EP0198700B1 - Buse annulaire et procédé pour son utilisation - Google Patents

Buse annulaire et procédé pour son utilisation Download PDF

Info

Publication number
EP0198700B1
EP0198700B1 EP86302759A EP86302759A EP0198700B1 EP 0198700 B1 EP0198700 B1 EP 0198700B1 EP 86302759 A EP86302759 A EP 86302759A EP 86302759 A EP86302759 A EP 86302759A EP 0198700 B1 EP0198700 B1 EP 0198700B1
Authority
EP
European Patent Office
Prior art keywords
slurry
segment
gas
annular
passageway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86302759A
Other languages
German (de)
English (en)
Other versions
EP0198700A3 (en
EP0198700A2 (fr
Inventor
Stanley R. Pearson
Charles W. Lipp
Douglas D. Merrick
William P. White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of EP0198700A2 publication Critical patent/EP0198700A2/fr
Publication of EP0198700A3 publication Critical patent/EP0198700A3/en
Application granted granted Critical
Publication of EP0198700B1 publication Critical patent/EP0198700B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions

Definitions

  • the present invention concerns the production of synthetic gas or fuel gas containing hydrogen and carbon monoxide which is formed by partially oxidizing a slurry of solid carbonaceous fuel and a carrier liquid admixed with a gas containing free oxygen in a hollow free-flowing reactor. More particularly, this invention concerns an improved burner nozzle for admixing the slurry and oxygen-containing gas, and then introducing the admixture into a reactor.
  • annular-type burners are shown in US-A-4,364,744 and US-A-4,443,230.
  • Problems that have been addressed with such burner nozzles include mixing to provide proper distribution of the fuel and oxygen in the admixture, atomization of the admixture, stability of burner nozzle operation, reduction of localized overheating in the reactor and burner nozzle, and reduction of mechanical wear of the burner nozzle.
  • slurries containing a high concentration of divided solids also tend to plug or partially plug annular passageways as they are transported through the burner nozzles.
  • US A-4,443,230 discloses the partial oxidation of a slurry of carbonaceous fuel using a nozzle through which four feedstreams are simultaneously introduced into a reactor.
  • the nozzle has a central conduit coaxially surrounded by three concentric annular conduits. All four conduits are closed at their upstream ends except for inlets for the respective feedstream and are open at their downstream ends.
  • the carbonaceous fuel slurry is the feedstream to the innermost of the annular conduits and the other three feedstreams are oxygen-containing gas.
  • the central conduit and innermost annular conduit both converge near their downstream ends to terminate in cylindrical portions which discharge their respective feedstreams in the axial direction.
  • the outer two conduits converge at their downstream ends and, depending upon the embodiment, can discharge their respective feedstreams in or towards the axial direction.
  • the tips of the three annular conduits can be progressively retracted to provide a diverging frusto-conical discharge zone in which some mixing of the feedstreams may take place. However, most of the mixing takes place in the reactor.
  • the present invention provides an improved burner nozzle and process for making a synthesis gas or fuel gas mixture containing hydrogen and carbon monoxide by the partial oxidation of a slurry of solid carbonaceous fuel in a liquid carrier admixed with a gas containing free oxygen, the partial oxidation occuring in a free-flowing hollow reactor.
  • the burner nozzle By means of the burner nozzle, the slurry and oxygen-containing gas are admixed, atomized and introduced into the reactor.
  • the gas is produced in the reactor at a temperature of from about 1700°F (930°C) to about 3500°F (1930°C) and a pressure from about atmospheric to about 3500 pounds per square inch (0.1 to 24 MPa).
  • Processes and reactors for producing such a gas are generally illustrated and described in U.S. Patents 2,716,598; 3,607,156; and 3,607,157.
  • the raw gas produced also contains additional by-product gases such as nitrogen, carbon dioxide and hydrogen sulfide, as well as particulate matter, which usually requires additional processing to remove the same before final use of the product gas.
  • An inorganic slag by-product may also be produced in the reactor along with the product gas.
  • One embodiment of the present invention provides an improved process for making a gas mixture containing hydrogen and carbon monoxide by the partial oxidation of a slurry of solid carbonaceous fuel in a liquid carrier admixed with a gas containing free oxygen, the partial oxidation occurring in a free-flowing hollow reactor, which process comprises:
  • a further embodiment of the present invention provides a burner nozzle for a free flowing hollow reactor used to make a gas mixture containing hydrogen and carbon monoxide by a process of partially oxidizing a slurry of solid carbonaceaus fuel in a liquid carrier admixed with a gas containing free oxygen
  • a central conduit forming a central passageway for transporting a gas stream containing free oxygen
  • a second spaced coaxial conduit forming a second annular passageway between the central and second conduits for transporting a stream of slurry
  • a third spaced coaxial conduit forming a third annular passageway between the second and third conduits for transporting a second gas stream containing free oxygen
  • the first, second, and third passageways being closed at their upstream ends wherein inlets are provided for a gas feedstream and a slurry feedstream and open at downstream discharge ports formed by the termination of the central, second, and third conduits
  • a nozzle diffuser interconnecting with and disposed near the end of the third conduit, and in
  • the second passageway formed by the central and second conduits includes a first elongate segment and a second elongate segment, the first segment extending from the slurry feed inlet and converging into the second segment which in turn extends to its discharge port formed by the termination of the central and second conduits, the cross-sectional area of the first segment being substantially larger than the cross-sectional area of the second segment thereby providing a pressure of the slurry stream in the first segment which is substantially uniform throughout the annular area of the first segment at the point where it converges and interconnects with the second segment.
  • the present invention also provides an improved plug resistant nozzle which can be used in other applications such as their use as spray nozzles during aeration of waste sluge in waste disposed plants.
  • the nozzle has been designed to provide an efficient and uniform admixture of a slurry having a high concentration of finely divided solids with a gas while, at the same time, reducing the tendency of such a concentrated slurry to partially or completely plug annular passageways in the nozzle.
  • the nozzle of the present invention may also be used in other applications where nozzles are required to handle slurries having a high concentration of finely divided solids that must be uniformly admixed with a gas, as for example, in the aeration or incineration processes of a waste disposal plant.
  • means are provided to reduce plugging by the separation of solids in the slurry passageways and providing uniform flow over the entire passageway cross-section, which means include maintaining a uniform annular pressure in the annular slurry passageways. This characteristic makes the nozzle not only useful as a gasification burner nozzle, but also for other nozzle applications as well.
  • the present burner nozzle comprises a central conduit with coaxial second and third conduits surrounding the central conduit which form a central passageway and two annular passageways.
  • the central and annular passageways are closed at their upstream ends wherein inlets are provided for gas and slurry feedstreams, and are open at their downstream discharge ports formed by the termination of the central and annular conduits.
  • the burner nozzle includes a nozzle diffuser interconnecting with and disposed near the end of the third conduit which is in a juxtaposed position downstream from the discharge ports of the central and first annular passageway.
  • the burner nozzle also includes an elongate exit orifice interconnected with the diffuser.
  • a gas feedstream and slurry feedstream are introduced into upstream inlets.
  • the gas feedstream is split and passes through the central axial passageway and through the outer annular passageway while the slurry feedstream simultaneously passes through the middle annular passageway between the central passageway and outer annular passageway, thereby enveloping the annular slurry stream between a central axial stream of oxygen-containing gas and an outer annular stream of the same gas.
  • the slurry stream and gas streams are discharged through the discharge parts of their respective passageways and the slurry stream and outer gas stream are then impinged on a converging surface of the nozzle diffuser, whereby the slurry stream and gas streams are mixed by the impact of the slurry on the converging surface of the diffuser and the shearing action of the gas streams to produce a uniformly dispersed atomized admixture of finely divided solid carbonaceaous fuel liquid carrier and gas containing free oxygen.
  • This admixture is then passed through an elongate exit orifice at an accelerated velocity to further atomize the admixture before it enters the reactor.
  • Burner nozzle 10 includes a central conduit 1 forming a passageway 4; a second coaxial annular conduit 2 forming an annular passageway 5; and a third coaxial annular conduit 3 forming an annular passageway 6.
  • the passageway 5 is held in a spaced relationship with passageways 4 and 6 by spacers 17. Spacers 17 should be kept to a minimum to avoid unnecessary disruption of the slurry stream flow in passageway 5.
  • the passageways 4, 5 and 6 are closed at their upstream ends by walls 7a, 7b and 7c wherein inlets 15 and 16 are provided for slurry and gas feedstreams.
  • a distribution chamber 18 is provided to uniformly transport the slurry feedstream into the annular passageway 5.
  • the passageways 4, 5 and 6 have discharge ports 8a, 8b, and 8c at their downstream ends formed by the termination of conduits 1, 2 and 3.
  • a tube 19 is used to provide open communication between passageways 4 and 6 for the transport of the gas feedstream.
  • the burner nozzle 10 also includes a nozzle diffuser 9 having a converging surface 9a for impinging the slurry passing through passageway 5 and the gas passing through passageway 6, and an elongate exit orifice 11 to transport the admixture of slurry and oxygen-containing gas into the reactor at an accelerated velocity.
  • the diffuser 9 is a continuing extension of conduit 3.
  • the diffuser 9 As a result of the harsh environment to which the diffuser 9 is subjected, i.e., high temperatures, chemical attack, and mechanical wear, it is an advantage, if not a necessity, to construct the diffuser 9 from a material, for example, which has high corrosion resistance, toughness, and wear characteristics, such as tungsten carbide, or silicon carbide, whereas the remainder of the nozzle 10 can be constructed of a metal such as stainless steel. It is also an advantage to provide a water jacket 12 having a water inlet 13 and outlet 14 to cool the diffuser 9 and walls 11a of the orifice 11.
  • the orifice 11 of nozzle 10 has a cylindrical design, but may have diverging or converging walls 11a.
  • the length of the orifice 11 is beneficially longer than its diameter to provide for additional time in a zone of high shear for the slurry/gas mixture, and for a high degree of atomization of the admixture transported into the reactor.
  • burner nozzle 30 includes modification of both the central and second annular conduit, thus changing the central gas passageway and the slurry passageway, as well as including changes in the nozzle diffuser and exit orifice.
  • burner nozzle 30 includes annular conduit sections 31a and 31b which form an annular passageway with a first segment 32a and a second segment 32b.
  • the cross-sectional area of segment 32a is substantially larger than the cross-section of segment 32b.
  • the slurry feedstream from the inlet 15 is fed directly into segment 32a, thereby eliminating the need for the gas tuba 19 of nozzle 10 and allowing direct flow of the gas feedstream into passageways 4 and 6. This provides much less disruption of the slurry flow in passageway segments 32a and 32b. If necessary, fasteners 34 may be included to overcome any structure weakness.
  • Burner nozzle 30 also includes a ceramic nozzle diffuser 33 having a converging surface 9a for impinging the slurry stream from passageway segment 32b and the gas stream from passageway 6, which diffuser 33 is held in place by conduit 3.
  • a ceramic nozzle diffuser 33 having a converging surface 9a for impinging the slurry stream from passageway segment 32b and the gas stream from passageway 6, which diffuser 33 is held in place by conduit 3.
  • Ceramic materials that can be used to make the diffuser 33, for example, a dense-phase alumina refractory. Use of a ceramic diffuser not only provides the diffusion surface 9a, but also insulates the nozzle from the heat produced in the reactor.
  • nozzle 10 includes the distribution chamber 18 and nozzle 30 includes the combined segments 32a and 32b that form the slurry passageway.
  • the upstream chamber or segment of the passageway for the slurry stream has a substantially larger cross-sectional area than the downstream segment.
  • a nozzle designed like nozzle 30 was constructed of metal pipe wherein the central gas stream passageway had about a three inch ( 8 cm) diameter and 16 inch ( 41 cm) length, and the first segment of the slurry passageway had an annular cross-sectional thickness of about one and one-half inches ( 4 cm) around the central passageway and a 4 inch (10 cm) length, and the second segment of the slurry passageway had an annular cross-sectional thickness of about one quarter of an inch (0.6 cm) and a 12 inch (30 cm) length.
  • the slurry stream in the larger upstream chamber or segment provides a substantially uniform pressure throughout the annular area of the upstream segment at the point where the upstream segment interconnects with the downstream annular portion of the passageway, thus substantially reducing flow variations around the annular flowpath of the slurry stream. It has been also found that this uniform annular pressure at the point of interconnection can be substantially maintained by designing the upstream portion of the slurry passageway from the inlet downstream to the point of interconnection with the annular portion of the passageway so that the pressure drop is about 20 percent or less of the pressure drop that occurs in the annular portion of the slurry passageway downstream to its discharge port.
  • the gas stream passing through the central axial passages should have an exit discharge velocity from about 75 feet per second (23 m/s) to about sonic velocity.
  • the gas stream passing through the outer annular passageway should have an exit discharge velocity of from about 75 feet per second (23 m/s) to about sonic velocity.
  • the slurry stream passing through the second or middle annular passageway should have an exit discharge velocity from about 1 to about 50 feet per second (0.3 to 15 m/s).
  • the velocity of the combined admixture of slurry and gas through the exit orifice of the nozzle into the reactor should be from about 100 feet per second (30 m/s) to about sonic velocity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (9)

  1. Procédé d'obtention d'un mélange gazeux contenant de l'hydrogène et du monoxyde de carbone par l'oxydation partielle d'une suspension de combustible carboné solide dans un porteur liquide mélangé avec un gaz contenant de l'oxygène libre, l'oxydation partielle se produisant dans un réacteur creux à écoulement libre, dans lequel un premier flux de gaz contenant de l'oxygène libre passe à travers un premier passage formé par un conduit central d'un brûleur avec une vitesse de sortie allant de 23 m/s (75 pieds/s) à la vitesse du son, la buse du brûleur comprenant des second et troisième conduits coaxiaux espacés entourant le conduit central en formant un second passage annulaire entre le conduit central et le second conduit et un troisième passage annulaire entre les second et troisième conduits, les premier, second et troisième passages étant fermés à leurs extrémités amont dans lesquelles des entrées sont prévues pour un flux d'amenée de gaz et un flux d'amenée de suspension et ouverts aux orifices de décharge aval ; un second flux de gaz contenant de l'oxygène libre passe simultanément à travers le troisième passage annulaire avec une vitesse de sortie allant de 23 m/s (75 pieds/s) à la vitesse du son ; et un flux de la suspension passe simultanément à travers le second passage annulaire avec une vitesse de sortie allant de 0,3 à 15 m/s (1 à 50 pieds/s) ; caractérisé en ce que le flux de suspension et le second flux de gaz se heurtent contre une surface convergente d'un diffuseur de buse, de sorte que le flux de suspension et les premier et second flux de gaz sont simultanément mélangés par le choc de la suspension contre la surface convergente et par l'action de cisaillement des premier et second flux de gaz pour former un mélange atomisé, dispersé uniformément, de combustible carboné solide, finement divisé, de porteur liquide et de gaz contenant de l'oxygène libre ; le mélange passe à travers un orifice de sortie allongé à une vitesse accélérée allant de 30 m/s (100 pieds/s) à la vitesse du son pour atomiser davantage le mélange avant qu'il n'entre dans le réacteur, et ledit mélange réagit dans le réacteur pour former le mélange gazeux partiellement oxydé contenant de l'hydrogène et du monoxyde de carbone.
  2. Procédé selon la revendication 1, dans lequel les orifices de décharge des premier et second passages sont situés à l'intérieur d'une zone convergente définie à l'extrémité de décharge du troisième conduit par la surface convergente du diffuseur de la buse.
  3. Procédé selon l'une quelconque des précédentes revendications, dans lequel le second conduit comprend une chambre de distribution ou segment annulaire, ladite chambre ou segment annulaire s'étendant depuis l'entrée d'amenée de suspension vers le second passage annulaire, ou la partie restante de celui-ci, et ayant une superficie de section sensiblement supérieure au second passage annulaire, ou à la partie restante de celui-ci, ce qui donne de cette manière une pression sensiblement uniforme du flux de suspension dans toute la superficie annulaire où elle est reliée au second passage annulaire, ou à la partie restante de celui-ci.
  4. Procédé selon la revendication 1 ou 2, dans lequel le second passage comprend un premier segment allongé et un second segment annulaire allongé, le premier segment allongé s'étendant depuis l'entrée d'amenée de suspension et convergeant dans le second segment qui à son tour s'étend vers l'orifice de décharge, la superficie de section du premier segment étant sensiblement supérieure à la superficie de section du second segment, ce qui donne une pression du flux de suspension dans le premier segment qui est sensiblement uniforme dans toute la superficie annulaire du premier segment au point où il converge dans le second segment et est relié à celui-ci.
  5. Procédé selon la revendication 3 ou 4, dans lequel la chute de pression du flux de suspension depuis l'entrée d'amenée de suspension jusqu'audit point d'interconnexion est de vingt pour cent ou moins de la chute de pression du flux de suspension depuis le point d'interconnexion jusqu'à l'orifice de décharge du second segment.
  6. Buse de brûleur pour un réacteur creux à écoulement libre utilisé pour faire un mélange gazeux contenant de l'hydrogène et du monoxyde de carbone par un procédé d'oxydation partielle d'une suspension de combustible carboné solide dans un porteur liquide. mélangé avec un gaz contenant de l'oxygène libre, ladite buse comprenant un conduit central (1) formant un passage central (4) pour transporter un flux de gaz contenant de l'oxygène libre ; un second conduit (31) espacé coaxialement, formant un second passage annulaire (32) entre le conduit central et le second conduit pour transporter un flux de suspension ; un troisième conduit (3) espacé coaxialement, formant un troisième passage annulaire (6) entre les second et troisième conduits pour transporter un second flux de gaz contenant de l'oxygène libre ; les premier, second et troisième passages étant fermés à leurs extrémités amont dans lesquelles des entrées (15, 16) sont prévues pour un flux d'amenée de gaz et un flux d'amenée de suspension et ouverts aux orifices de décharge aval (8) formés par la terminaison du conduit central et des second et troisième conduits, caractérisée en ce que la buse comprend en outre un diffuseur (33) de buse relié à l'extrémité du troisième conduit et disposé près de celle-ci, et dans une position juxtaposée en aval des orifices de décharge du passage central et du second passage, le diffuseur ayant une surface convergente (9a) contre laquelle le flux de suspension et le second flux de gaz se heurtent pour mélanger simultanément les flux de suspension et de gaz par le choc de la suspension contre la surface convergente et l'action de cisaillement des premier et second flux de gaz pour produire un mélange atomisé, dispersé de façon uniforme, de combustible carboné solide finement divisé ; et un orifice de sortie allongé (11) relié au diffuseur à travers lequel le mélange de suspension et de gaz contenant de l'oxygène libre est transporté à une vitesse accélérée dans le réacteur.
  7. Buse de brûleur selon la revendication 6, dans laquelle le second passage (32) formé par le conduit central et le second conduit comprend un premier segment allongé (32a) et un second segment allongé (32b), le premier segment s' étendant depuis l'entrée d'amenée de suspension et convergeant dans le second segment qui à son tour s'étend vers l'orifice de décharge (8b) formé par la terminaison du conduit central et du second conduit, la superficie de section du premier segment étant sensiblement supérieure à la superficie de section du second segment, ce qui donne une pression du flux de suspension dans le premier segment qui est sensiblement uniforme dans toute la superficie annulaire du premier segment au point où il converge dans le second segment et est relié à celui-ci.
  8. Buse selon la revendication 7, dans laquelle les superficies de section des premier et second segments sont proportionnées pour donner une chute de pression du flux de suspension depuis l'entrée d'amenée de suspension jusqu' au point où le premier segment est relié au second segment qui est de vingt pour cent ou moins de la chute de pression du flux de suspension depuis le point d'interconnexion jusqu'à l'orifice de décharge du second segment.
  9. Buse selon l'une quelconque des revendications 6, 7 et 8, dans laquelle les orifices de décharge des premier et second passages sont situés dans une zone convergente définie à l'extrémité de décharge du troisième conduit par la surface convergente du diffuseur de la buse.
EP86302759A 1985-04-16 1986-04-14 Buse annulaire et procédé pour son utilisation Expired - Lifetime EP0198700B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72376785A 1985-04-16 1985-04-16
US723767 1996-09-30

Publications (3)

Publication Number Publication Date
EP0198700A2 EP0198700A2 (fr) 1986-10-22
EP0198700A3 EP0198700A3 (en) 1987-06-03
EP0198700B1 true EP0198700B1 (fr) 1991-07-24

Family

ID=24907585

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86302759A Expired - Lifetime EP0198700B1 (fr) 1985-04-16 1986-04-14 Buse annulaire et procédé pour son utilisation

Country Status (11)

Country Link
EP (1) EP0198700B1 (fr)
JP (1) JPH0735887B2 (fr)
KR (1) KR930011069B1 (fr)
CN (1) CN1007881B (fr)
AU (1) AU583370B2 (fr)
CA (1) CA1288949C (fr)
DE (1) DE3680375D1 (fr)
IN (1) IN167217B (fr)
NZ (1) NZ215762A (fr)
TR (1) TR22939A (fr)
ZA (1) ZA862842B (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN167311B (fr) * 1985-04-16 1990-10-06 Dow Chemical Co
AU605388B2 (en) * 1988-02-17 1991-01-10 Shell Internationale Research Maatschappij B.V. Partial combustion burner with spiral-flow cooled face
US4887962A (en) * 1988-02-17 1989-12-19 Shell Oil Company Partial combustion burner with spiral-flow cooled face
US5261602A (en) * 1991-12-23 1993-11-16 Texaco Inc. Partial oxidation process and burner with porous tip
CN1298816C (zh) * 2005-03-08 2007-02-07 北京航天动力研究所 一种环保型可燃粉体洁净气化装置
SE534818C2 (sv) * 2010-05-06 2012-01-10 Cortus Ab Förfarande och anordning för införande av pulverformigt material i en förgasningsreaktor, varvid anordningen innefattar en lavaldysa
US8974557B2 (en) * 2011-06-09 2015-03-10 Good Earth Power Corporation Tunable catalytic gasifiers and related methods
CN103438447B (zh) * 2013-08-16 2016-05-18 武汉华尔顺冶金工程技术有限公司 水冷式石油焦粉燃烧器
WO2015198285A1 (fr) * 2014-06-27 2015-12-30 Tubitak Systeme d'alimentation en charbon
CN104327881B (zh) * 2014-10-16 2017-01-11 煤炭科学技术研究院有限公司 一种液态连续排渣固定床气化炉及其气化方法
CN113917068A (zh) * 2021-09-27 2022-01-11 聚光科技(杭州)股份有限公司 水中碳的检测系统和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338099A (en) * 1979-12-26 1982-07-06 Texaco Inc. Process for the partial oxidation of slurries of solid carbonaceous fuels

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2199850A5 (fr) * 1972-09-20 1974-04-12 Lillers Indle
US4364744A (en) * 1979-12-26 1982-12-21 Texaco Inc. Burner for the partial oxidation of slurries of solid carbonaceous fuels
GB2099843B (en) * 1981-06-10 1985-01-30 Texaco Development Corp Partial oxidation process
US4443230A (en) * 1983-05-31 1984-04-17 Texaco Inc. Partial oxidation process for slurries of solid fuel
GB8318195D0 (en) * 1983-07-05 1983-08-03 Shell Int Research Burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338099A (en) * 1979-12-26 1982-07-06 Texaco Inc. Process for the partial oxidation of slurries of solid carbonaceous fuels

Also Published As

Publication number Publication date
TR22939A (tr) 1988-12-08
CN1007881B (zh) 1990-05-09
JPH0735887B2 (ja) 1995-04-19
JPS61259016A (ja) 1986-11-17
AU583370B2 (en) 1989-04-27
CA1288949C (fr) 1991-09-17
EP0198700A3 (en) 1987-06-03
AU5606886A (en) 1986-10-23
ZA862842B (en) 1987-12-30
CN86102614A (zh) 1987-01-28
KR860008257A (ko) 1986-11-14
IN167217B (fr) 1990-09-22
KR930011069B1 (ko) 1993-11-20
DE3680375D1 (de) 1991-08-29
NZ215762A (en) 1989-03-29
EP0198700A2 (fr) 1986-10-22

Similar Documents

Publication Publication Date Title
EP0303439B1 (fr) Mélangeur et distributeur de gaz pour un réacteur
US4857076A (en) Annular nozzle
EP0198700B1 (fr) Buse annulaire et procédé pour son utilisation
AU747062B2 (en) Partial combustion of hydrogen sulphide
US5931978A (en) Process for preparing synthesis gas
US4752303A (en) Process for producing synthesis gas by partial oxidation of coal-water suspensions
US3984528A (en) Carbon black reactor and process
US3532462A (en) Method of effecting gas-phase reactions
US5188806A (en) Method and apparatus for producing carbon black
EP0237354A2 (fr) Buse
US4775314A (en) Coal gasification burner
US3615213A (en) Method and apparatus for the production of carbon black
US6244854B1 (en) Burner and combustion method for the production of flame jet sheets in industrial furnaces
US2772729A (en) Apparatus for combustion of hydrocarbons
US4294814A (en) Carbon black process and reactor
US6579085B1 (en) Burner and combustion method for the production of flame jet sheets in industrial furnaces
EP1680355B1 (fr) Procédé de reformage secondaire catalytique et réacteur permettant de mettre en oeuvre ledit procédé
GB2161593A (en) Method and apparatus for cooling a hot product gas
US3477816A (en) Method and apparatus for the production of carbon black
US3052288A (en) Apparatus for producing synthesis gas containing co and hx
US4224284A (en) Carbon black reactor
US3897217A (en) Carbon black production process and reactor
EP3917874B1 (fr) Procédé d'oxydation partielle
US4313921A (en) Carbon black process
EP0386655A3 (fr) Procédé et appareil de production de noir de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB

17P Request for examination filed

Effective date: 19871124

17Q First examination report despatched

Effective date: 19880929

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3680375

Country of ref document: DE

Date of ref document: 19910829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970314

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

BERE Be: lapsed

Owner name: THE DOW CHEMICAL CY

Effective date: 19980430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050314

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050429

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20060413