15 of electromagnetic radiation. The sources 9 and 15 are for example horns with rectangular opening. Sources 9 and 15 work in orthogonal polarizations between them. The antenna also includes an auxiliary reflector 1 and a main reflector 74.

La source 9 correspond à la voie principale de l'antenne illustrée. Pour la source 9 l'antenne est du type Cassegrain, les ondes 19 émises par exemple en polarisation horizontale sont tout d'abord réfléchies sur le réflecteur auxiliaire 1 puis sur le réflecteur principal 74. Le remplacement d'un réflecteur entièrement métallisé par le réflecteur auxiliaire 1 selon l'invention ne perturbe en rien le fonctionnement de la voie correspondant à la source 9. Le réflecteur 1 est parfaitement réfléchissant pour les ondes émises par la source 9.Source 9 corresponds to the main channel of the antenna illustrated. For the source 9 the antenna is of the Cassegrain type, the waves 19 emitted for example in horizontal polarization are first of all reflected on the auxiliary reflector 1 then on the main reflector 74. The replacement of a fully metallized reflector by the reflector auxiliary 1 according to the invention in no way disturbs the operation of the channel corresponding to the source 9. The reflector 1 is perfectly reflective for the waves emitted by the source 9.

La source de rayonnement 15 correspond à une voie supplémentaire rajoutée à l'antenne. Pour cette source l'antenne se comporte comme une antenne monoréflecteur. Le rayonnement 115 émis par la source 15, par exemple en polarisation verticale, traverse le réflecteur auxiliaire 1 avant d'être réfléchi par le miroir principal 74. Le réflecteur auxiliaire 1 selon l'invention ne constitue pas un obstacle et ne présente pas d'effet d'ombre pour le rayonnement émis par la source 15.The radiation source 15 corresponds to an additional channel added to the antenna. For this source, the antenna behaves like a monoreflective antenna. The radiation 115 emitted by the source 15, for example in vertical polarization, passes through the auxiliary reflector 1 before being reflected by the main mirror 74. The auxiliary reflector 1 according to the invention does not constitute an obstacle and does not present any shadow effect for the radiation emitted by the source 15.

Il est à signaler que l'optimisation du réflecteur auxiliaire 1 pour la voie correspondant à la source 9 ne permet pas de le rendre parfaitement transparent pour la voie correspondant à la source 15. Toutefois cela n'est pas très gênant pour une voie auxiliaire.It should be noted that the optimization of the auxiliary reflector 1 for the channel corresponding to the source 9 does not make it perfectly transparent for the channel corresponding to the source 15. However, this is not very troublesome for an auxiliary channel.

L'invention s'applique principalement aux radars comportant plusieurs voies.The invention applies mainly to radars with several channels.

Claims (9)

1. A microwave reflector (1) including metallic surfaces (6) and non-metallic surfaces, characterized in that it is per­fectly reflecting for waves (19) of a first polarity and par­tially transparent for waves (115) of a second polarity dis­posed orthogonally to the first polarity, the metallic sur­faces being located in the intersections of the surface of the reflector (1) with a bundle of straight lines (5) passing through a focus 0 of said reflector and through a horizontal circle 4 included in a sphere (3) having a center at 0, in such a manner that said metallic surfaces (6) are located in the intersection of the surface of the reflector (1) and of the planes of the following equations: ay ± cos α (cz-b₂) = 0
Figure imgb0013
wherein y, z are the coordinates arising from the reference system (2), O, x, y, z, a is the distance between the summit of the reflector (1) and the intersection of the asymptotes (7, 70) to the reflector (1), c is half of the focal distance of the reflector (1),
Figure imgb0014
and α is a parameter.
2. A reflector according to claim 1, characterized in that said reflector (1) has a hyperbolic shape of revolution.
3. A reflector (1) according to claim 1 or 2, characterized in that the metallic surfaces (6) include metal wires following the lines of current induced into the reflector (1).
4. A reflector (1) according to claim 1 or 2, characterized in that the metallic surfaces (6) include metallizations deposit­ed on a dielectric support.
5. A radar antenna, characterized in that it comprises a re­flector (1) in accordance with any one of the preceding claims.
6. An antenna according to claim 5, characterized in that it comprises two rectangular horns (9, 15) operating in the cross polarisation mode.
7. An antenna according to claim 5 or 6, characterized in that said antenna is a Cassegrain antenna for one polarisation and a monoreflecting antenna for the second polarisation.
8. A method of implementation of the microwave reflector (19, 115) which has reflecting properties for a first polarisation and transparent properties for a second polarisation, charac­terized in that metallic surfaces are formed on a rotary sym­metrical hyperboloid (11) in the intersection of said hyper­boloid with the planes corresponding to the following equa­tion: ay ± cos α (cz-b₂) = 0
Figure imgb0015
wherein y, z are the coordinates arising from the reference system (2) O, x, y, z, a is the distance between the summit of the reflector (1) and the intersection of the asymptotes (7, 70) to the reflector (1), c is half of the focal distance of the reflector (1),
Figure imgb0016
and α is a parameter.
9. A method according to claim 8, characterized in that the metallic surfaces (8) are made of metal wires.
EP86400808A 1985-04-19 1986-04-15 Polarization-selective reflecting device and method of making such a device Expired - Lifetime EP0202979B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8506006A FR2580868B1 (en) 1985-04-19 1985-04-19 DEVICE REFLECTING THE ELECTROMAGNETIC WAVES OF A POLARIZATION AND ITS MANUFACTURING METHOD
FR8506006 1985-04-19

Publications (2)

Publication Number Publication Date
EP0202979A1 EP0202979A1 (en) 1986-11-26
EP0202979B1 true EP0202979B1 (en) 1991-01-30

Family

ID=9318458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400808A Expired - Lifetime EP0202979B1 (en) 1985-04-19 1986-04-15 Polarization-selective reflecting device and method of making such a device

Country Status (5)

Country Link
US (1) US4792811A (en)
EP (1) EP0202979B1 (en)
CA (1) CA1256536A (en)
DE (1) DE3677256D1 (en)
FR (1) FR2580868B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659797A1 (en) * 1990-03-16 1991-09-20 Trt Telecom Radio Electr Antenna including a reflector illuminated by a retro-feed device
US5546097A (en) * 1992-12-22 1996-08-13 Hughes Aircraft Company Shaped dual reflector antenna system for generating a plurality of beam coverages
FR2715511B1 (en) * 1994-01-21 1996-02-23 Thomson Csf Device for compensating for pointing errors caused by breakdowns of phase shifters of electronically scanned antennas or of coefficients of beam-forming antennas by calculation.
FR2775347B1 (en) * 1998-02-24 2000-05-12 Thomson Csf METHOD FOR DETERMINING THE SETTING ERROR OF THE RADIANT FACE OF AN ELECTRONICALLY SCANNED NETWORK ANTENNA
FR2812457B1 (en) 2000-07-28 2004-05-28 Thomson Csf ACTIVE BI-POLARIZATION MICROWAVE REFLECTOR, ESPECIALLY FOR AN ELECTRONICALLY BALANCED ANTENNA
US9108370B2 (en) * 2011-10-19 2015-08-18 Physical Sciences, Inc. Microgravity fabrication and metalization of large, lightweight polymeric bubbles and films for space system applications
RU2598402C1 (en) * 2015-04-22 2016-09-27 Федеральное Государственное Унитарное Предприятие Ордена Трудового Красного Знамени Научно-Исследовательский Институт Радио (Фгуп Ниир) Onboard multibeam double-reflector antenna with shifted focal axis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218643A (en) * 1961-03-01 1965-11-16 Peter W Hannan Double-reflector antenna with critical dimensioning to achieve minimum aperture blocking
US3271771A (en) * 1962-02-15 1966-09-06 Hazeltine Research Inc Double-reflector, double-feed antenna for crossed polarizations and polarization changing devices useful therein
FR1368820A (en) * 1963-06-14 1964-08-07 Csf High performance aerial
US3574258A (en) * 1969-01-15 1971-04-13 Us Navy Method of making a transreflector for an antenna
US3568204A (en) * 1969-04-29 1971-03-02 Sylvania Electric Prod Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US3821746A (en) * 1971-11-17 1974-06-28 Mitsubishi Electric Corp Antenna system with distortion compensating reflectors
US4017865A (en) * 1975-11-10 1977-04-12 Rca Corporation Frequency selective reflector system
US4144535A (en) * 1977-02-22 1979-03-13 Bell Telephone Laboratories, Incorporated Method and apparatus for substantially reducing cross polarized radiation in offset reflector antennas

Also Published As

Publication number Publication date
CA1256536A (en) 1989-06-27
DE3677256D1 (en) 1991-03-07
EP0202979A1 (en) 1986-11-26
FR2580868B1 (en) 1988-04-08
US4792811A (en) 1988-12-20
FR2580868A1 (en) 1986-10-24

Similar Documents

Publication Publication Date Title
CN101389998B (en) Metamaterials
US11042119B2 (en) Dielectric based metasurface hologram device and manufacturing method of same and display device having same
EP2899015B1 (en) Indefinite materials
Park et al. A photonic bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas
KR100897551B1 (en) Small and omni-directional biconical antenna for wireless communication
KR101237334B1 (en) Radar antenna assembly
EP0202979B1 (en) Polarization-selective reflecting device and method of making such a device
US3995275A (en) Reflector antenna having main and subreflector of diverse curvature
EP1416586A1 (en) Antenna with an assembly of filtering material
JP5954988B2 (en) Equipment for antenna systems
EP0170154B1 (en) Cross-polarized dual-frequency antenna with the same area coverage for telecommunication satellites
d'Elia et al. A physical optics approach to the analysis of large frequency selective radomes
US2705753A (en) Delay reflector antenna
WO2020043632A1 (en) Antenna for transmitting and/or receiving an electromagnetic wave, and system comprising this antenna
US3331721A (en) Methods of making toroidal dielectric lenses
CA1314972C (en) Surface of revolution type reflector antenna
US3218643A (en) Double-reflector antenna with critical dimensioning to achieve minimum aperture blocking
CN102760969A (en) Directional antenna made of metamaterial
EP0109322A1 (en) Double reflector antenna for a tracking radar improving the target acquisition capability
Belous et al. Antennas and antenna devices for radar location and radio communication
Telagarapu et al. Design and analysis of parabolic reflector with high gain pencil beam and low side lobes by varying feed
CN116776584B (en) Method for analyzing electrical performance of meshed parabolic antenna by considering wire mesh
FR2738397A1 (en) METHOD FOR ENLARGING THE BEAM OF A STERILE ANTENNA
RU2293409C2 (en) Multibeam antenna assembly
JPS62204605A (en) Circularly polarized wave shaped beam antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL SE

17P Request for examination filed

Effective date: 19870323

17Q First examination report despatched

Effective date: 19881031

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910130

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3677256

Country of ref document: DE

Date of ref document: 19910307

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940326

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940328

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86400808.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950416

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103

EUG Se: european patent has lapsed

Ref document number: 86400808.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050415