EP0201629B1 - Process and apparatus for the continuous crystallization in the preparation of sugar - Google Patents

Process and apparatus for the continuous crystallization in the preparation of sugar Download PDF

Info

Publication number
EP0201629B1
EP0201629B1 EP85114973A EP85114973A EP0201629B1 EP 0201629 B1 EP0201629 B1 EP 0201629B1 EP 85114973 A EP85114973 A EP 85114973A EP 85114973 A EP85114973 A EP 85114973A EP 0201629 B1 EP0201629 B1 EP 0201629B1
Authority
EP
European Patent Office
Prior art keywords
suspension
chamber
heating
flow
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85114973A
Other languages
German (de)
French (fr)
Other versions
EP0201629A2 (en
EP0201629A3 (en
Inventor
Siegfried Dipl.-Ing. Matusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMA Braunschweigische Maschinenbauanstalt AG
Original Assignee
BMA Braunschweigische Maschinenbauanstalt AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMA Braunschweigische Maschinenbauanstalt AG filed Critical BMA Braunschweigische Maschinenbauanstalt AG
Publication of EP0201629A2 publication Critical patent/EP0201629A2/en
Publication of EP0201629A3 publication Critical patent/EP0201629A3/en
Application granted granted Critical
Publication of EP0201629B1 publication Critical patent/EP0201629B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B30/00Crystallisation; Crystallising apparatus; Separating crystals from mother liquors ; Evaporating or boiling sugar juice
    • C13B30/02Crystallisation; Crystallising apparatus
    • C13B30/022Continuous processes, apparatus therefor

Definitions

  • the invention relates to a process for continuous evaporation crystallization from a suspension for the extraction of sugar consisting of juice and crystals, in which concentrated feed dissolution and crystal base magma are continuously fed into a first treatment room and product magma is continuously withdrawn from the last treatment room, the suspension being successively used by several separate, round treatment rooms are passed through and placed in each treatment room with simultaneous supply of heat in an internal circulation flow and level-controlled from the individual treatment rooms to the next following treatment room.
  • the invention further relates to a device for carrying out such a method with treatment rooms which are arranged one above the other as separate cylindrical apparatus chambers, a tapering chamber floor tapering downwards, a heating medium through which a heating medium flows with intermediate spaces through which the suspension can flow, and devices for removing the Brüdens and for transferring the suspension from the upper to the lower apparatus chamber.
  • each apparatus chamber is designed in accordance with the agitator boilers for discontinuous crystallization.
  • a heating chamber with radially external heating elements, a central guide tube and an agitator held at the bottom are provided above the chamber base.
  • the agitators in the apparatus chamber through which the first flow passes are designed as high-speed mixing stirrers, while the agitators in the subsequent chambers are designed as low-speed circulation stirrers.
  • the chambers there are level controls for leveling the level just above the heating chamber.
  • the high-speed mixing stirrers cause highly turbulent shear fields and a visible circulation flow, while the low-speed stirrers only lead to an essentially laminar circulation flow.
  • the suspension is kept in a concentric ring circulation flow in all apparatus chambers with the intake juice being fed in on the suction side.
  • the suspension is withdrawn from the individual treatment rooms on the pressure side and fed to the next treatment room on the suction side.
  • an inlet pipe opening out above the stirrer of the respective apparatus chamber is connected to a feed line via a control valve.
  • a suspension discharge pipe equipped with a control valve or a control flap is provided and connected to a suspension supply pipe of the next chamber.
  • the control valve of the feed pipe for the intake juice is equipped with a sensor arranged in the associated apparatus chamber to determine the viscosity, the electrical conductivity, the density or the boiling point increase of the suspension and the control valve or the control flap of the suspension drain pipe with one in the same apparatus chamber just above the Heating device arranged level sensor or switch connected.
  • the object of the invention is to improve the method explained at the outset with regard to the suspension residence time distribution and to simplify the device for carrying out the method.
  • This object is achieved in that the suspension rotates once in each treatment room on a spiral path, which is caused by the superimposition of a forced circular movement caused by the feeding of further suspensions around the axis of the treatment room and by the mammoth pump effect occurring in the heating area generated orbital movement results.
  • suspension is also alternately guided up and down on the positively guided circular path, so that a corrugated spiral path results.
  • the transfer of the suspension from one treatment room to the next treatment room can take place in the free overflow;
  • the level of the suspension in each treatment room can be regulated by controlling the overflow height.
  • syrup can also be fed into at least some treatment rooms in a controlled manner.
  • each apparatus chamber is arranged around a central guide tube which is open at the top and bottom and comprises a plurality of heating chambers which, in terms of their spaces through which the suspension flows, through in the circumferential direction Partitions arranged at the same angular distance from one another are delimited from one another, but are in flow connection with one another via defined flow cross sections in the circumferential direction, which form a forced guide for the suspension in the circumferential direction, the first heating chamber seen in the flow direction of the suspension and the last heating chamber one Have suspension overflow that with the suspension inlet of the underlying Apparatus chamber is connected.
  • the guide tube is divided into segments by the partition walls mentioned, which are closed on the casing side and are only in flow-exchanging connection with the associated heating chamber for the suspension on the floor and ceiling sides.
  • a partition wall alternately projects above the maximum suspension level between two heating chambers, but has a suspension circulation opening below the heater above the conical chamber floor, while the partition wall following in the flow direction of the suspension has an upper overflow into the has the following heating chamber and seals the bottom of the chamber in a flow-tight manner.
  • each apparatus chamber is structurally particularly simple and basically does not require any control. It is particularly advantageous that the desired flow circulation of the suspension is achieved without agitators or other driven agitating or mixing tools. However, since the flowability of the suspension from top to bottom is getting worse, it can be advantageous, depending on the consistency of the suspension, in the lowest apparatus chamber or in the lower apparatus chambers, e.g. the bottom two chambers to provide driven stirring or mixing tools, e.g. can be designed as a lifting system according to the device as described in German patent application DE-A-35 17 511.7. Such a lifting system would serve to support the mammoth pump effect.
  • the superimposed apparatus chambers can be connected to one another.
  • the vapor is then drawn off via a juice separator on the top chamber of the apparatus.
  • the pressure is the same in all of the apparatus chambers.
  • the vapors are fed to a condenser and the non-condensable gases to a water ring pump.
  • the atmosphere in the vapors is under atmospheric pressure.
  • the evaporation crystallization tower shown consists of cylindrical apparatus chambers 1, which are separated from one another and are arranged one above the other, the number of which results from the amount of magma to be generated.
  • Each apparatus chamber 1 has a chamber floor 2 which tapers downwards in a conical shape and is provided with a central flow cone 3, which at the same time forms a chimney hood for a vapor outlet, which merges upwards into a vertical central vapor tube 4. Only in the lowest apparatus chamber is such a vapor extraction not provided.
  • the apparatus chambers 1 can be connected to one another on the vapor side.
  • the vapor is then drawn off via a juice separator 5 on the upper apparatus chamber 1; in this embodiment there is then the same pressure in all apparatus chambers 1.
  • the vapors are fed to a condenser, not shown, the non-condensable gases to a water ring pump, also not shown.
  • the atmosphere in the vapors is under atmospheric pressure.
  • each apparatus chamber 1 there is also a heater 6 through which a heating medium, preferably steam, flows and which is arranged around a central guide tube 7 which is open at the top and bottom and the upper edge of which is flush with the upper edge of the heater 6.
  • the heater 6 of each apparatus chamber 1 comprises four heating chambers 8, 9, 10, 11, which are each limited by radial dividing walls 12 arranged in the circumferential direction at the same angular distance from one another, the guide tube 7, the flow cone 3, the chamber bottom 2 and the jacket of the corresponding apparatus chamber 1.
  • the partition walls 12 also divide the guide tube 7 into segments 13, which are closed on the casing side by the vapor tube 4, the guide tube 7 and the partition walls 12 and are only in flow-exchanging connection on the floor and ceiling sides with the associated heating chamber 8-10.
  • the heater 6 consists of concentrically spaced double-walled ring segments 6a, which are connected to each other in terms of flow and are associated with diametrically opposed, hollow partition walls 12 and have a steam inlet or outlet 14.
  • a valve-controlled inlet 16 for concentrated feed dissolution (syrup) and a further valve-controlled inlet 17 for crystal-foot magma are provided in the uppermost apparatus chamber 1. Both inlets 16, 17 open into a suspension inlet 18 at the beginning of the first heating chamber 8, from where the suspension flows in succession through the four heating chambers 8-11, in order to then pass through a suspension overflow 19 in the last heating chamber 11 the suspension inlet 18 of the apparatus chamber 1 underneath reach.
  • the suspension level 20 is set in each apparatus chamber 1 by overflow flaps 21.
  • the ring segments 6a In order to form a positive guide for the suspension in the circumferential direction of each apparatus chamber 1, the ring segments 6a have intermediate spaces through which the suspension flows, which are delimited by the partition walls 12 mentioned from the respectively adjacent heating chamber 8-11.
  • the separating wall 12 between the heating chambers 8 and 9 seen in the flow direction of the suspension also projects beyond the maximum suspension level 20, but is at a clear distance from the chamber bottom 2, forming a suspension circulation opening 22, while the downstream one seen in the flow direction of the suspension is the
  • the heating chamber 9 separating the heating chamber 10 from the partition 12 is connected to the chamber bottom 2 in a flow-tight manner, but has an upper overflow 23 into the subsequent heating chamber 10 for the suspension.
  • the partition 12 that then follows between the heating chambers 10 and 11 corresponds in its design to the partition between the heating chambers 8 and 9.
  • the suspension formed from the two inlets 16, 17 thus flows downward from the suspension inlet 18 between the ring segments 6a of the first heating chamber 8 in order to pass through the suspension circulation opening 22 of the partition wall 12 into the subsequent heating chamber 9, where the Suspension flows upwards between the ring segments 6a and reaches the heating chamber 10 via the overflow 23, from which in turn flows through the suspension circulation opening 22 below into the last heating chamber 11, from which the suspension then flows via the suspension overflow 19 into the Suspension inlet 18 of the underlying apparatus chamber 1 arrives.
  • the suspension is therefore positively guided on a circular path and alternately directed upwards and downwards on this circular path, so that there is a wavy flow course which is closed to form a circular ring.
  • a valve-controlled feed line 24 for additional syrup opens into the suspension inlet 18 of each apparatus chamber 1, which is added to the inlet of each apparatus chamber 1 in a controlled manner depending on the magma consistency. After the suspension has passed through all the apparatus chambers 1 from top to bottom, the product magma is drawn off from the bottom 2 of the lowest apparatus chamber 1 via an outlet 25.
  • Figure 1 shows circumferentially offset longitudinal sections for the individual apparatus chambers 1.
  • a partition wall 12 with an overflow 23 corresponding to the partition wall between the heating chambers 9 and 10 is shown, while the second and bottom apparatus chamber partition walls 12 according to the partition walls between the heating chambers 8 and 9 and 10, respectively and 11 show.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Confectionery (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Verdampfungskristallisation aus einer aus Saft und Kristallen bestehenden Suspension für die Zuckergewinnung, bei dem konzentrierte Zulauflösung sowie Kristallfuß-Magma kontinuierlich in einen ersten Behandlungsraum eingespeist und Produktmagma aus dem letzten Behandlungsraum kontinuierlich abgezogen werden, wobei die Suspension nacheinander durch mehrere voneinander getrennte, runde Behandlungsräume hindurchgeleitet und in jedem Behandlungsraum bei gleichzeitiger Wärmezufuhr in eine interne Umlaufströmung versetzt und niveaugesteuert aus den einzelnen Behandlungsräumen dem jeweils nächstfolgenden Behandlungsraum zugeführt wird.The invention relates to a process for continuous evaporation crystallization from a suspension for the extraction of sugar consisting of juice and crystals, in which concentrated feed dissolution and crystal base magma are continuously fed into a first treatment room and product magma is continuously withdrawn from the last treatment room, the suspension being successively used by several separate, round treatment rooms are passed through and placed in each treatment room with simultaneous supply of heat in an internal circulation flow and level-controlled from the individual treatment rooms to the next following treatment room.

Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung eines derartigen Verfahrens mit Behandlungsräumen, die als voneinander getrennte zylindrische Apparatekammern übereinander angeordnet sind, einen sich konusförmig nach unten verjüngenden Kammerboden, eine von einem Heizmedium durchströmte Heizung mit von der Suspension durchströmbaren Zwischenraumen, sowie Einrichtungen zum Abführen des Brüdens und zur Überführung der Suspension von der oberen in die jeweils darunterliegende Apparatekammer aufweisen.The invention further relates to a device for carrying out such a method with treatment rooms which are arranged one above the other as separate cylindrical apparatus chambers, a tapering chamber floor tapering downwards, a heating medium through which a heating medium flows with intermediate spaces through which the suspension can flow, and devices for removing the Brüdens and for transferring the suspension from the upper to the lower apparatus chamber.

Das vorstehende Verfahren sowie die vorstehend erläuterte Vorrichtung lassen sich der DE-A 31 20 732 entnehmen. Hier sind die einzelnen Apparatekammern jeweils entsprechend den Rührwerkskochapparaten für die diskontinuierliche Kristallisation ausgebildet. In jeder Apparatekammer ist oberhalb des Kammerbodens eine Heizkammer mit radial außenliegenden Heizelementen, ein zentrisches Leitrohr sowie ein unten in diesem gehaltenes Rührwerk vorgesehen. Die Rührwerke der erstdurchströmten Apparatekammer sind als hochtourige Mischrührer, die Rührwerke der nachfolgenden Kammern hingegen als niedertourige Umwälzrührer ausgeführt. In den Kammern sind jeweils Niveausteuerungen zur Einpegelung des Niveaus dicht oberhalb der Heizkammer vorgesehen. Die hochtourigen Mischrührer bewirken hochturbulente Scherfelder sowie eine sichtbare Zirkulationsströmung, während die niedertourigen Rührer nur zu einer im wesentlichen laminaren Umlaufströmung führen. Die Suspension wird in allen Apparatekammern in einer konzentrischen Ring-Umlaufströmung mit saugseitiger Zufuhr des Einzugssaftes gehalten. Die Suspension wird niveaugesteuert aus den einzelnen Behandlungsräumen jeweils druckseitig abgezogen und saugseitig dem nächstfolgenden Behandlungsraum zugeführt. Zur Zuführung des zusätzlichen Einzugssaftes (Sirups) in die Apparatekammern ist ein oberhalb des Rührers der jeweiligen Apparatekammer ausmündendes Zulaufrohr über ein Steuerventil mit einer Speiseleitung verbunden. Im Raum unterhalb des Rührers bzw. im Kammerboden ist ein mit einem Steuerventil oder einer Steuerklappe ausgerüstetes Suspensionsabzugsrohr vorgesehen und mit einem Suspensionszuführrohr der nächstfolgenden Kammer verbunden. Das Steuerventil des Zulaufrohres für den Einzugssaft ist mit einem in der zugehörigen Apparatekammer angeordneten Fühler zur Ermittlung der Zähigkeit, der elektrischen Leitfähigkeit, der Dichte oder der Siedepunktserhöhung der Suspension und das Steuerventil bzw. die Steuerklappe des Suspensionsabzugsrohres mit einem in der gleichen Apparatekammer dicht oberhalb der Heizeinrichtung angeordneten Niveaufühler oder -schalter verbunden.The above method and the device explained above can be found in DE-A 31 20 732. Here the individual apparatus chambers are each designed in accordance with the agitator boilers for discontinuous crystallization. In each apparatus chamber, a heating chamber with radially external heating elements, a central guide tube and an agitator held at the bottom are provided above the chamber base. The agitators in the apparatus chamber through which the first flow passes are designed as high-speed mixing stirrers, while the agitators in the subsequent chambers are designed as low-speed circulation stirrers. In the chambers there are level controls for leveling the level just above the heating chamber. The high-speed mixing stirrers cause highly turbulent shear fields and a visible circulation flow, while the low-speed stirrers only lead to an essentially laminar circulation flow. The suspension is kept in a concentric ring circulation flow in all apparatus chambers with the intake juice being fed in on the suction side. Level-controlled, the suspension is withdrawn from the individual treatment rooms on the pressure side and fed to the next treatment room on the suction side. To supply the additional intake juice (syrup) into the apparatus chambers, an inlet pipe opening out above the stirrer of the respective apparatus chamber is connected to a feed line via a control valve. In the space below the stirrer or in the chamber floor, a suspension discharge pipe equipped with a control valve or a control flap is provided and connected to a suspension supply pipe of the next chamber. The control valve of the feed pipe for the intake juice is equipped with a sensor arranged in the associated apparatus chamber to determine the viscosity, the electrical conductivity, the density or the boiling point increase of the suspension and the control valve or the control flap of the suspension drain pipe with one in the same apparatus chamber just above the Heating device arranged level sensor or switch connected.

Der Erfindung liegt die Aufgabe zugrunde, das eingangs erläuterte Verfahren hinsichtlich der Suspensions-Verweilzeit-Verteilung zu verbessern und die Vorrichtung zur Durchführung des Verfahrens zu vereinfachen.The object of the invention is to improve the method explained at the outset with regard to the suspension residence time distribution and to simplify the device for carrying out the method.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Suspension in jedem Behandlungsraum auf einer spiralförmigen Bahn einmal umläuft, die sich durch die Überlagerung einer durch das Einspeisen weiterer Suspensionen verursachten, zwangsgeführten Kreisbewegung um die Achse des Behandlungsraums und einer durch den im Heizungsbereich auftretenden Mammut-Pumpeneffekt erzeugten Umlaufbewegung ergibt.This object is achieved in that the suspension rotates once in each treatment room on a spiral path, which is caused by the superimposition of a forced circular movement caused by the feeding of further suspensions around the axis of the treatment room and by the mammoth pump effect occurring in the heating area generated orbital movement results.

Dabei ist es zusätzlich vorteilhaft, wenn die Suspension auf der zwangsgeführten Kreisbahn auch noch abwechselnd nach oben und unten geführt wird, so daß sich eine gewellte spiralförmige Bahn ergibt.It is also advantageous if the suspension is also alternately guided up and down on the positively guided circular path, so that a corrugated spiral path results.

Durch die der Suspension in jedem Behandlungsraum aufgezwungene Zwangsführung läßt sich eine optimale Verweilzeit-Verteilung erreichen.Due to the forced guidance of the suspension in each treatment room, an optimal residence time distribution can be achieved.

Die Überleitung der Suspension von dem einen Behandlungsraum zum nächstfolgenden Behandlungsraum kann im freien Überlauf erfolgen; durch Steuerung der Überlaufhöhe läßt sich das Niveau der Suspension in jedem Behandlungsraum regeln.The transfer of the suspension from one treatment room to the next treatment room can take place in the free overflow; The level of the suspension in each treatment room can be regulated by controlling the overflow height.

Je nach Suspensionskonsistenz kann zumindest in einige Behandlungsräume zusätzlich Sirup geregelt eingespeist werden.Depending on the consistency of the suspension, syrup can also be fed into at least some treatment rooms in a controlled manner.

Die der Erfindung zugrundeliegende Aufgabe wird vorrichtungsmäßig in Verbindung mit den eingangs genannten Vorrichtungsmerkmalen dadurch gelöst, daß die Heizung jeder Apparatekammer um ein zentrales, oben und unten offenes Leitrohr herum angeordnet ist und mehrere Heizkammern umfaßt, die hinsichtlich ihrer von der Suspension durchströmten Zwischenräume durch in Umfangsrichtung im gleichen Winkelabstand voneinander angeordnete Trennwände von einander abgegrenzt sind, jedoch über definierte Strömungsquerschnitte in Umfangsrichtung miteinander in Strömungsverbindung stehen, die in Umfangsrichtung eine Zwangsführung für die Suspension bilden, wobei in Strömungsrichtung der Suspension gesehen die erste Heizkammer einen Suspensions-Einlauf und die letzte Heizkammer einen Suspensions-Überlauf aufweisen, der mit dem Suspensions-Einlauf der darunterliegenden Apparatekammer verbunden ist.The object on which the invention is based is achieved, in terms of the device, in connection with the device features mentioned at the outset, in that the heating of each apparatus chamber is arranged around a central guide tube which is open at the top and bottom and comprises a plurality of heating chambers which, in terms of their spaces through which the suspension flows, through in the circumferential direction Partitions arranged at the same angular distance from one another are delimited from one another, but are in flow connection with one another via defined flow cross sections in the circumferential direction, which form a forced guide for the suspension in the circumferential direction, the first heating chamber seen in the flow direction of the suspension and the last heating chamber one Have suspension overflow that with the suspension inlet of the underlying Apparatus chamber is connected.

Dabei ist es vorteilhaft, wenn das Leitrohr durch die genannten Trennwände in Segmente unterteilt ist, die mantelseitig geschlossen sind und nur boden- und deckenseitig mit der zugeordneten Heizkammer für die Suspension in strömungsaustauschender Verbindung stehen.It is advantageous if the guide tube is divided into segments by the partition walls mentioned, which are closed on the casing side and are only in flow-exchanging connection with the associated heating chamber for the suspension on the floor and ceiling sides.

Zur Bildung der genannten definierten Strömungsquerschnitte ist es vorteilhaft, wenn zwischen zwei Heizkammern jeweils abwechselnd eine Trennwand den maximalen Suspensionspegel überragt, jedoch unterhalb der Heizung über dem konischen Kammerboden eine Suspensions-Zirkulationsöffnung aufweist, während die in Strömungsrichtung der Suspension nachfolgende Trennwand einen oberen Überlauf in die nachfolgende Heizkammer aufweist und unten strömungsdicht mit dem Kammerboden abschließt.To form the defined flow cross-sections, it is advantageous if a partition wall alternately projects above the maximum suspension level between two heating chambers, but has a suspension circulation opening below the heater above the conical chamber floor, while the partition wall following in the flow direction of the suspension has an upper overflow into the has the following heating chamber and seals the bottom of the chamber in a flow-tight manner.

Die Anzahl der übereinander montierten Einzelapparate ergibt sich aus der zu erzeugenden Magma-Menge. Die in jeder Apparatekammer vorgesehene Zwangsführung ist konstruktiv besonders einfach und bedarf grundsätzlich keiner Steuerung. Besonders vorteilhaft ist dabei, daß der gewünschte Strömungsumlauf der Suspension ohne Rührwerke oder sonstige angetriebene Rühr- oder Mischwerkzeuge erreicht wird. Da jedoch die Fließfähigkeit der Suspension von oben nach unten immer schlechter wird, kann es vorteilhaft sein, je nach Konsistenz der Suspension in der untersten Apparatekammer oder aber in den unteren Apparatekammern, z.B. den beiden untersten Kammern, angetriebene Rühr-oder Mischwerkzeuge vorzusehen, die z.B. als Hubsystem ausgebildet sein können gemäß der Vorrichtung wie sie in der deutschen Patentanmeldung DE-A-35 17 511.7 beschrieben ist. Ein derartiges Hubsystem würde zur Unterstützung des Mammut-Pumpeneffektes dienen.The number of individual devices installed one above the other results from the quantity of magma to be generated. The positive guidance provided in each apparatus chamber is structurally particularly simple and basically does not require any control. It is particularly advantageous that the desired flow circulation of the suspension is achieved without agitators or other driven agitating or mixing tools. However, since the flowability of the suspension from top to bottom is getting worse, it can be advantageous, depending on the consistency of the suspension, in the lowest apparatus chamber or in the lower apparatus chambers, e.g. the bottom two chambers to provide driven stirring or mixing tools, e.g. can be designed as a lifting system according to the device as described in German patent application DE-A-35 17 511.7. Such a lifting system would serve to support the mammoth pump effect.

Brüdenseitig können die übereinander stehenden Apparatekammern miteinander verbunden sein. Der Brüdenabzug erfolgt dann über einen Saftabscheider auf der obersten Apparatekammer. Bei dieser Ausführungsform herrscht in allen Apparatekammern gleicher Druck. Die Brüden werden einem Kondensator, die nicht-kondensierbaren Gase einer Wasserringpumpe zugeführt. Im Brüdenraum herrscht unteratmosphärischer Druck. Es ist aber auch denkbar, die einzelnen Apparatekammern vollständig getrennt auszubilden, so daß jeder Apparateteil mit einem eigenen Brüdenabzug und Saftabscheider ausgerüstet ist. Der Suspensions-Übertritt von einer Apparatekammer zur anderen mußte dann über eine Schleuse erfolgen. Bei dieser Arbeitsweise wären die Apparatekammern mit unterschiedlichen Brüden-Drücken zu betreiben.On the vapor side, the superimposed apparatus chambers can be connected to one another. The vapor is then drawn off via a juice separator on the top chamber of the apparatus. In this embodiment, the pressure is the same in all of the apparatus chambers. The vapors are fed to a condenser and the non-condensable gases to a water ring pump. The atmosphere in the vapors is under atmospheric pressure. However, it is also conceivable to design the individual apparatus chambers completely separately, so that each apparatus part is equipped with its own vapor extractor and juice separator. The suspension transfer from one apparatus chamber to the other then had to take place via a lock. In this way of working, the apparatus chambers would have to be operated with different vapor pressures.

Weitere Merkmale sind Gegenstand der Unteransprüche und werden zusammen mit weiteren Vorteilen der Erfindung anhand eines Ausführungsbeispiels näher erläutert.Further features are the subject of the subclaims and are explained in more detail together with further advantages of the invention using an exemplary embodiment.

In der Zeichnung ist eine als Beispiel dienende Ausführungsform der Erfindung schematisch dargestellt. Es zeigen:

  • Figur 1 einen Verdampfungskristallisationsturm im Längsschnitt und
  • Figur 2 in vergrößertem Maßstab einen Querschnitt durch den Turm gemäß Figur 1.
An exemplary embodiment of the invention is shown schematically in the drawing. Show it:
  • 1 shows an evaporative crystallization tower in longitudinal section and
  • FIG. 2 shows a cross section through the tower according to FIG. 1 on an enlarged scale.

Gemäß Figur 1 besteht der dargestellte Verdampfungskristallisationsturm aus voneinander getrennten, übereinander angeordneten zylindrischen Apparatekammern 1, deren Anzahl sich aus der zu erzeugenden Magma-Menge ergibt. Jede Apparatekammer 1 weist einen sich konusförmig nach unten verjüngenden Kammerboden 2 auf, der mit einem zentrischen Strömungskegel 3 versehen ist, der für einen Brüdenabzug zugleich eine Kaminhaube bildet, die nach oben in ein lotrechtes zentrales Brüdenrohr 4 übergeht. Nur in der untersten Apparatekammer ist ein derartiger Brüdenabzug nicht vorgesehen.According to FIG. 1, the evaporation crystallization tower shown consists of cylindrical apparatus chambers 1, which are separated from one another and are arranged one above the other, the number of which results from the amount of magma to be generated. Each apparatus chamber 1 has a chamber floor 2 which tapers downwards in a conical shape and is provided with a central flow cone 3, which at the same time forms a chimney hood for a vapor outlet, which merges upwards into a vertical central vapor tube 4. Only in the lowest apparatus chamber is such a vapor extraction not provided.

Brüdenseitig können die Apparatekammern 1 miteinander verbunden sein. Der Brüdenabzug erfolgt dann über einen Saftabscheider 5 auf der oberen Apparatekammer 1; bei dieser Ausführungsform herrscht dann in allen Apparatekammern 1 gleicher Druck. Die Brüden werden einem nicht dargestellten Kondensator, die nichtkondensierbaren Gase einer ebenfalls nicht dargestellten Wasserringpumpe zugeführt. Im Brüdenraum herrscht unteratmosphärischer Druck.The apparatus chambers 1 can be connected to one another on the vapor side. The vapor is then drawn off via a juice separator 5 on the upper apparatus chamber 1; in this embodiment there is then the same pressure in all apparatus chambers 1. The vapors are fed to a condenser, not shown, the non-condensable gases to a water ring pump, also not shown. The atmosphere in the vapors is under atmospheric pressure.

In jeder Apparatekammer 1 ist ferner eine von einem Heizmedium, vorzugsweise Dampf, durchströmte Heizung 6 vorgesehen, die um ein zentrales, oben und unten offenes Leitrohr 7 herum angeordnet ist, dessen oberer Rand bündig mit dem oberen Rand der Heizung 6 liegt. Die Heizung 6 jeder Apparatekammer 1 umfaßt vier Heizkammern 8, 9, 10, 11, die jeweils begrenzt sind durch in Umfangsrichtung im gleichen Winkelabstand voneinander angeordnete radiale Trennwände 12, das Leitrohr 7, den Strömungskegel 3, den Kammerboden 2 sowie den Mantel der entsprechenden Apparatekammer 1. Die genannten Trennwände 12 unterteilen auch das Leitrohr 7 in Segmente 13, die mantelseitig durch das Brüdenrohr 4, das Leitrohr 7 sowie die Trennwände 12 geschlossen sind und nur boden- und deckenseitig mit der zugeordneten Heizkammer 8-'10 in strömungsaustauschender Verbindung stehen. Die Heizung 6 besteht aus konzentrisch im Abstand voneinander angeordneten doppelwandigen Ringsegmenten 6a, die über ihnen jeweils zugeordnete, sich diametral gegenüberliegende, hohl ausgebildete Trennwände 12 strömungsmäßig miteinander verbunden sind und einen Dampfeintritt bzw.-austritt 14 aufweisen.In each apparatus chamber 1 there is also a heater 6 through which a heating medium, preferably steam, flows and which is arranged around a central guide tube 7 which is open at the top and bottom and the upper edge of which is flush with the upper edge of the heater 6. The heater 6 of each apparatus chamber 1 comprises four heating chambers 8, 9, 10, 11, which are each limited by radial dividing walls 12 arranged in the circumferential direction at the same angular distance from one another, the guide tube 7, the flow cone 3, the chamber bottom 2 and the jacket of the corresponding apparatus chamber 1. The partition walls 12 also divide the guide tube 7 into segments 13, which are closed on the casing side by the vapor tube 4, the guide tube 7 and the partition walls 12 and are only in flow-exchanging connection on the floor and ceiling sides with the associated heating chamber 8-10. The heater 6 consists of concentrically spaced double-walled ring segments 6a, which are connected to each other in terms of flow and are associated with diametrically opposed, hollow partition walls 12 and have a steam inlet or outlet 14.

In der obersten Apparatekammer 1 sind ein ventilgesteuerter Zulauf 16 für konzentrierte Zulauflösung (Sirup) sowie ein weiterer ventilgesteuerter Zulauf 17 für Kristallfuß-Magma vorgesehen. Beide Zuläufe 16, 17 münden in einen Suspensions-Einlauf 18 am Anfang der ersten Heizkammer 8, von wo die Suspension in einer Zwangsführung die vier Heizkammern 8-11 nacheinander durchströmt, um dann über einen in der letzten Heizkammer 11 vorgesehenen Suspensions-Überlauf 19 in den Suspensions-Einlauf 18 der darunterliegenden Apparatekammer 1 zu gelangen. Der Suspensionspegel 20 wird in jeder Apparatekammer 1 durch Überlaufklappen 21 eingestellt.In the uppermost apparatus chamber 1, a valve-controlled inlet 16 for concentrated feed dissolution (syrup) and a further valve-controlled inlet 17 for crystal-foot magma are provided. Both inlets 16, 17 open into a suspension inlet 18 at the beginning of the first heating chamber 8, from where the suspension flows in succession through the four heating chambers 8-11, in order to then pass through a suspension overflow 19 in the last heating chamber 11 the suspension inlet 18 of the apparatus chamber 1 underneath reach. The suspension level 20 is set in each apparatus chamber 1 by overflow flaps 21.

Um für die Suspension in Umfangsrichtung jeder Apparatekammer 1 eine Zwangsführung zu bilden, weisen die Ringsegmente 6a zwischen sich von der Suspension durchströmte zwischenräume auf, die durch die genannten Trennwände 12 von der jeweils benachbarten Heizkammer 8-11 abgegrenzt sind. Die in Strömungsrichtung der Suspension gesehen noch vor dem Suspensions-Einlauf 18 liegende Trennwand 12 überragt den maximalen Suspensionspegel 20 nach oben und schließt unten strömungsdicht mit dem Kammerboden 2 sowie dem Strömungskegel 3 ab. Die in Strömungsrichtung der Suspension gesehen nachfolgende Trennwand 12 zwischen den Heizkammern 8 und 9 überragt ebenfalls den maximalen Suspensionspegel 20, weist aber gegenüber dem Kammerboden 2 einen lichten, eine Suspensions-Zirkulationsöffnung 22 bildenden Abstand auf, während die in Strömungsrichtung der Suspension gesehen nachfolgende, die Heizkammer 9 von der Heizkammer 10 trennende Trennwand 12 mit dem Kammerboden 2 strömungsdicht verbunden ist, jedoch für die Suspension einen oberen Überlauf 23 in die nachfolgende Heizkammer 10 aufweist. Die dann folgende Trennwand 12 zwischen den Heizkammern 10 und 11 entspricht in ihrer Ausbildung der Trennwand zwischen den Heizkammern 8 und 9.In order to form a positive guide for the suspension in the circumferential direction of each apparatus chamber 1, the ring segments 6a have intermediate spaces through which the suspension flows, which are delimited by the partition walls 12 mentioned from the respectively adjacent heating chamber 8-11. The partition wall 12 lying in front of the suspension inlet 18, seen in the flow direction of the suspension, projects above the maximum suspension level 20 and closes at the bottom in a flow-tight manner with the chamber bottom 2 and the flow cone 3. The separating wall 12 between the heating chambers 8 and 9 seen in the flow direction of the suspension also projects beyond the maximum suspension level 20, but is at a clear distance from the chamber bottom 2, forming a suspension circulation opening 22, while the downstream one seen in the flow direction of the suspension is the The heating chamber 9 separating the heating chamber 10 from the partition 12 is connected to the chamber bottom 2 in a flow-tight manner, but has an upper overflow 23 into the subsequent heating chamber 10 for the suspension. The partition 12 that then follows between the heating chambers 10 and 11 corresponds in its design to the partition between the heating chambers 8 and 9.

Die sich aus den beiden Zuläufen 16,17 bildende Suspension strömt somit vom Suspensions-Einlauf 18zwischen den Ringsegmenten 6a der ersten Heizkammer 8 hindurch nach unten, um durch die Suspensions-Zirkulationsöffnung 22 der Trennwand 12 hindurch in die nachfolgende Heizkammer 9 zu gelangen, wo die Suspension zwischen den Ringsegmenten 6a nach oben strömt und über den Überlauf23 in die Heizkammer 10 gelangt, von dieser wiederum durch die unten liegende Suspensions-Zirkulationsöffnung 22 hindurch in die letzte Heizkammer 11 strömt, aus der die Suspension dann über den Suspensions-Überlauf 19 in den Suspensions-Einlauf 18 der darunterliegenden Apparatekammer 1 gelangt. Die Suspension wird also auf einer Kreisbahn zwangsgeführt und auf dieser Kreisbahn abwechselnd nach oben und unten gelenkt, so daß sich ein zu einem Kreisring geschlossener wellenförmiger Strömungsverlauf ergibt. Diese Strömung stellt sich ein und wird aufrechterhalten durch den kontinuierlichen eingespeisten Sirup und das ebenfalls kontinuierlich eingespeiste Kristallfuß-Magma. Dabei mündet in den Suspensions-Einlauf 18 jeder Apparatekammer 1 noch eine ventilgesteuerte Speiseleitung 24 für zusätzlichen Sirup, der je nach Magma-Konsistenz geregelt in den Zulauf jeder Apparatekammer 1 gegeben wird. Nachdem die Suspension alle Apparatekammern 1 von oben nach unten durchlaufen hat, wird am Kammerboden 2 der untersten Apparatekammer 1 über einen Auslauf 25 das Produktmagma abgezogen.The suspension formed from the two inlets 16, 17 thus flows downward from the suspension inlet 18 between the ring segments 6a of the first heating chamber 8 in order to pass through the suspension circulation opening 22 of the partition wall 12 into the subsequent heating chamber 9, where the Suspension flows upwards between the ring segments 6a and reaches the heating chamber 10 via the overflow 23, from which in turn flows through the suspension circulation opening 22 below into the last heating chamber 11, from which the suspension then flows via the suspension overflow 19 into the Suspension inlet 18 of the underlying apparatus chamber 1 arrives. The suspension is therefore positively guided on a circular path and alternately directed upwards and downwards on this circular path, so that there is a wavy flow course which is closed to form a circular ring. This flow occurs and is maintained by the continuously fed syrup and the also continuously fed crystal foot magma. In this case, a valve-controlled feed line 24 for additional syrup opens into the suspension inlet 18 of each apparatus chamber 1, which is added to the inlet of each apparatus chamber 1 in a controlled manner depending on the magma consistency. After the suspension has passed through all the apparatus chambers 1 from top to bottom, the product magma is drawn off from the bottom 2 of the lowest apparatus chamber 1 via an outlet 25.

Wenn die Suspension zwischen den dampfbeheizten Ringsegmenten 6a auf dem vorstehend beschriebenen Weg hindurchströmt, bilden sich in der Suspension Dampfbläschen, die in der Suspension einen Mammut-Pumpeneffekt hervorrufen: Die Suspensionsteilchen steigen zwischen den Ringsegmenten 6a nach oben, bewegen sich radial nach innen und gelangen aufeinertrombenförmigen Umwälzbahn durch das Leitrohr 7 hindurch in den unter der Heizung 6 liegenden Raum der Heizkammer 8, 9, 10 oder 11, um von dort zwischen den Ringsegmenten 6a wieder nach oben zu steigen. Diese trombenförmige Umwälzbahn 26 ist in Figur 1 in der dritten Apparatekammer 1 schematisch angedeutet.When the suspension flows between the steam-heated ring segments 6a in the manner described above, vapor bubbles form in the suspension, which produce a mammoth pump effect in the suspension: the suspension particles rise upwards between the ring segments 6a, move radially inwards and reach a trombone-shaped one Circulation path through the guide tube 7 into the space of the heating chamber 8, 9, 10 or 11 lying under the heater 6, in order to rise from there again between the ring segments 6a. This drum-shaped circulation path 26 is indicated schematically in FIG. 1 in the third apparatus chamber 1.

Figur 1 zeigtfür die einzelnen Apparatekammern 1 umfangsversetzte Längsschnitte. In der obersten Apparatekammer 1 sowie in der dritten Apparatekammer ist jeweils eine Trennwand 12 mit einem Überlauf 23 entsprechend der Trennwand zwischen den Heizkammern 9 und 10 dargestellt, während die zwite und unterste Apparatekammer Trennwände 12 gemäß den Trennwänden zwischen den Heizkammern 8 und 9 bzw. 10 und 11 zeigen.Figure 1 shows circumferentially offset longitudinal sections for the individual apparatus chambers 1. In the uppermost apparatus chamber 1 and in the third apparatus chamber, a partition wall 12 with an overflow 23 corresponding to the partition wall between the heating chambers 9 and 10 is shown, while the second and bottom apparatus chamber partition walls 12 according to the partition walls between the heating chambers 8 and 9 and 10, respectively and 11 show.

Claims (16)

1. Process for continuous crystallization by evaporation in a suspension comprising juice and crystals for sugar production, in which concentrated inflow solution and pied-de-cuite magma are continuously fed into a first treatment space and product magma is continuously drawn off from the last treatment space, with the suspension being guided successively through a plurality of mutually separated round treatment spaces and being subjected to an internal circulatory flow in each treatment space with simultaneous heat supply, and being supplied, with the level controlled, from the individual treatment spaces to the respectively next succeeding treatment space, characterized in that the suspension circulates once in each treatment space in a spiral path which is produced by the superposing of a restricted circular movement caused by feeding in further suspensions about the axis of the treatment space and of a circulatory movement generated by the airlift pump effect occurring in the heating region.
2. Process according to Claim 1, characterized in that the suspension is also guided alternately upwards and downwards on the restricted circular path so that an undulating spiral path is produced.
3. Process according to Claim 1 or 2, characterized in that the transfer of suspension from one treatment space to the next succeeding treatment space occurs as a free overflow.
4. Process according to Claim 3, characterized in that the level of suspension in each treatment space is regulated by controlling the overflow level.
5. Process according to one of the preceding claims, characterized in that at least in some treatment spaces syrup is additionally fed in in regulated manner.
6. Apparatus for carrying out the process according to one of the preceding claims, with treatment spaces which are arranged one above the other as mutually separated cylindrical apparatus chambers (1) and have a chamber base (2) tapering downwards in the shape of a cone, a heating system (6) through which heating medium flows and which has intermediate spaces through which the suspension flows, and apparatus (3, 4, 5) for removing the vapours and for transferring the suspension from the upper to the respectively lower apparatus chamber (1), characterized in that the heating system (6) of each apparatus chamber (1) is arranged around a central guide tube (7) open at the top and bottom, and comprises a plurality of heating chambers (8-11) which are delimited from one another with respect to their intermediate spaces through which the suspension flows by separating walls (12) which are arranged with the same angular spacing from one another in the peripheral direction, but with these heating chambers being flow- connected to one another in the peripheral direction by defined flow cross sections (22, 23) which form in the peripheral direction a restricted guidance forthe suspension, with the first heating chamber (8), as seen in the direction of flow of the suspension, having a suspension inlet (18) and the last heating chamber (11) having a suspension overflow (19) which is connected to the suspension inflow (18) of the apparatus chamber (1) lying below it.
7. Apparatus according to Claim 6, characterized in that the guide tube (7) is divided by the said separating walls (12) into segments (13) which are closed on the casing side and are connected to the associated heating chamber (8-11) for the suspension in a flow-exchanging manner only on the base and cover side.
8. Apparatus according to Claim 7, characterized in that the upper edge of the guide tube (7) is flush with the respectively upper edge of the heating system (6).
9. Apparatus according to Claim 6, 7 or 8, characterized in that, to form the said defined flow cross sections (22, 23) between two heating chambers (8, 9; 9, 10; 10, 11) a separating wall (12) projects in each case alternately above the maximum suspension level (20), but has below the heating system (6) above the conical chamber base (2) a suspension circulation opening (22), while the following separation wall (12), as seen in the direction of flow of the suspension, has an upper overflow (23) into the successive heating chamber (10) and is closed off at the bottom in flow-tight manner by the chamber base (2).
10. Apparatus according to one of Claims 6 to 9, characterized in that the heating system (6) comprises double-walled annular segments (6a) arranged concentrically and spaced from one another.
11. Apparatus according to Claim 10, characterized in that at least two diametrically opposed separating walls (12) are constructed with hollow walls and connect the associated annular segments (6a) of the heating system (6) to one another as regards flow.
12. Apparatus according to one of Claims 6 to 11, characterized by adjustable overflow flap valves (21) for adjusting the suspension level (20) in each apparatus chamber (1).
13. Apparatus according to one of Claims 6 to 12, characterized in that each chamber base (2) has a central flow cone (3).
14. Apparatus according to Claim 13, characterized in that the said flow cone (3) at the same time forms for vapour removal a chimney hood which merges towards the top with a perpendicular central vapour tube (4).
15. Apparatus according to one of Claims 6 to 14, characterized in that a valve-controlled feed line (24) for additional syrup opens into the suspension inlet (18) of each apparatus chamber (1
16. Apparatus according to one of Claims 6 to 15, characterized in that driven stirring or mixing tools are provided in the lowest apparatus chamber (1) or the lower apparatus chambers (1).
EP85114973A 1985-05-15 1985-11-26 Process and apparatus for the continuous crystallization in the preparation of sugar Expired - Lifetime EP0201629B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853517511 DE3517511A1 (en) 1985-05-15 1985-05-15 COOLING CRYSTALIZATION TOWER FOR SUGAR MAGMA
DE3517511 1985-05-15

Publications (3)

Publication Number Publication Date
EP0201629A2 EP0201629A2 (en) 1986-11-20
EP0201629A3 EP0201629A3 (en) 1988-08-24
EP0201629B1 true EP0201629B1 (en) 1990-09-19

Family

ID=6270802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85114973A Expired - Lifetime EP0201629B1 (en) 1985-05-15 1985-11-26 Process and apparatus for the continuous crystallization in the preparation of sugar

Country Status (2)

Country Link
EP (1) EP0201629B1 (en)
DE (2) DE3517511A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1208242B (en) * 1987-02-11 1989-06-12 Eridania PROCEDURE AND DEVICE FOR THE CRYSTALLIZATION OF MEDIUM AND LOW PURITY MASSECOTTE
IT1232751B (en) * 1989-06-14 1992-03-05 Eridania PROCEDURE AND DEVICE FOR THE CONTINUOUS WHOLESALE OF THE PREFORMED MASSECOTTE CRYSTALS
BR0111644B1 (en) 2000-06-01 2010-12-28 continuous vacuum tank and method of crystallization of the solute of a solution.
WO2003016576A1 (en) 2001-08-14 2003-02-27 Bruce Stclair Moor Continuous pan crystalliser
BRPI0621429B1 (en) * 2006-03-30 2020-11-03 Spray Engineering Devices Limited vertical pan-type apparatus for continuous sugar crystallization
US20110297331A1 (en) 2008-10-01 2011-12-08 Tongaat Hulett Limited Continuous Vacuum Pan
CN106512461B (en) * 2016-11-30 2019-04-12 江苏润普食品科技股份有限公司 A kind of the low-temperature evaporation crystallization apparatus and technique of granular calcium propionate
DE102019123903B4 (en) 2019-09-05 2023-01-12 Bma Braunschweigische Maschinenbauanstalt Ag Cooling crystallizer and process for sugar crystallization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE971480C (en) * 1955-07-29 1959-02-05 Ernst Dr Lange Multi-section evaporator with vertical heating pipes for the sugar industry
DE1054065B (en) * 1958-05-08 1959-04-02 Buckau Wolf Maschf R Ring heating chamber with step switching for vacuum cooker
FR1486046A (en) * 1966-07-06 1967-06-23 Lang Gepgyar Vacuum concentration apparatus
ZA775459B (en) * 1977-09-12 1979-02-28 Huletts Sugar Improvements in continuous vacuum crystallisers
DE3120732A1 (en) * 1981-05-25 1982-12-09 Erich Prof. Dr. 3340 Wolfenbüttel Reinefeld "METHOD AND DEVICE FOR CONTINUOUS EVAPORATION CRYSTALIZATION"
DE3203141C2 (en) * 1982-01-30 1983-12-01 Salzgitter Maschinen Und Anlagen Ag, 3320 Salzgitter Method and device for cooling sugar filling mass in a vertical mash
DE3336112C1 (en) * 1983-10-05 1985-03-07 Selwig & Lange GmbH, 3300 Braunschweig Vertical cooling mixer for sugar magma having vertically oscillating agitator elements

Also Published As

Publication number Publication date
DE3517511A1 (en) 1986-11-20
EP0201629A2 (en) 1986-11-20
DE3579811D1 (en) 1990-10-25
DE3517511C2 (en) 1988-11-24
EP0201629A3 (en) 1988-08-24

Similar Documents

Publication Publication Date Title
EP0229356B1 (en) Multi-stage counter-current washing arrangement, its application and ancillary operating procedures
EP0201629B1 (en) Process and apparatus for the continuous crystallization in the preparation of sugar
EP0065775B1 (en) Process and apparatus for continuous evaporative crystallisation
DE2355106C3 (en) Method and device for the exchange of substances between heterogeneous systems
DE1275507B (en) Thin film evaporator
DE2924458A1 (en) EXTRACTION UNIT FOR SOLVENT EXTRACTION
DE1442629C3 (en) Device for carrying out digestion processes by wet treatment
CH677616A5 (en)
DE2441384A1 (en) FORCED CIRCULATION EVAPORATOR
DE69013906T2 (en) METHOD AND DEVICE FOR REGULATING THE LIQUID CURRENT IN A VERTICAL VAPOR GENERATOR.
CH686931A5 (en) Duennschichtverdampfer.
DE1667242C3 (en) Device for contacting a gas with a liquid
CH667016A5 (en) METHOD AND DEVICE FOR SEPARATING A NON-AZEOTROPIC LIQUID MIXTURE.
CH640423A5 (en) FABRIC EXCHANGE DEVICE, ESPECIALLY FOR EXTRACTION.
DE2543898A1 (en) PROCESS FOR COLLECTING AND SIMULTANEOUSLY SEPARATING A LIQUID AND A GAS
DE1922982C3 (en) Device for water treatment by means of a multi-gap clarifier
DE703726C (en) Device for vaporizing or boiling liquids, especially sugar juices
EP0621076B1 (en) Method for the separation of solids
DE2815700B2 (en) Pressure vessel for the continuous separation of sulfur from an aqueous sulfur suspension
DE1088028B (en) Method and device for the continuous extraction of two liquid phases of different specific weights
DE3529983A1 (en) EVAPORATOR
CH281743A (en) Process for concentrating liquids by evaporation and equipment for carrying out the process.
DE69307359T2 (en) Improved device for crystallization by evaporation
DE3203524A1 (en) Cooling mixer
DE3346078C1 (en) Apparatus for the continuous production of preserves or jams

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR IT NL

17P Request for examination filed

Effective date: 19880719

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRAUNSCHWEIGISCHE MASCHINENBAUANSTALT AG

17Q First examination report despatched

Effective date: 19890825

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT NL

REF Corresponds to:

Ref document number: 3579811

Country of ref document: DE

Date of ref document: 19901025

ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911106

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST