EP0198303A1 - Anodic oxidation process of water soluble leucotriphenyl methane dye compounds - Google Patents

Anodic oxidation process of water soluble leucotriphenyl methane dye compounds Download PDF

Info

Publication number
EP0198303A1
EP0198303A1 EP86104339A EP86104339A EP0198303A1 EP 0198303 A1 EP0198303 A1 EP 0198303A1 EP 86104339 A EP86104339 A EP 86104339A EP 86104339 A EP86104339 A EP 86104339A EP 0198303 A1 EP0198303 A1 EP 0198303A1
Authority
EP
European Patent Office
Prior art keywords
compounds
leuco
anodic oxidation
dye
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86104339A
Other languages
German (de)
French (fr)
Other versions
EP0198303B1 (en
Inventor
Horst Dr. Bruder
Wolfgang Habermann
Udo Dr. Mayer
Peter Dr. Hammes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0198303A1 publication Critical patent/EP0198303A1/en
Application granted granted Critical
Publication of EP0198303B1 publication Critical patent/EP0198303B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • JP-OS 130481/1979 describes an electrochemical process for the preparation of triphenylmethane dyes by anodic oxidation of the corresponding leukotriphenylmethane compounds.
  • the oxidation takes place in an electrolysis cell, which is divided into two by a semi-permeable membrane made of unglazed porcelain.
  • a network of lead dioxide is used as the oxidation anode, the oxygen overvoltage of which is more than 700 mV at a current density of approximately 0.05 kA / m 2 .
  • the electrolysis takes place in the pH range between 6 and 7, current and material yields of 50 to 65%, based on the leuco compounds used, being obtained.
  • CI No. 42090 gives this process technology a cloudy and greenish blue dye that can only be used to a limited extent.
  • Type-specific products in high yield are obtained according to the prior art in the chemical oxidation of the leuco compound of the dye with CI No. 42090 with alkali dichromates. Difficulties here arise in separating the chromium compounds from the color, so that the color produced in this way is unsuitable for the food sector.
  • the object of the present invention was to develop a process which n 'oh which pure sulfonic acid group-containing diamino-triphenylmethane, preferably the dye with CI No. 42090, can be produced in high yield.
  • the invention relates to a process for the preparation of water-soluble 2 to 4 sulfonic acid groups containing diamino-triphenylmethane dyes, by anodic oxidation of the leuco compounds in a two-part electrolysis cell, which is characterized in that the leuco compounds are at a pH ⁇ 4, optionally in the presence of Mineral acid anions carrying oxygen atoms, oxidized anodically at an oxygen overvoltage of 400 mV.
  • the process according to the invention gives diamino-triphenylmethane dyes containing sulfonic acid groups in very pure form and in high yield. Particularly pure dyes are achieved when using an exchange membrane as a partition.
  • the process according to the invention is generally carried out in such a way that the solution of the leuco dye is introduced into the anode compartment of a divided electrolysis cell. A current-conducting solution is placed in the cathode compartment. The electrolysis takes place at an oxygen overvoltage of ⁇ 400 mV.
  • oxidizable leuco compounds include that of the dyes with the CI No. 42045, 4-2051, 42052, 42053, 42075, 42080, 42085, 42090, 42095, 42100, 42105, 42120, 42135, 42150, 42155 and 42165.
  • Possible mineral acid anions to be used are chlorates, perchlorates, nitrates, phosphates and mixtures thereof, preferably sulfates. These ions are the solutions of the leuco dyes in concentrations of 0.05 to 8 wt .-%, preferably from 0.5 to 4 wt .-%, based on the solution, when using 10 to 35% solutions, in the form of acids or added salts.
  • the anodic oxidation of the leuco solutions takes place at pH values ⁇ 4, preferably at pH values in the range from 0.5 to 2.5.
  • the oxygen overvoltage during the electrolytic oxidation is below 400 mV, in particular below 330 nV.
  • the dye is further oxidized by higher oxygen overvoltage, which reduces the yield.
  • Suitable anode materials are electrodes with a low oxygen overvoltage.
  • the oxygen overvoltage must not exceed 400 mV.
  • the anodes are, for example, electrically conductive ones with non-stoichiometric ones trical, oxidic compounds of platinum and / or iridium or valve metals doped with compounds of the platinum metal group, such as titanium, niobium or tantalum. Titanium or niobium electrodes doped with non-stoichiometric tantalum-iridium mixed oxides are particularly suitable.
  • activated carbon electrodes can also be used, for example graphite anodized in nitric acid, which is doped with molybdenum (VI), tungsten (VI) and / or vanadium (V) compounds.
  • molybdenum (VI) molybdenum
  • tungsten (VI) tungsten
  • V vanadium
  • Preferred dopants are those with molybdenum (VI) or vanadium (V) compounds which additionally contain titanium (III) and / or titanium (IV) compounds or iron (III) compounds.
  • Organic anion and cation exchangers have proven useful for separating the anode and cathode compartments.
  • Suitable ion exchangers are e.g. Polymers and copolymers of styrene, styrene and divinylbenzene, styrene and maleic anhydride, acrylic esters and divinylbenzene, olefins, perfluorinated olefins, vinyl chloride and acrylonitrile, which contain sulfonic acid and / or primary, secondary, tertiary or quaternary amine groups as charge-bearing groups.
  • Copolymers of tetrafluoroethylene with unsaturated perfluorinated ethers which contain carboxylic acid ester and / or sulfonic acid fluoride groups and copolymers of styrene and divinylbenzene (DVB content 4 to 8% by weight) with quaternary ammonium groups or sulfonic acid groups as charge carriers are particularly suitable.
  • Aqueous mineral acids, hydrochloric acids or alkalis can be used as catholytes when using cation exchange membranes, for separating the cathode and anode compartments.
  • Aqueous sulfuric acid or alkali solutions are preferably used.
  • alkali lyes the lye corresponding to the alkali application of the leuco dye is used, so that 25 to 35% by weight aqueous alkali lye can be obtained as a by-product.
  • anion exchange membranes aqueous alkali solutions, ammonia or alkali or ammonium carbonate or bicarbonate solutions are suitable as catholytes.
  • primary, secondary or tertiary amines for example those with C 1 -C 4 -alkyl radicals on the nitrogen atom, are preferably used against the alkali metal leaches optionally also have a hydroxyl and alkoxy group as substituents, in a concentration of 0.02% by weight to 10% by weight.
  • the aqueous solutions of the leuco compounds with the mineral acid anion additives are used as anolytes at a pH value of ⁇ 4.
  • the concentrations of leuco compounds in the anolyte should preferably be 5 to 30% by weight.
  • the current densities in the electrolysis can be 0.2 to 4 KA / m 2 , preferably 0.5 to 1.2 KA / m 2 .
  • the effective power supply for the leuco connection should be more than 100%, since oxygen is formed as a side reaction. Electricity offers of 105 to 130% are preferred, based on the leuco connection used.
  • the anodic oxidation of the leuco compounds preferably takes place at temperatures below the boiling point of the water, preferably at temperatures from +15 to +45 ° C.
  • Cation exchange membranes and dilute sulfuric acid are preferably used as the catholyte.
  • concentration of sulfuric acid is preferably 2-10% by weight.
  • a titanium flat profile electrode was used as anode, which was surface-doped with a non-stoichiometric tantalum-iridium mixed oxide and had an intermediate titanium suboxide layer.
  • a Luggin capillary was attached, via a power wrench with a silver / silver chloride reference electrode compound h a t-th.
  • a copper electrode is used as the cathode.
  • Aqueous 5% by weight sulfuric acid was added to the cathode compartment as the catholyte.
  • a 20% by weight aqueous solution of the leuco compound of the dye with CI No. was used as the anolyte. 42 090 used.
  • the leuco dye was obtained by condensation from o-sulfobenzaldehyde and N-ethylsulfobenzylaniline).
  • the anolyte was circulated through the anode compartment at an average speed of approximately 0.5 m / s and electrolyzed at a current density of 0.6 KA / m 2 .
  • the electrolysis was carried out at a cell voltage of 3.5 V at temperatures between +25 and +32 ° C.
  • Example 1 In an electrolytic cell with anolytes and catolytes as in Example 1, a solution of the leuco dye from Example 1 was electrolyzed by varying the current density and thus at different anode potentials. In these tests, depending on the anode potentials and overvoltages, the following current yields for the blue dye with CI No. 42 090: An overvoltage of> 400 mV and a current efficiency ⁇ 90% led to coloristically no longer usable dye.
  • Example 2 The oxidation was carried out as indicated in Example 1, but the leuco dyes indicated in the table were used. The corresponding dyes were obtained in high yields, good purity and good coloristic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

1. A process for the preparation of a water-soluble diaminotriphenylmethane dye containing from 2 to 4 sulfo groups by anodic oxidation of the leuco compound in an electrolysis cell which is divided into two compartments, wherein the leuco compound is subjected to anodic oxidation at an oxygen overvoltage of < 400 mV at a pH of =< 4, in the presence or absence of mineral acid anions carrying oxygen atoms.

Description

In der JP-OS 130481/1979 wird ein elektrochemisches Verfahren zur Herstellung von Triphenylmethanfarbstoffen durch anodische Oxidation der entsprechenden Leukotriphenylmethanverbindungen beschrieben. Bei diesem Verfahren erfolgt die Oxidation in einer durch eine halbdurchlässige Membran aus unglasiertem Porzellan zweigeteilten Elektrolysezelle. Als Oxidationsanode wird ein Netz aus Bleidioxid verwendet, dessen Sauerstoffüberspannung bei einer Stromdichte von ungefähr 0,05 kA/m2 mehr als 700 mV beträgt. Die Elektrolyse erfolgt im pH-Bereich zwischen 6 und 7, wobei Strom- und Materialausbeuten von 50 bis 65 %, bezogen auf die eingesetzten Leukoverbindungen erhalten werden. Bei der Oxidation der Leukoverbindung des Farbstoffs mit CI No. 42090 erhält man nach dieser Verfahrenstechnik einen trüben und grünstichigen Blaufarbstoff, der nur bedingt verwendet werden kann.JP-OS 130481/1979 describes an electrochemical process for the preparation of triphenylmethane dyes by anodic oxidation of the corresponding leukotriphenylmethane compounds. In this process, the oxidation takes place in an electrolysis cell, which is divided into two by a semi-permeable membrane made of unglazed porcelain. A network of lead dioxide is used as the oxidation anode, the oxygen overvoltage of which is more than 700 mV at a current density of approximately 0.05 kA / m 2 . The electrolysis takes place in the pH range between 6 and 7, current and material yields of 50 to 65%, based on the leuco compounds used, being obtained. When the leuco compound of the dye is oxidized with CI No. 42090 gives this process technology a cloudy and greenish blue dye that can only be used to a limited extent.

Typgerechte Produkte in hoher Ausbeute erhält man nach dem Stand der Technik bei der chemischen Oxidation der Leukoverbindung des Farbstoffs mit CI No. 42090 mit Alkalidichromaten. Schwierigkeiten bereitet hier die Abtrennung der Chromverbindungen aus dem Farbstoff, so daß auf diesem Wege hergestellter Farbstoff für den Lebensmittelsektor ungeeignet ist.Type-specific products in high yield are obtained according to the prior art in the chemical oxidation of the leuco compound of the dye with CI No. 42090 with alkali dichromates. Difficulties here arise in separating the chromium compounds from the color, so that the color produced in this way is unsuitable for the food sector.

Aufgabe der vorliegenden Erfindung war es, ein Verfahren zu entwickeln, n'ach welchem reine Sulfonsäuregruppen enthaltende Diamino-triphenylmethanfarbstoffe, vorzugsweise der Farbstoff mit CI No. 42090, in hoher Ausbeute hergestellt werden können.The object of the present invention was to develop a process which n 'oh which pure sulfonic acid group-containing diamino-triphenylmethane, preferably the dye with CI No. 42090, can be produced in high yield.

Diese Aufgabe wird mit Hilfe des erfindungsgemäßen Verfahrens durch Elektrolyse der entsprechenden Leukoverbindungen in einer zweigeteilten Elektrolysezelle gelöst. Dementsprechend betrifft die Erfindung ein Verfahren zur Herstellung von wasserlöslichen 2 bis 4 Sulfonsäuregruppen enthaltenden Diamino-triphenylmethanfarbstoffen, durch anodische Oxidation der Leukoverbindungen in einer zweigeteilten Elektrolysezelle, das dadurch gekennzeichnet ist, daß man die Leukoverbindungen bei einem pH-Wert ≤4, gegebenenfalls in Gegenwart von Sauerstoffatome tragenden Mineralsäureanionen, anodisch bei einer Sauerstoffüberspannung von 400 mV oxidiert.This object is achieved with the aid of the method according to the invention by electrolysis of the corresponding leuco compounds in a two-part electrolysis cell. Accordingly, the invention relates to a process for the preparation of water-soluble 2 to 4 sulfonic acid groups containing diamino-triphenylmethane dyes, by anodic oxidation of the leuco compounds in a two-part electrolysis cell, which is characterized in that the leuco compounds are at a pH ≤ 4, optionally in the presence of Mineral acid anions carrying oxygen atoms, oxidized anodically at an oxygen overvoltage of 400 mV.

Nach dem erfindungsgemäßen Verfahren erhält man Sulfonsäuregruppen enthaltende Diamino-triphenylmethanfarbstoffe in sehr reiner Form und hoher Ausbeute. Besonders reine Farbstoffe werden bei Verwendung einer Austauschermembran als Trennwand erzielt.The process according to the invention gives diamino-triphenylmethane dyes containing sulfonic acid groups in very pure form and in high yield. Particularly pure dyes are achieved when using an exchange membrane as a partition.

Das Verfahren gemäß der Erfindung wird im allgemeinen so durchgeführt, daß man in den Anodenraum einer geteilten Elektrolysenzelle die Lösung des Leukofarbstoffs einfüllt. In den Kathodenraum gibt man eine den Strom leitende Lösung. Die Elektrolyse erfolgt bei einer Sauerstoffüberspannung von < 400 mV.The process according to the invention is generally carried out in such a way that the solution of the leuco dye is introduced into the anode compartment of a divided electrolysis cell. A current-conducting solution is placed in the cathode compartment. The electrolysis takes place at an oxygen overvoltage of <400 mV.

Als oxidierbare Leukoverbindungen kommen z.B. die der Farbstoffe mit den CI No. 42045, 4-2051, 42052, 42053, 42075, 42080, 42085, 42090, 42095, 42100, 42105, 42120, 42135, 42150, 42155 und 42165 in Betracht. Bevorzugt sind die Leukoverbindungen der Farbstoffe mit den CI No. 42090, 42045, 42051, 42052, 42053, 42080, 42105, 42135 und 42165, insbesondere mit CI No. 42090.Examples of oxidizable leuco compounds include that of the dyes with the CI No. 42045, 4-2051, 42052, 42053, 42075, 42080, 42085, 42090, 42095, 42100, 42105, 42120, 42135, 42150, 42155 and 42165. The leuco compounds of the dyes with the CI No. 42090, 42045, 42051, 42052, 42053, 42080, 42105, 42135 and 42165, especially with CI No. 42090.

Als gegebenenfalls anzuwendende Mineralsäureanionen kommen Chlorate, Perchlorate, Nitrate, Phosphate und deren Gemische, vorzugsweise Sulfate in Betracht. Diese Ionen werden den Lösungen der Leukofarbstoffe in Konzentrationen von 0,05 bis 8 Gew.-%, vorzugsweise von 0,5 bis 4 Gew.-%, bezogen auf die Lösung, bei Verwendung 10 bis 35 %iger Lösungen, in Form der Säuren oder Salze zugesetzt.Possible mineral acid anions to be used are chlorates, perchlorates, nitrates, phosphates and mixtures thereof, preferably sulfates. These ions are the solutions of the leuco dyes in concentrations of 0.05 to 8 wt .-%, preferably from 0.5 to 4 wt .-%, based on the solution, when using 10 to 35% solutions, in the form of acids or added salts.

Die anodische Oxidation der Leukolösungen erfolgt bei pH-Werten ≤4, vorzugsweise bei pH-Werten im Bereich von 0,5 bis 2,5.The anodic oxidation of the leuco solutions takes place at pH values ≤4, preferably at pH values in the range from 0.5 to 2.5.

Die Sauerstoffüberspannung liegt während der elektrolytischen Oxidation bei unterhalb 400 mV, insbesondere bei unterhalb 330 nV. Durch höhere Sauerstoffüberspannung wird der Farbstoff weiter oxidiert, wodurch die Ausbeute sinkt.The oxygen overvoltage during the electrolytic oxidation is below 400 mV, in particular below 330 nV. The dye is further oxidized by higher oxygen overvoltage, which reduces the yield.

Geeignete Anodenmaterialien sind Elektroden mit einer geringen Sauerstoffüberspannung. Die Sauerstoffüberspannung darf Werte von 400 mV nicht übersteigen. Als Anoden kommen z.B. elektrisch leitende, mit nicht stöchiometrischen, oxidischen Verbindungen des Platins und/oder Iridiums oder mit Verbindungen der Platinmetallgruppe dotierte Ventilmetalle wie Titan, Niob oder Tantal in Betracht. Besonders geeignet sind mit nicht stöchiometrischen Tantal-Iridium-Mischoxiden dotierte Titan- oder Niobelektroden. An Stelle der dotierten Metallanoden können aber auch aktivierte Kohleelektroden verwendet werden, z.B. in Salpetersäure anodisch anoxidierter Graphit, der mit Molybdän(VI)-, Wolfram(VI)- und/oder Vanadium(V)-Verbindungen dotiert ist. Solche dotierten Graphitelektroden sind in der DE-OS 34 30 487 beschrieben. Bevorzugte Dotierungen sind solche mit Molybdän(VI)- oder Vanadium(V)-Verbindungen, die zusätzlich Titan(III)- und/oder Titan(IV)-Verbindungen oder Eisen(III)-Verbindungen enthalten.Suitable anode materials are electrodes with a low oxygen overvoltage. The oxygen overvoltage must not exceed 400 mV. The anodes are, for example, electrically conductive ones with non-stoichiometric ones trical, oxidic compounds of platinum and / or iridium or valve metals doped with compounds of the platinum metal group, such as titanium, niobium or tantalum. Titanium or niobium electrodes doped with non-stoichiometric tantalum-iridium mixed oxides are particularly suitable. Instead of the doped metal anodes, activated carbon electrodes can also be used, for example graphite anodized in nitric acid, which is doped with molybdenum (VI), tungsten (VI) and / or vanadium (V) compounds. Such doped graphite electrodes are described in DE-OS 34 30 487. Preferred dopants are those with molybdenum (VI) or vanadium (V) compounds which additionally contain titanium (III) and / or titanium (IV) compounds or iron (III) compounds.

Zur Trennung von Anoden- und Kathodenraum haben sich organische Anionen-und Kationenaustauscher bewährt. Geeignete Ionenaustauscher sind z.B. Polymerisate und Copolymerisate aus-Styrol, Styrol und Divinylbenzol, Styrol und Maleinsäureanhydrid, Acrylester und Divinylbenzol, Olefinen, perfluorierten Olefinen, Vinylchlorid und Acrylnitril, die als ladungstragende Gruppen Sulfonsäure und/oder primäre, sekundäre, tertiäre oder quatäre Amingruppen enthalten. Bevorzugt geeignet sind Copolymerisate aus Tetrafluorethylen mit ungesättigten perfluorierten Ethern, die Carbonsäureester- und/oder Sulfonsäurefluorid-Gruppen enthalten, sowie Copolymerisate aus Styrol- und Divinylbenzol (DVB-Anteil 4 bis 8 Gew.-%) mit quaternären Ammoniumgruppen oder Sulfonsäuregruppen als Ladungsträgern.Organic anion and cation exchangers have proven useful for separating the anode and cathode compartments. Suitable ion exchangers are e.g. Polymers and copolymers of styrene, styrene and divinylbenzene, styrene and maleic anhydride, acrylic esters and divinylbenzene, olefins, perfluorinated olefins, vinyl chloride and acrylonitrile, which contain sulfonic acid and / or primary, secondary, tertiary or quaternary amine groups as charge-bearing groups. Copolymers of tetrafluoroethylene with unsaturated perfluorinated ethers which contain carboxylic acid ester and / or sulfonic acid fluoride groups and copolymers of styrene and divinylbenzene (DVB content 4 to 8% by weight) with quaternary ammonium groups or sulfonic acid groups as charge carriers are particularly suitable.

Als Katolyte können bei Verwendung von Kationenaustauscher-Membranen, zur Trennung von Kathoden- und Anodenraum, wässrige Mineralsäuren, Salzsäuren oder Laugen benutzt werden. Vorzugsweise verwendet man wässrige Schwefelsäure oder Alkalilaugen. Im Falle der Anwendung von Alkalilaugen wird die dem Alkalikation des Leukofarbstoffs entsprechende Lauge verwendet, so daß als Nebenprodukt 25 bis 35 Gew.-% wässrige Alkalilauge gewonnen werden kann. Bei Verwendung von Anionenaustauscher-Membranen sind wässrige Alkalilaugen, Ammoniak oder Alkali- oder Ammoniumkarbonat- bzw. bikarbonatlösungen als Katolyte geeignet. Um Schäden an den Membranen zu vermeiden setzt man den Alkalilaugen vorzugsweise primäre, sekundäre oder tertiäre Amine, z.B. solche mit C1- bis C4-Alkylresten am Stickstoffatom, die gegebenenfalls eine Hydroxyl- und Alkoxygruppe als Substituenten haben, in einer Konzentration von 0,02 Gew.-% bis 10 Gew.-% hinzu.Aqueous mineral acids, hydrochloric acids or alkalis can be used as catholytes when using cation exchange membranes, for separating the cathode and anode compartments. Aqueous sulfuric acid or alkali solutions are preferably used. In the case of the use of alkali lyes, the lye corresponding to the alkali application of the leuco dye is used, so that 25 to 35% by weight aqueous alkali lye can be obtained as a by-product. When using anion exchange membranes, aqueous alkali solutions, ammonia or alkali or ammonium carbonate or bicarbonate solutions are suitable as catholytes. In order to avoid damage to the membranes, primary, secondary or tertiary amines, for example those with C 1 -C 4 -alkyl radicals on the nitrogen atom, are preferably used against the alkali metal leaches optionally also have a hydroxyl and alkoxy group as substituents, in a concentration of 0.02% by weight to 10% by weight.

Als Anolyte werden die wässrigen Lösungen der Leukoverbindungen mit den Mineralsäureanionenzusätzen bei einem pH-Wert ≤ 4 eingesetzt. Die Konzentrationen an Leukoverbindungen im Anolyten sollten vorzugsweise 5 bis 30 Gew.-% betragen.The aqueous solutions of the leuco compounds with the mineral acid anion additives are used as anolytes at a pH value of ≤ 4. The concentrations of leuco compounds in the anolyte should preferably be 5 to 30% by weight.

Zur Vermeidung von Diffusionsbehinderungen im Anodenbereich muß für eine gute Anströmung der Anode (turbulente Strömung und mittlere Strömungsgeschwindigkeiten 0,1 m/s) gesorgt werden. Die Stromdichten bei der Elektrolyse können 0,2 bis 4 KA/m2, vorzugsweise 0,5 bis 1,2 KA/m2 betragen. Das effektive Stromangebot für die Leukoverbindung sollte mehr als 100 % betragen, da als Nebenreaktion Sauerstoff gebildet wird. Bevorzugt wählt man Stromangebote von 105 bis 130 %.bezogen auf die eingesetzte Leukoverbindung.In order to avoid diffusion impediments in the anode area, a good flow against the anode (turbulent flow and mean flow velocities 0.1 m / s) must be ensured. The current densities in the electrolysis can be 0.2 to 4 KA / m 2 , preferably 0.5 to 1.2 KA / m 2 . The effective power supply for the leuco connection should be more than 100%, since oxygen is formed as a side reaction. Electricity offers of 105 to 130% are preferred, based on the leuco connection used.

Die anodische Oxidation der Leukoverbindungen erfolgt vorzugsweise bei den Temperaturen unterhalb des Siedepunktes des Wassers, vorzugsweise bei Temperaturen von +15 bis +45 °C.The anodic oxidation of the leuco compounds preferably takes place at temperatures below the boiling point of the water, preferably at temperatures from +15 to +45 ° C.

Bevorzugt verwendet man Kationenaustauscher-Membranen und verdünnte Schwefelsäure als Katolyt. Die Konzentration der Schwefelsäure beträgt vorzugsweise 2 - 10 Gew.-%. Mit dieser Kombination kann man die Farbstofflösungen während der Oxidation zusätzlich von Fremdmetallkationen reinigen und verhindert Schäden an der Membran.Cation exchange membranes and dilute sulfuric acid are preferably used as the catholyte. The concentration of sulfuric acid is preferably 2-10% by weight. With this combination, the dye solutions can also be cleaned of foreign metal cations during oxidation and prevent damage to the membrane.

Zur Vermeidung von Ablagerungen auf den Anodenoberflächen und einer Überoxidation des Farbstoffes ist es günstig, die Anoden bei einem Anstieg des Potentials auf Werte von e = 1400 bis 1500 mV kurzzeitig, d.h. 15 bis 30 Sekunden kathodisch zu schalten. Bei dieser Verfahrensweise ist es zweckmäßig, bei Verwendung von dotierten Titananoden uapolbare Elektroden einzusetzen, die Zwischenschichten aus Titan-, Tantal- oder Niobsuboxiden oder Carbiden, Siliciden oder Boriden dieser Metalle oder Wolfram und/oder Molybdän enthalten. Als günstig haben sich hier Elektroden aus Titansuboxidzwischenschichten erwiesen.In order to avoid deposits on the anode surfaces and overoxidation of the dye, it is expedient to switch the anodes briefly, ie 15 to 30 seconds, when the potential rises to values of e = 1400 to 1500 mV. In this procedure, it is expedient to use uapolatable electrodes when using doped titanium anodes, which contain intermediate layers of titanium, tantalum or niobium suboxides or carbides, silicides or borides of these metals or tungsten and / or molybdenum. Electrodes made from titanium sub have proven to be cheap here intermediate oxide layers proved.

Das Verfahren soll durch die folgenden Ausführungsbeispiele zusätzlich erläutert werden.The method is to be additionally explained by the following exemplary embodiments.

Beispiel 1example 1

In einer durch eine Kationenaustauscher-Membran zweigeteilten Elektrolysezelle wurdeals Anode eine Titanflachprofilelektrode verwendet, die oberflächlich mit einem nicht stöchiometrischen Tantal-Iridium-Mischoxid dotiert war und eine Titansuboxidzwischenschicht aufwies. Auf der Oberfläche dieser Anode war eine Luggin-Kapillare befestigt, die über einen Stromschlüssel mit einer Silber/Silberchlorid-Referenzelektrode Verbindung hat-te. Als Kathode wird eine Kupferelektrode verwendet. In den Kathodenraum wurdewässrige, 5 Gew.-%ige Schwefelsäure als Katolyt gegeben. Als Anolyt wurde eine 20 Gew.-%ige wässrige Lösung der Leukoverbindung des Farbstoffs mit CI No. 42 090 verwendet. (Der Leukofarbstoff wurde durch Kondensation aus o-Sulfobenzaldehyd und N-Ethylsulfobenzylanilin gewonnen). Der Anolyt wurde im Kreislauf mit einer mittleren Geschwindigkeit von ungefähr 0,5 m/s durch den Anodenraum gepumpt und bei einer Stromdichte von 0,6 KA/m2 elektrolysiert. Die Elektrolyse erfolgte bei einer Zellspannung von 3,5 V bei Temperaturen zwischen +25 und +32 °C. Das Anodenpotential betrug zu Beginn der Elektrolyse etwa ε = 1020 mV. Nach einem theoretischen Stromangebot von 120 %, bezogen auf die eingesetzte Leukoverbindung, stieg das Potential auf etwa e = 1050 mV an. Zu diesem Zeitpunkt wurde die Elektrolyse abgebrochen und der Elektrolyt aufgearbeitet. Die Sauerstoffüberspannung betrug bei diesem Punkt 0 mV.In an electrolytic cell divided by a cation exchange membrane, a titanium flat profile electrode was used as anode, which was surface-doped with a non-stoichiometric tantalum-iridium mixed oxide and had an intermediate titanium suboxide layer. On the surface of this anode, a Luggin capillary was attached, via a power wrench with a silver / silver chloride reference electrode compound h a t-th. A copper electrode is used as the cathode. Aqueous 5% by weight sulfuric acid was added to the cathode compartment as the catholyte. A 20% by weight aqueous solution of the leuco compound of the dye with CI No. was used as the anolyte. 42 090 used. (The leuco dye was obtained by condensation from o-sulfobenzaldehyde and N-ethylsulfobenzylaniline). The anolyte was circulated through the anode compartment at an average speed of approximately 0.5 m / s and electrolyzed at a current density of 0.6 KA / m 2 . The electrolysis was carried out at a cell voltage of 3.5 V at temperatures between +25 and +32 ° C. The anode potential at the beginning of the electrolysis was approximately ε = 1020 mV. After a theoretical power supply of 120%, based on the leuco connection used, the potential rose to about e = 1050 mV. At this point the electrolysis was stopped and the electrolyte was worked up. The oxygen overvoltage was 0 mV at this point.

Bezogen auf den eingesetzten Leukofarbstoff wurde 99 %iger reiner Farbstoff (CI No. 42 090) mit den folgenden Daten erhalten:

  • xmax: 631 nm in 0,02 m Ammoniumacetatlösung.
Based on the leuco dye used, 99% pure dye (CI No. 42 090) was obtained with the following data:
  • xmax: 631 nm in 0.02 m ammonium acetate solution.

Bei Verwendung von Titananoden, die mit Lithiumplatinat und nicht stöchiometrischen Tantaloxid-Iridiumoxid-Gemischen dotiert waren, wurden ähnliche Ergebnisse erzielt.Similar results were obtained using titanium anodes doped with lithium platinum and non-stoichiometric tantalum oxide-iridium oxide mixtures.

Beispiel 2Example 2

In einer Elektrolysezelle mit Anolyten und Katolyten wie in Beispiel 1 wurdeeine Lösung des Leukofarbstoffs mit CI No. 42 090 mit verschiedenen theoretischen Stromangeboten elektrolysiert. In Abhängigkeit von den Stromangeboten bezogen auf den angewandten Leukofarbstoff wurden folgende Ausbeuten an Farbstoff (CI No. 42 090) erhalten:

Figure imgb0001
In an electrolytic cell with anolytes and catolytes as in Example 1, a solution of the leuco dye with CI No. 42 090 electrolyzed with various theoretical currents. Depending on the power supply based on the leuco dye used, the following yields of dye (CI No. 42 090) were obtained:
Figure imgb0001

Beispiel 3Example 3

In einer Elektrolysezelle mit Anolyten und Katolyten wie in Beispiel 1 wurde eine Lösung des Leukofarbstoffs aus Beispiel 1 durch Variation der Stromdichte und damit bei unterschiedlichen Anodenpotentialen elektrolysiert. Bei diesen Versuchen ergaben sich in Abhängigkeit von den Anodenpotentialen und Überspannungen folgende Stroaausbeuten für den Blaufarbstoff mit CI No. 42 090:

Figure imgb0002
Figure imgb0003
Eine Überspannung von > 400 mV und eine Stromausbeute < 90 % führte zu coloristisch nicht mehr verwendbarem Farbstoff.In an electrolytic cell with anolytes and catolytes as in Example 1, a solution of the leuco dye from Example 1 was electrolyzed by varying the current density and thus at different anode potentials. In these tests, depending on the anode potentials and overvoltages, the following current yields for the blue dye with CI No. 42 090:
Figure imgb0002
Figure imgb0003
An overvoltage of> 400 mV and a current efficiency <90% led to coloristically no longer usable dye.

Beispiel 4Example 4

Die Elektrolyse erfolgte wie in Beispiel 1 angegeben, jedoch wurde dem Anolyten zusätzlich 4 Gew.-% Schwefelsäure zugesetzt. Es wurde mit einer Stromdichte von 0,5 KA/m2 bei einem Potential von e = 1050 mV bis zu dem 1,2-fachen des erforderlichen elektrochemischen Äquivalentes elektrolysiert. Die Zellspannung betrug bei +25 °C etwa 3,0 Volt. Die Sauerstoffüberspannung betrug bis Ende 200 mV. Bezogen auf den eingesetzten Leukofarbstoff wurde 99 %iger reiner Farbstoff (CI No. 42 090) erhalten.The electrolysis was carried out as described in Example 1, but an additional 4% by weight of sulfuric acid was added to the anolyte. It was electrolyzed with a current density of 0.5 KA / m 2 at a potential of e = 1050 mV up to 1.2 times the required electrochemical equivalent. The cell voltage was approximately 3.0 volts at +25 ° C. The oxygen overvoltage was 200 mV until the end. Based on the leuco dye used, 99% pure dye (CI No. 42 090) was obtained.

Beispiele 5 bis 9Examples 5 to 9

Die Oxidation erfolgte wie in Beispiel 1 angegeben, jedoch wurden die in der Tabelle angegebenen Leukofarbstoffe verwendet. Die entsprechenden Farbstoffe wurden in hohen Ausbeuten, guter Reinheit und guten coloristischen Eigenschaften erhalten.

Figure imgb0004
The oxidation was carried out as indicated in Example 1, but the leuco dyes indicated in the table were used. The corresponding dyes were obtained in high yields, good purity and good coloristic properties.
Figure imgb0004

Claims (6)

1. Verfahren zur Herstellung von wasserlöslichen 2 bis 4 Sulfonsäuregruppen enthaltenden Diamino-triphenylmethanfarbstoffen, durch anodische Oxidation der Leukoverbindungen in einer zweigeteilten Elektrolysezelle, dadurch gekennzeichnet, daß man die Leukoverbindungen bei einem pH-Wert 4 4, gegebenenfalls in Gegenwart von Sauerstoffatome tragenden Mineralsäureanionen, anodisch bei einer Sauerstoffüberspannung von <400 mV oxidiert.1. Process for the preparation of water-soluble diamino-triphenylmethane dyes containing 2 to 4 sulfonic acid groups, by anodic oxidation of the leuco compounds in a two-part electrolytic cell, characterized in that the leuco compounds are anodically treated at a pH value of 4 4, optionally in the presence of oxygen atoms oxidized at an oxygen overvoltage of <400 mV. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Leukoverbindung des Farbstoffs mit CI No. 42090 oxidiert wird.2. The method according to claim 1, characterized in that the leuco compound of the dye with CI No. 42090 is oxidized. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Mineralsäureanionen Sulfat oder Phosphat verwendet.3. The method according to claim 1, characterized in that sulfate or phosphate is used as mineral acid anions. 4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die anodische Oxidation der Leukoverbindungen bei einen pH-Wert von 0,1 bis 3 durchgeführt wird.4. The method according to claim 1, 2 or 3, characterized in that the anodic oxidation of the leuco compounds is carried out at a pH of 0.1 to 3. 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man als Anodenmaterialien Titan, das mit elektrisch leitfähigen nicht stöchiometrischen oxidischen Verbindungen des Tantals und Iridiuas oder mit elektrisch leitfähigen Verbindungen der Platinmetallgruppe, welche nicht stöchiometrische Titan-, Niob- und/oder Tantaloxide enthalten, dotiert ist oder in Salpetersäure anodisch anoxidierten Graphit, der mit Molybdän(VI)-, Wolfram(VI)- und/oder Vanadium(V)-Verbindungen dotiert ist, verwendet.5. The method according to claim 1 to 4, characterized in that titanium as the anode materials with electrically conductive non-stoichiometric oxidic compounds of tantalum and iridium or with electrically conductive compounds of the platinum metal group, which are non-stoichiometric titanium, niobium and / or tantalum oxides contain, is doped or used in nitric acid anodized graphite, which is doped with molybdenum (VI), tungsten (VI) and / or vanadium (V) compounds. 6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß zur Trennung von Anoden- und Kathodenraum eine Anionen- oder Kationenaustauschermembran verwendet wird.6. The method according to claim 1 to 5, characterized in that an anion or cation exchange membrane is used to separate the anode and cathode compartments.
EP86104339A 1985-04-13 1986-03-29 Anodic oxidation process of water soluble leucotriphenyl methane dye compounds Expired EP0198303B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3513246 1985-04-13
DE19853513246 DE3513246A1 (en) 1985-04-13 1985-04-13 METHOD FOR ANODICALLY OXIDATING WATER-SOLUBLE LEUKOTRIPHENYLMETHANE DYE COMPOUNDS

Publications (2)

Publication Number Publication Date
EP0198303A1 true EP0198303A1 (en) 1986-10-22
EP0198303B1 EP0198303B1 (en) 1988-08-17

Family

ID=6267901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86104339A Expired EP0198303B1 (en) 1985-04-13 1986-03-29 Anodic oxidation process of water soluble leucotriphenyl methane dye compounds

Country Status (3)

Country Link
EP (1) EP0198303B1 (en)
JP (1) JPS61238992A (en)
DE (2) DE3513246A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763432A (en) * 2020-07-03 2020-10-13 浙江亿得新材料股份有限公司 Clean production method of brilliant blue dye

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696565B2 (en) * 1988-10-28 1998-01-14 日本化薬株式会社 Electrolytic production of triphenylmethane dye.
JPH03107489A (en) * 1989-09-20 1991-05-07 Nippon Kayaku Co Ltd Production of xanthene dye by electrolysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1802640A (en) * 1927-10-07 1931-04-28 Dwight T Ewing Process for the oxidation of leuco bases for dyes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1802640A (en) * 1927-10-07 1931-04-28 Dwight T Ewing Process for the oxidation of leuco bases for dyes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 92, Nr. 19, 12. Mai 1980, Seite 578, Zusammenfassung Nr.163717c, Columbus, Ohio, US; & JP - A - 79 130 481 (KEMI KASEI K.K.) 09-10-1979 *
JOURNAL OF ORGANIC CHEMISTRY, Band 44, Nr. 5, 1979, Seiten 761-766, American Chemical Society, US; J.E. KUDER et al.: "Anodic and photochemical oxidation of triphenylmethanes" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763432A (en) * 2020-07-03 2020-10-13 浙江亿得新材料股份有限公司 Clean production method of brilliant blue dye
CN111763432B (en) * 2020-07-03 2021-08-10 浙江亿得新材料股份有限公司 Clean production method of brilliant blue dye

Also Published As

Publication number Publication date
JPS61238992A (en) 1986-10-24
DE3513246A1 (en) 1986-10-16
EP0198303B1 (en) 1988-08-17
DE3660554D1 (en) 1988-09-22

Similar Documents

Publication Publication Date Title
DE2940186C2 (en) Process for the production of nitrites
DE2251660A1 (en) METHOD AND APPARATUS FOR PRODUCING HIGHLY PURE ALKALIMETAL HYDROXIDE IN AN ELECTROLYTIC CELL
DE2453739A1 (en) PROCESS FOR THE PRODUCTION OF HYDROGEN PEROXIDE
EP0384194B1 (en) Dimensionally stable anodes and their use in the production of alkalidichromates and chromic acid
EP0198303B1 (en) Anodic oxidation process of water soluble leucotriphenyl methane dye compounds
DE2713236C3 (en)
DE3207776A1 (en) METHOD FOR THE ELECTRODIALYTIC TREATMENT OF GALVANIZING SOLUTIONS
EP0308838B1 (en) Process for the production of fluorinated acrylic acids and their derivatives
DE2757861C2 (en)
CH653710A5 (en) METHOD FOR PRODUCING BLUE IRON HEXACYANOFERRATE III PIGMENTS.
DE2124045C3 (en) Process for the electrolytic Her position of pure chlorine, hydrogen and pure concentrated alkali metal phosphate solutions and electrolyzer cell to carry out the process
EP0064154A1 (en) Method of preparing blue iron-hexacyanoferrate-III pigments
EP0378081A1 (en) Method of purification of aqueous glyoxal solutions
EP0257523B1 (en) Process for manufacturing water soluble triphenylmethane dye compounds of foodstuff standard
EP0040709A1 (en) Process for the production of diacetone-keto-gulonic acid
DE2836353B1 (en) Process for the extraction of hydrogen and sulfuric acid by electrochemical decomposition of an electrolyte and electrode for carrying out the electrochemical decomposition
DE117129C (en) Process for the activation of electrolytically obtained oxygen
AT127160B (en) Process for the production of persalts by electrolysis.
DE4110617A1 (en) METHOD FOR PRODUCING AROMATIC NITRO COMPOUNDS USING THREE-VALUE TITANIUM COMPOUNDS
EP0641871A1 (en) Process for preparing ammonia or alkali-hydroxides and peroxydisulfates
DE4326540A1 (en) Process for the preparation of peroxodisulphuric acid and peroxomonosulphuric acid
CH644575A5 (en) METHOD FOR PRODUCING P-TERT.-BUTYLBENZALDEHYDE.
DE743465C (en) Electrolytic cell, especially for the production of hypochlorites
EP0638522A1 (en) Process for degrading oxidizable and reducible substances in processwater and sewage
EP0906970A1 (en) Process for the preparation of silver compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19860828

17Q First examination report despatched

Effective date: 19870820

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3660554

Country of ref document: DE

Date of ref document: 19880922

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980226

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980311

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980316

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19990316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050329