EP0198151A2 - Catalyst components, a catalyst and a process for the polymerization of olefins - Google Patents
Catalyst components, a catalyst and a process for the polymerization of olefins Download PDFInfo
- Publication number
- EP0198151A2 EP0198151A2 EP86100617A EP86100617A EP0198151A2 EP 0198151 A2 EP0198151 A2 EP 0198151A2 EP 86100617 A EP86100617 A EP 86100617A EP 86100617 A EP86100617 A EP 86100617A EP 0198151 A2 EP0198151 A2 EP 0198151A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst component
- olefins
- catalyst
- electron donor
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 151
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 52
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 38
- 230000008569 process Effects 0.000 title claims description 24
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 29
- 239000000460 chlorine Substances 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 150000001348 alkyl chlorides Chemical class 0.000 claims abstract description 7
- 238000007334 copolymerization reaction Methods 0.000 claims abstract 12
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 43
- 150000001875 compounds Chemical class 0.000 claims description 35
- -1 alcoholates Chemical class 0.000 claims description 33
- 239000007787 solid Substances 0.000 claims description 33
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 29
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 27
- 229910052782 aluminium Inorganic materials 0.000 claims description 23
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims description 14
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims description 12
- 238000002441 X-ray diffraction Methods 0.000 claims description 11
- 239000012320 chlorinating reagent Substances 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 150000002681 magnesium compounds Chemical class 0.000 claims description 8
- 239000001282 iso-butane Substances 0.000 claims description 7
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000003921 oil Substances 0.000 claims description 5
- 150000004756 silanes Chemical class 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 150000002170 ethers Chemical class 0.000 claims description 4
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims description 4
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical group CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 claims description 3
- 150000002485 inorganic esters Chemical class 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 150000002895 organic esters Chemical class 0.000 claims description 3
- 150000008039 phosphoramides Chemical class 0.000 claims description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 2
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 2
- 230000002035 prolonged effect Effects 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 abstract description 34
- 239000002879 Lewis base Substances 0.000 abstract description 16
- 150000007527 lewis bases Chemical class 0.000 abstract description 16
- 239000013078 crystal Substances 0.000 abstract description 12
- 239000011777 magnesium Substances 0.000 abstract description 9
- 230000009466 transformation Effects 0.000 abstract description 7
- 229910003074 TiCl4 Inorganic materials 0.000 abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 abstract description 4
- 229910052801 chlorine Inorganic materials 0.000 abstract description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 86
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 26
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 21
- 239000000047 product Substances 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000001257 hydrogen Substances 0.000 description 19
- 229910052739 hydrogen Inorganic materials 0.000 description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 18
- 239000012071 phase Substances 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- 230000000379 polymerizing effect Effects 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 235000019441 ethanol Nutrition 0.000 description 12
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 239000010936 titanium Substances 0.000 description 11
- 238000005660 chlorination reaction Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 7
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 239000004711 α-olefin Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000011949 solid catalyst Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229910010066 TiC14 Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- 235000011147 magnesium chloride Nutrition 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920001083 polybutene Polymers 0.000 description 4
- 150000003609 titanium compounds Chemical class 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229960004132 diethyl ether Drugs 0.000 description 3
- MGWAVDBGNNKXQV-UHFFFAOYSA-N diisobutyl phthalate Chemical compound CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C MGWAVDBGNNKXQV-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229940052303 ethers for general anesthesia Drugs 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- KJJBSBKRXUVBMX-UHFFFAOYSA-N magnesium;butane Chemical compound [Mg+2].CCC[CH2-].CCC[CH2-] KJJBSBKRXUVBMX-UHFFFAOYSA-N 0.000 description 3
- KXDANLFHGCWFRQ-UHFFFAOYSA-N magnesium;butane;octane Chemical compound [Mg+2].CCC[CH2-].CCCCCCC[CH2-] KXDANLFHGCWFRQ-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- FHUODBDRWMIBQP-UHFFFAOYSA-N Ethyl p-anisate Chemical compound CCOC(=O)C1=CC=C(OC)C=C1 FHUODBDRWMIBQP-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910003910 SiCl4 Inorganic materials 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- WXBLLCUINBKULX-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1.OC(=O)C1=CC=CC=C1 WXBLLCUINBKULX-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000012265 solid product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000000707 stereoselective effect Effects 0.000 description 2
- NBRKLOOSMBRFMH-UHFFFAOYSA-N tert-butyl chloride Chemical compound CC(C)(C)Cl NBRKLOOSMBRFMH-UHFFFAOYSA-N 0.000 description 2
- WPWHSFAFEBZWBB-UHFFFAOYSA-N 1-butyl radical Chemical compound [CH2]CCC WPWHSFAFEBZWBB-UHFFFAOYSA-N 0.000 description 1
- SQCZQTSHSZLZIQ-UHFFFAOYSA-N 1-chloropentane Chemical compound CCCCCCl SQCZQTSHSZLZIQ-UHFFFAOYSA-N 0.000 description 1
- WAPNOHKVXSQRPX-UHFFFAOYSA-N 1-phenylethanol Chemical compound CC(O)C1=CC=CC=C1 WAPNOHKVXSQRPX-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- ZEYHEAKUIGZSGI-UHFFFAOYSA-N 4-methoxybenzoic acid Chemical compound COC1=CC=C(C(O)=O)C=C1 ZEYHEAKUIGZSGI-UHFFFAOYSA-N 0.000 description 1
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 1
- JCLFHZLOKITRCE-UHFFFAOYSA-N 4-pentoxyphenol Chemical compound CCCCCOC1=CC=C(O)C=C1 JCLFHZLOKITRCE-UHFFFAOYSA-N 0.000 description 1
- KCASYFCAUMELFB-UHFFFAOYSA-N BPPB Chemical compound BPPB KCASYFCAUMELFB-UHFFFAOYSA-N 0.000 description 1
- NYEVYCIEQJOVQY-UHFFFAOYSA-N C1CCCCC1[Mg]C1CCCCC1 Chemical compound C1CCCCC1[Mg]C1CCCCC1 NYEVYCIEQJOVQY-UHFFFAOYSA-N 0.000 description 1
- HENIWZDYNSCJGQ-UHFFFAOYSA-N CCCCCCCC[Mg]CC Chemical compound CCCCCCCC[Mg]CC HENIWZDYNSCJGQ-UHFFFAOYSA-N 0.000 description 1
- HYLHFOVZFADXNK-UHFFFAOYSA-N CCCCCC[Mg]CC Chemical compound CCCCCC[Mg]CC HYLHFOVZFADXNK-UHFFFAOYSA-N 0.000 description 1
- YELRSUYYIQXYLP-UHFFFAOYSA-N CCCCCC[Mg]CCCC Chemical compound CCCCCC[Mg]CCCC YELRSUYYIQXYLP-UHFFFAOYSA-N 0.000 description 1
- MVECFARLYQAUNR-UHFFFAOYSA-N CCCC[Mg]CC Chemical compound CCCC[Mg]CC MVECFARLYQAUNR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 description 1
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 1
- 102100036154 Platelet basic protein Human genes 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910010062 TiCl3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000007860 aryl ester derivatives Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- KMGARVOVYXNAOF-UHFFFAOYSA-N benzpiperylone Chemical compound C1CN(C)CCC1N1C(=O)C(CC=2C=CC=CC=2)=C(C=2C=CC=CC=2)N1 KMGARVOVYXNAOF-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229940038926 butyl chloride Drugs 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 1
- LMXMLKHKWPCFTG-UHFFFAOYSA-N ethyl 4-butoxybenzoate Chemical compound CCCCOC1=CC=C(C(=O)OCC)C=C1 LMXMLKHKWPCFTG-UHFFFAOYSA-N 0.000 description 1
- NWPWRAWAUYIELB-UHFFFAOYSA-N ethyl 4-methylbenzoate Chemical compound CCOC(=O)C1=CC=C(C)C=C1 NWPWRAWAUYIELB-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- DLPASUVGCQPFFO-UHFFFAOYSA-N magnesium;ethane Chemical compound [Mg+2].[CH2-]C.[CH2-]C DLPASUVGCQPFFO-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 1
- 150000002901 organomagnesium compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/904—Monomer polymerized in presence of transition metal containing catalyst at least part of which is supported on a polymer, e.g. prepolymerized catalysts
Definitions
- This invention concerns a new catalyst component, a catalyst containing this commponent and a process for polymerization of olefins by using this catalyst for obtaining stereospecific rlefin polymers and copolymers with high degree of crystallinity and high molecular weight.
- the morphological properties of the solid catalyst component have a great effect on the activity and other properties of the final catalyst.
- the morphological properties depend essentially of the starting materials used, the reagents, the reaction conditions and the order of the treatments. By changing only the order of the treatments it may be possible to obtain better or worse catalytic properties.
- Most patent publications contain lists of materials which can be used in the manufacture of catalyst components, but very few of them give information about what materials actually have to be used, in what order or sequence and under which reaction conditions. Moreover most examples presented in the patent literature describe only the use of magnesium dichloride as the starting material of the catalyst carrier component.
- the invention concerns a solid non-layer catalyst component for use in catalysts for the polymerization of olefins, which catalyst component is obtained by chlorinating at least one organic magnesium compound of the formula MgR'R" wherein R' and R'' are the same or different and each is an alkyl radical of 1 to 20 carbon atoms, with at least one chlorinating agent to form a carrier compound and optionally treating said carrier compound with an aliphatic or aromatic alcohol; treating the carrier compound thus obtained with liquid titanium tetrachloride in the presence of an electron donor selected from inorganic and organic esters, amines, ethers, alcoholates, silane compounds, ketones, and phosphor amides at -25 to 180°C; and recovering said solid non-layer catalyst component.
- an electron donor selected from inorganic and organic esters, amines, ethers, alcoholates, silane compounds, ketones, and phosphor amides at -25 to 180°C
- the catalyst component according to the invention is characterized in that chlorine gas or a mixture of chlorine gas and alkyl chloride has been used as said chlorinating agent and that the treatment with titanium tetrachloride has been carried out by treating said carrier compound first with titanium tetrachloride, then with said electron donor compound and after that at least once with titanium tetrachloride in the absence of said electron donor compound.
- the invention also concerns new solid catalysts for homopolymerizing or copolymerizing olefins having 2 to 5 carbons to become polymers with high degree of crystallinity and high molecular weight.
- the catalyst, according to the invention, for homopolymerizing or copolymerizing olefins of 2 to 5 carbon atoms is characterized in that it consi-sts of the following components:
- the aluminum compound with the formula Al x Cl 3-x is used as a cocatalyst.
- an aluminumtrialkyl or dialkylaluminum chloride can be used, e.g. triethylaluminum, diethylaluminum chloride, tri-isobutylaluminum.
- esters For an internal electron donor, or Lewis base, one may use for instance esters, amines, ethers, alcoholates, silane compounds, ketones, phosphoramides, etc.
- esters one may use both inorganic and organic esters. Particularly appropriate are di-isobutylphthalate and esters of aromatic carboxylic acids, such as the alkyl esters of benzoic, p-methoxybenzoic or p-toluic acid (e.g. ethyl benzoate, ethyl p-methoxybenzoate, methyl or ethyl p-toluate, or ethyl p-butoxybenzoate).
- Other usable esters are diethyl carbonate, ethyl pivalate, ethyl acetate, dimethyl maleate and alkyl- arylsilanes or alkoxysilanes.
- the solid non-layer catalyst component according to the invention is obtained by allowing an organic magnesium compound, chlorinating compounds, a Ti halide and an electron donor or Lewis base to react with each others.
- the Mg alkyl compounds employed have the form MgR 2 or MgR'R'', wherein R,R' and R'' are either the same or different, and contain alkyls from C 1 to C 20 , preferably C 2 to C 12 .
- the Mg alkyl compound may for instance consist of diethylmagnesium, ethylbutylmagnesium, ethylhexylmagnesium, ethyloctylmagnesium, dibutylmagnesium, butylhexylmagnesium, butyloctylmagnesium, dicyclohexylmagnesium, etc.
- the use of butyloctylmagnesium is to be most recommended.
- the chlorinating agent is chlorine gas or chlorine gas and an alkyl chloride such as butyl or pentyl chloride, preferably butyl chloride.
- the chlorination may be carried out at 0-100°C, preferably at 20-60°C, particularly at 20-40°C.
- an electron donor compound which may be selected from the following compounds: amines, esters or silane compounds or mixtures thereof.
- the XRD of the chemically activated carrier after chlorination shows almost no crystalline structure at all.
- both the carrier and the catalyst component are not stoichiometric with Mg and Cl.
- the molar ratio of M g to Cl can be as low as 1:0.5.
- About half of the carrier consists of a Mg compound and the rest of it are organic compounds, like hydrocarbons and chlorinated hydrocarbons. The presence of these organic compounds may affect the crystal structure of the product. The formation of a normal crystal lattice is prohibited and a new non-layer species with very low crystallite dimensions are formed.
- This new structure consists of much more active corners than the original activated MgCl z crystal lattice. This, together with the proper surface area and the pore volume, may at least partly explain the high activity for 1-butene for our catalytic system.
- the carrier is thereafter treated with alcohol, however, the catalyst can show considerable activity even without this treatment.
- the alcohol may be aliphatic or aromatic, containing one or several hydroxyl groups, such as e.g. methanol, ethanol, propanol, butanol, 2-ethylhexanol, cyclohexanol, methylcyclohexanol, benzyl alcohol, methylbenzyl alcohol or glycol.
- the solid carrier is treated with liquid titanium tetrachloride to form the catalyst component.
- the carrier is treated first with titanium tetrachloride, then with an electron donor compound and after that at least once again with liquid titanium tetrachloride in the absence of said electron donor. If the treatment with electron donor is carried out before the treatment with titanium tetrachloride according to prior art or if said treatment with electron donor is carried out during or after any further treatments with titanium tetrachloride, much-worse catalyst components for polymerization of alpha olefins are achieved, which will be evident from examples presented later.
- the first treatment with liquid titanium tetrachloride is carried out in cold titanium tetrachloride.
- the temperature is below 0°C, preferably below -20°C.
- the second treatment with titanium tetrachloride is carried out at a higher temperature. During this treatment the titanation is completed during a prolonged period, preferably at least one hour.
- the solid reaction product is then separated from the liquid phase and washed with a hydrocarbon solvent for removing impurities and derivatives.
- the catalyst component may be dried in a slight vacuum or in nitrogen at room temperature, or at a slightly higher temperature, and homogenized by grinding in a ball mill.
- Lewis bases or electron donor compounds which are able to form complexes with Al alkyls are useful with a view to improving the properties of the catalysts.
- Lewis bases (complexed with an Al alkyl) improve the stereoselectivity of the catalysts.
- amines for external electron donor compound one may use amines, ethers, esters (preferably alkyl and aryl esters of aromatic carboxylic acids), or silane compounds (alkyl/aryl silanes).
- esters preferably alkyl and aryl esters of aromatic carboxylic acids
- silane compounds alkyl/aryl silanes.
- a few particular examples are the methyl and ethyl esters of benzoic, toluic and phthalic acid, isobutyl esters of phthalic acid, triethoxysilane, etc.
- the sequence in which the donor is added seems to be very important for the catalyst component according to the invention.
- the donor has always been added to the carrier before the titanation and such catalyst components giver very poor results in polymerizing 1-butene, producing very poor and bad looking poly-I-butene, which can be seen from the comparative examples.
- the presence of the external electron donor during the first titanation step affects highly the properties of the polymer and also the reactivities of different comonomers.
- the distribution of block and random 1-butene-propylene copolymers differs in a very significant way from catalyst components of prior art. With this new non-layer from the block:random ratio was 0,9:1 when with known catalysts the ratio was 7,5:1.
- Lewis bases and electron donors which are particularly appropriate to be used in the manufacturing of heterogeneous catalysts. These compounds are able to complex Mg and Ti derivatives, and they may be either the same or different compounds as used together with Al alkyl. It is possible in the manufacturing of the catalyst components of the invention to use any electron donor compound which is able to form a complex with an Mg or Ti derivative.
- the catalyst component manufactured by the procedure of the invention may then be used to form a catalyst for olefin polymerization by allowing it to come into contact with an aluminum compound and an external electron donor, which have been mixed at least a couple of minutes in advance, the molar proportion between the electron donor and the aluminum compound being less than 1, and the Al/Ti molar proportion being 10-300, depending on the polymerization system used.
- the polymerization can be carried out either in a slurry, in a bulk or in a gas phase..
- This new catalytic system is particularly suitable for polymerization of 1-butene, but also for many other polymerization processes of olefins, e.g. ethylene, propylene, isoprene, 4-methyl-I-pentene, butadiene,/as well for copolymers of the said monomers and copolymers of 1-butene with isobutene.
- olefins e.g. ethylene, propylene, isoprene, 4-methyl-I-pentene, butadiene,/as well for copolymers of the said monomers and copolymers of 1-butene with isobutene.
- Alpha-olefin are preferred .
- Catalysts mentioned in the prior literature produce stereoregular polypropylene at a high yield, but when these catalysts are used for polymerization of 1-butene in a suspension process in an aliphatic hydrocarbon, the polymer that is produced tends to swell by effect of the fluid medium used, whereby the handling of the end product is hampered by its gel character.
- the transformation of the crystal form of polybutene is usually influenced by copolymerizing 1-butene with another alpha olefin, usually with propylene.
- the polymerizations were carried out with both monomers simultaneously present in a given contant proportion, as is disclosed for instance in the GB publication No. 1,084,953. According to this publication, only such mixed polymers undergo rapid transformation of crystal structure in which the propylene is uniformly distributed.
- the combination of the selected catalyst, the hydrocarbon used for reaction fluid and the polymerizing phases produces a polymer having both a high degree of isotacticity and fast rate of crystal transformation, which has not been possible in any procedure of prior art.
- the transformation of the crystal form of polybutene to the stable hexagonal crystal form is very rapid and takes only a few minutes, while normally in prior art processes it may take hours.
- the hydrocarbon used for polymerizing medium in the procedure of the invention has a great significance. Usually in polymerizing, hexane or heptane have been employed. The polymer obtained as product is then gel-like, which impedes the handling of the product. Theoretically the swelling and dissolving of a polymer can be reduced by lowering the polymerization temperature, by increasing the molecular weight of the polymer or by choosing a proper polymerizing medium.
- a suitable polymerizing medium can be chosen by using the difference in the solubility parameters of the polymer and the monomer-polymerizing medium. The bigger this difference is, the less will the polymer swell or dissolve. Use of propane or also isobutane as fluid medium will result in minimal gelification.
- the new non-layer form of catalyst component according to the invention is particularly suited for a catalyst for poly-1-butene polymerization.
- a third critical factor in the procedure of the- invention is the way in which the polymerization is carried out. It is essential in the present procedure that in the first phase a small quantity of an olefinic monomer containing 2, 3, 4, 5 or 6 carbon atoms, preferably propylene, is introduced in the polymerizing reactor as monomer, whereupon the temperature to be used may rise as high as 70°C.
- the polymerizing time in this first phase is 1-20 min. and the monomer quantity to be supplied into the reactor is then not more than 30% and not less than 1% of the quantity of the end product.
- the pqlymerizing temperature is now substantially lower than in the first phase.
- the temperature is kept below 30°C, preferably below 20°C.
- a mixed polymer is produced in the reactor, in which at first the propylene contribution is dominant but falls rapidly as the propylene is used up. Homopolymerization of 1-butene will then continue, and the temperature may be somewhat raised, yet not higher than 45°C.
- the polymer produced at higher temperatures tends to cake; on.the other hand, the catalyst components used in the procedure of the invention have such high activity that satisfactory yields are obtained even at lower temperatures.
- the polymerizing time in the second phase may vary between 30 minutes and several hours.
- the residence time is usually minimized in order to achieve maximum production rate.
- the most suitable residence time in the reactor is 4-5 hours as the catalyst activity half-life is 2.2 hours assuming first order deactivation behavior.
- the molar mass of the polybutene polymer may be regulated, as is well known in the art, by introducing small amounts of hydrogen.
- Catalyst components were prepared by placing magnesiumalkyl (20% solution in heptane) in a five-necked flask provided with a mechanical stirrer, reflux-condenser, gas supply valve and thermometer. The suspension wasd bubbled with nitrogen and kept under an inert atmosphere. Alkyl chloride was added from a dropping funnel at the ambient temperature. Thereafter the chlorination was accomplished with chlorine gas at the speed of 5 ml per minute.
- Silicon oil was added and thereafter the alcohol was added drop by drop to the mixture at 25-35°C.
- the alcohol was ethanol except that in Example D 2-ethylhexanol was used, in Example K ethylene glycol was used and in Example N butanol was used. While adding the alcohol, the chlorinated precipitate became thicker. The mixture was stirred at 40°C for 1 hour. Then the temperature was increased to 75-80°C and the suspension was kept there over the night.
- the hot suspension was transferred to excess of cold TiCl 4 (-25°C) slowly by siphoning, allowing the reaction intermediate to precipitate in the cold TiCl 4 . Then the mixture was allowed to warm up to the room temperature. Di-isobutylphthalate was introduced as the electron donor except Example O where ethyl benzoate was used. The temperature was increased to 100-110°C and the mixture was kept there for 1 hour. After sedimentation of the precipitate the solution was transferred by siphoning. Another portion of TiC1 4 in excess was added and the mixture was stirred at 110°C for 1 hour. After sedimentation of the precipitate and siphoning of the solution, the completed catalyst component was washed with heptane several times (5-6 times at 80°C) and dried in a slight vacuum.
- Catalyst components were prepared by mixing 300 ml butyloctylmagnesium (20% solution in heptane) and 200 ml heptane in a five-necked flask provided with mechanical stirrer, reflux condenser, gas supply valve and thermometer. Chlorine-gas (about 6 liter) was added for 30 min. The temperature was kept below 30°C. The gas supply was controlled by rotameter. The unreacted chlorine gas was removed by bubbling N z through the system for 30 min. The mixture was heated to 90°C and 36 ml EtOH was introduced to the warm chlorinated mixture of the carrier. The mixture was heated under agitation for 10 min. The product was washed 2-4 times with heptane. The heptane was removed by siphoning.
- the solid was again left to precipitate and the solution was removed by siphoning. After this treatment the brown powder obtained was washed thoroughly with warm heptane.
- the catalyst component was introduced by a siphon into a 3-necked flask and dried in N z stream 1 hr with shaking.
- a comparative catalyst component was prepared in the same way as catalyst components A-L except that instead of chlorine gas hydrogen chloride was used as second chlorination agent.
- a comparative catalyst component was prepared in the same way as catalyst components A-L except that electron donor was added after the second titanation step.
- a comparative catalyst component was prepared by using hydrogen chloride as chlorinating agent, electron donor treatment before titanation and the titanation was carried out in one step.
- 70 cm 3 of dry n-heptane was placed into a three-necked flask.
- To the flask was then added 18 cm 3 of a solution of dibutylmagnesium in n-heptane.
- the contents of the flask were stirred and 100 cm 3 of dry hydrogen chloride was adder as a chlorinating agent.
- the chlorination was repeated three further times.
- the reaction mixture was stirred at ambient temperature (about 20°C) for one hour.
- the product was allowed to settle and was then washed four times.with 100 cm 3 of n-heptane.
- the solid material was suspended in 100 cm 3 of n-heptane.
- the solid residue obtained was mixed with 100 cm 3 of titanium tetrachloride and the mixture was heated at 80°C for 2 hours. The solid product was then filtered and was washed four times at 80°C with 100 cm 3 of n-heptane. The product obtained was slurried in 50 cm 3 of n-heptane.
- a comparative catalyst component was prepared by using SiCl4 as chlorinating agent, electron donor treatment before titanation and the titanation was carried out in one step. 17 g Mg (n-C 4 H 9 ) 2 in 240 ml n-heptane was introduced to 20 ml of solution containing 22 g SiCl4 and 4 g ethylbenzoate at room temperature with stirring for 10 min. The temperature was raised to 95°C, and kept there for 2 hours. 22 g SiC1 4 was added and heated for 2 hours. The white precipitate formed by cooling was washed with n-heptane.
- a comparative catalyst component was prepared by using tert-butyl chloride as chlorinating agent.
- the titanation was carried out in one step.
- 70 ml dibutylmagnesium and 40 ml diisoamylether were introduced into a reactor at ambient temperature.
- the reactor was heated to 50°C and 90 ml tert- butylchloride were added drop by drop during 2 hours. After the addition the mixture was kept at 50°C for 2 hours and then the precipitation was washed at the same temperature with n-hexane.
- 1 ml ethylbenzoate was introduced at 50°C.
- the mixture as agitated for 1 hour at 50°C, after which the temperature was increased to 80°C to remove hexane with nitrogen.
- 120 ml titanium tetrachloride was added and the mixture was agitated for 2 hours at 80°C.
- the solid catalyst component was washed with n-hexane at 50°C.
- the silicon oil is used in an amount of above 40 weight-% in relation to the starting materials excluding solvents.
- the catalyst which was prepared by mixing the aluminum alkyl compound, for instance triethylaluminum .and, a Lewis alkali, for instance diphenyldimethoxysilane, in the Al:donor molar ratio of 20 in 50 ml heptane, into which after 5 minutes was added the catalyst component prepared as above so that the Al:Ti molar ratio will be 200.
- the polymerization was accomplished under the following conditions: propylene partial pressure 9.0 bar, hydrogen partial pressure 0.3 bar, temperature 70°C and polymerization time 3 hours.
- the activity of the catalyst was determined as quantity of solid polymer based on one kilogram of the polymer per one gram of titanium catalyst.
- Example 16 there was used a catalyst prepared from catalyst component M, which was obtained by using hydrogen chloride as the second chlorination agent instead of chlorine gas. The catalyst had poor activity compared to catalysts according to the invention.
- Example 17 shows that by adding electron donor after the second titanation a catalyst component is obtained which also gives a catalyst with very low activity in the polymerization of propylene.
- Examples 18-20 show clearly that polymerization by using catalysts obtained from comparative catalyst components X, Y and Z give polymers which have poor isotacticity properties compared to polymers prepared according to the invention. These catalysts have also very poor activity.
- the samples were mixed for 10 min. in a Brabender Plasticorder at 190°C under 200 bar pressure for 5 min., whereafter the sample was rapidly cooled to room temperature.
- the degree of isotacticity was determined by measuring the part insoluble in diethylether by extracting 4-5 g of the polymer sample in 200 ml boiling diethylether for 6-7 hours.
- the proportion of propylene in the polymer was determined by 13 C-NMR analysis (Fig. 3) according to (J.Polym. Sci.Polym.Phys.Ed., Vol. 21, 573-581 (1983), Anal.Chem., Vol. 49, No. 9 (1977)).
- the intensity of propylene (P) goes down in the peaks due to the homo (and block) form: PPPP > PPPB > BPPB.
- the polymerizing runs were made in reactors of approximately 4 liters capacity and comprising a catalyst introduction system, a supply system for liquid and gaseous monomer, a hydrogen addition system, and a system for introducing dry nitrogen.
- the catalyst was prepared by mixing the aluminum alkyl compound, for instance triisobutylaluminum and, a Lewis base, for instance diphenyldimethoxysilane, in the Al:Lewis base molar ratio of 20 in 50 ml liquid, into which after 5 minutes is added the catalyst component prepared according to the invention so that the Al:Ti molar ratio-will be 200.
- the product was removed by means of a bottom tap on the reactor.
- conventional technology was applied.
- the pressure in the polymerizing reactor was 3-4 bar during the initial phase and 5-6 bar in the end phase, depending on the temperatures used.
- the desired reaction temperature of the second phase was regulated, hydrogen and 1-butene were added.
- the reaction time was 2 hours.
- the polymers were usually left overnight in the reactor, whereafter the bottom valve was opened and the contents of the reactor were discharged to atmospheric pressure.
- the polymer was dried and analyzed as described above. The conditions in these tests are given in Table 4.
- Polymerization was carried out as in Examples 21-33 except that there was no intervening evaporation of hydrogen and propylene after phase 1.
- a mixed polymer is produced in which the content of propylene decreases as it passes from the monomer mixture until it is used up. This phase takes 20-30 min. as followed by the pressure gauge.
- phase 3 after all propylene has been used, pure polybutene is produced. After the reaction, the bottom valve is opened and the product is dried and processed as described above.
- the monomer I-butene
- Hydrogen was added.
- the catalyst component, cocatalyst and Lewis base were introduced by aid of nitrogen pressure in the reactor: the reaction time was 4 hours, whereafter the bottom valve was opened and the contents of the reactor were discharged.
- the polymer was dried and analyzed as described above.
- Example 40 The polymerizations were carried out as in Example 40, except that isobutane was used as polymerizing medium. Hydrogen pressure was 0.1 bar. These reaction conditions are presented in Table 8. ;
- the product obtained will also be easy to handle, a free flowing powder.
- the reaction temperature was set to 20°C, and 400 g 1-butene were introduced and hydrogen (0.1 bar) was added.
- the polymerization was left overnight, whereafter the reactor was discharged, and the polymer was dried and analyzed as described above.
- the activity was 0.8 kg PB/g catalyst with isotactic index 95.7%.
- a comparative catalyst component was prepared according to prior art by using magnesium dichloride as starting material for the solid Ti-containing catalyst compound.
- the dispersion was collected in a stirred 5 liter flask containing 2,5 liters of anhydrous heptane cooled to -40°C.
- the solid product was separated by decanting and filtering and washed with heptane and dried.
- the product was suspended in 80 ml of anhydrous n-heptane and 200 ml of triethyl aluminum in heptane. The mixture was heated to 80°C for 2 hours. Thereafter the mixture was filtered and then washed five times with 100 ml of n-heptane at 80°C. The product was suspended in 100 ml of n-heptane and into this suspension was added 8 ml of a heptane solution containing 1 g of ethyl benzoate and heated to 80°C for 2 hours. The mixture was then filtered and washed 5 times with 100 ml of heptane at 80°C. The mixture was then filtered and dried under vacuum at 45°C.
- Another comparative catalyst component according to prior art was prepared by using magnesium dichloride as starting material for the solid Ti-containing catalyst compound.
- the MgCl 2 adduct with ethanol was thus formed.
- the hot mixture was
- Example 57 The MgC1 2 .3EtOH microspheres obtained after filtering were dried under vacuum. The adduct was activated as in Example 57.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Insulating Materials (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Description
- This invention concerns a new catalyst component, a catalyst containing this commponent and a process for polymerization of olefins by using this catalyst for obtaining stereospecific rlefin polymers and copolymers with high degree of crystallinity and high molecular weight.
- For polymerizing alpha olefin, such as propylene and 1-butene into crystalline polymers with high bulk density, stereospecific Ziegler-Natta catalysts are usually used. In suspension polymerizations of the prior art, catalysts based on TiCl3 with no carrier have been used as a rule. A drawback of such processes is the fact that subsequent to polymerization the action of the catalyst has to be interrupted and the catalyst has to be removed from the end product.
- Better results in alpha olefin polymerization have been achieved by utilizing modified catalysts of Ziegler-Natta type, which contain a titanium-compound supported on a carrier, an organoaluminum compound and an electron donor compound. Procedures for producing catalysts of this type have been presented, for instance in the following patents: EP 0043185, 0044445, 0029623; BE 845593, 843224, 858156, 849216, 848527, 868762; U.S. 4,252,670, 4,339,054, 4,158,642; GB 2,000,514; JP 53017684, 54118484, 54131589, 54103494; DE 2809318, 2734652, 2912895, 2922298 and 2831829.
- An important step in the manufacture of these new catalysts is the forming of said titanium compound. There are numerous patent applications and patents which disclose the forming of said titanium compound by treating a solid magnesium compound with titanium tetrachloride in the presence or absence of an electron donor compound. The most common magnesium compound described in these publications is magnesium dichloride, which has been activated with different kinds of treatments. As the magnesium compound it has also been proposed to use organic magnesium compounds treated with halogenating agents for the manufacture of solid carrier containing organic magnesium compound.
- The morphological properties of the solid catalyst component have a great effect on the activity and other properties of the final catalyst. The morphological properties depend essentially of the starting materials used, the reagents, the reaction conditions and the order of the treatments. By changing only the order of the treatments it may be possible to obtain better or worse catalytic properties. Most patent publications contain lists of materials which can be used in the manufacture of catalyst components, but very few of them give information about what materials actually have to be used, in what order or sequence and under which reaction conditions. Moreover most examples presented in the patent literature describe only the use of magnesium dichloride as the starting material of the catalyst carrier component.
- It has been found according to this invention that by choosing certain starting materials and reagents in the formation of the solid titanium compound and by following certain sequence of treatments it is possible to prepare improved solid catalyst components for catalysts for polymerization of olefins to products having high degree of crystallinity and high molecular weight. Thus the invention concerns a solid non-layer catalyst component for use in catalysts for the polymerization of olefins, which catalyst component is obtained by chlorinating at least one organic magnesium compound of the formula MgR'R" wherein R' and R'' are the same or different and each is an alkyl radical of 1 to 20 carbon atoms, with at least one chlorinating agent to form a carrier compound and optionally treating said carrier compound with an aliphatic or aromatic alcohol; treating the carrier compound thus obtained with liquid titanium tetrachloride in the presence of an electron donor selected from inorganic and organic esters, amines, ethers, alcoholates, silane compounds, ketones, and phosphor amides at -25 to 180°C; and recovering said solid non-layer catalyst component. The catalyst component according to the invention is characterized in that chlorine gas or a mixture of chlorine gas and alkyl chloride has been used as said chlorinating agent and that the treatment with titanium tetrachloride has been carried out by treating said carrier compound first with titanium tetrachloride, then with said electron donor compound and after that at least once with titanium tetrachloride in the absence of said electron donor compound.
- The invention also concerns new solid catalysts for homopolymerizing or copolymerizing olefins having 2 to 5 carbons to become polymers with high degree of crystallinity and high molecular weight. The catalyst, according to the invention, for homopolymerizing or copolymerizing olefins of 2 to 5 carbon atoms is characterized in that it consi-sts of the following components:
- a) an organometallic aluminum compound of the form AlRxC13-x where R is an alkyl and x is between 1 and 3;
- b) an electron donor compound or a Lewis base which is able to form a complex together with the Al compound (a); and
- c) the solid non-layer catalyst component above.
- In the drawings:
- Fig. 1 shows the X-ray diffraction spectrum or pattern of the intermediate solid chlorination product or carrier;
- Fig. 2 shows the X-ray diffraction spectrum or pattern of a typical catalyst component of the present invention;
- Fig. 3 shows the 13C NMR spectrum of a copolymer of propylene and 1-butene made in accordance with the present invention; and
- Fig. 4 shows the wide-angle X-ray diffraction spectrum of a typical catalyst made in accordance with the invention.
- In the catalyst according to the invention the aluminum compound with the formula AlxCl3-x is used as a cocatalyst. For aluminum compound, an aluminumtrialkyl or dialkylaluminum chloride can be used, e.g. triethylaluminum, diethylaluminum chloride, tri-isobutylaluminum.
- For an internal electron donor, or Lewis base, one may use for instance esters, amines, ethers, alcoholates, silane compounds, ketones, phosphoramides, etc. For esters, one may use both inorganic and organic esters. Particularly appropriate are di-isobutylphthalate and esters of aromatic carboxylic acids, such as the alkyl esters of benzoic, p-methoxybenzoic or p-toluic acid (e.g. ethyl benzoate, ethyl p-methoxybenzoate, methyl or ethyl p-toluate, or ethyl p-butoxybenzoate). Other usable esters are diethyl carbonate, ethyl pivalate, ethyl acetate, dimethyl maleate and alkyl- arylsilanes or alkoxysilanes.
- The solid non-layer catalyst component according to the invention is obtained by allowing an organic magnesium compound, chlorinating compounds, a Ti halide and an electron donor or Lewis base to react with each others. The Mg alkyl compounds employed have the form MgR2 or MgR'R'', wherein R,R' and R'' are either the same or different, and contain alkyls from C1 to C20, preferably C2 to C12. The Mg alkyl compound may for instance consist of diethylmagnesium, ethylbutylmagnesium, ethylhexylmagnesium, ethyloctylmagnesium, dibutylmagnesium, butylhexylmagnesium, butyloctylmagnesium, dicyclohexylmagnesium, etc. Among these organomagnesium compounds, the use of butyloctylmagnesium is to be most recommended.
- The chlorinating agent is chlorine gas or chlorine gas and an alkyl chloride such as butyl or pentyl chloride, preferably butyl chloride.
- The chlorination may be carried out at 0-100°C, preferably at 20-60°C, particularly at 20-40°C. During the chlorination there may also be present in the reaction mixture an electron donor compound which may be selected from the following compounds: amines, esters or silane compounds or mixtures thereof.
- As can be seen from the drawings, the X-ray diffraction spectrum of the solid chlorination product or carrier, as shown in Figure 1, is very similar to that of a typical catalyst component based on this carrier. Both spectrum patterns show one relatively sharp line at 2θ=50° and a broad halo in the central region of the pattern.
- From scientific point of view it is evident that by X-ray diffraction methods a crystal phase of MgCl2 cannot be identified either from the spectrum of carrier (Fig. 1) or from the spectrum of final catalyst component (Fig. 2). In these X-ray diffraction spectra or patterns (XRD) a crystalline peak at 15° 2θ, which is fundamental and peculiar in MgCl2, does not appear.
- This
peak 15° 28, having crystallographic indices 003, is clearly connected to sequences of Cl-Mg-Cl layers stacked along the crystallographic c axis of the MgClz structure. In fact the phase of MgClz is surely absent as it is reported in literature (JCPDS card No. 25-1156, Chien J.W.C. & al., J.Polym.Sci., 21, 737 (1983), Giannini, U., Macromol. Chem. Suppl. 5, 216, (1981). - The XRD of the chemically activated carrier after chlorination shows almost no crystalline structure at all. The broad peak at 29=50° (110) is the only one that is also found in MgClz--it is well known, that the characterization of a crystalline phase only on the basis of one diffraction peak is not possible; at least three peaks are needed for that purpose.
- Our analyses have also shown, that both the carrier and the catalyst component are not stoichiometric with Mg and Cl. The molar ratio of Mg to Cl can be as low as 1:0.5. About half of the carrier consists of a Mg compound and the rest of it are organic compounds, like hydrocarbons and chlorinated hydrocarbons. The presence of these organic compounds may affect the crystal structure of the product. The formation of a normal crystal lattice is prohibited and a new non-layer species with very low crystallite dimensions are formed.
- This new structure consists of much more active corners than the original activated MgClz crystal lattice. This, together with the proper surface area and the pore volume, may at least partly explain the high activity for 1-butene for our catalytic system.
- The carrier is thereafter treated with alcohol, however, the catalyst can show considerable activity even without this treatment. The alcohol may be aliphatic or aromatic, containing one or several hydroxyl groups, such as e.g. methanol, ethanol, propanol, butanol, 2-ethylhexanol, cyclohexanol, methylcyclohexanol, benzyl alcohol, methylbenzyl alcohol or glycol.
- After the chlorination and the optional alcohol treatment the solid carrier is treated with liquid titanium tetrachloride to form the catalyst component. According to the invention the carrier is treated first with titanium tetrachloride, then with an electron donor compound and after that at least once again with liquid titanium tetrachloride in the absence of said electron donor. If the treatment with electron donor is carried out before the treatment with titanium tetrachloride according to prior art or if said treatment with electron donor is carried out during or after any further treatments with titanium tetrachloride, much-worse catalyst components for polymerization of alpha olefins are achieved, which will be evident from examples presented later.
- The first treatment with liquid titanium tetrachloride is carried out in cold titanium tetrachloride. The temperature is below 0°C, preferably below -20°C. The second treatment with titanium tetrachloride is carried out at a higher temperature. During this treatment the titanation is completed during a prolonged period, preferably at least one hour. The solid reaction product is then separated from the liquid phase and washed with a hydrocarbon solvent for removing impurities and derivatives. The catalyst component may be dried in a slight vacuum or in nitrogen at room temperature, or at a slightly higher temperature, and homogenized by grinding in a ball mill.
- External Lewis bases or electron donor compounds which are able to form complexes with Al alkyls are useful with a view to improving the properties of the catalysts. Lewis bases (complexed with an Al alkyl) improve the stereoselectivity of the catalysts.
- For external electron donor compound one may use amines, ethers, esters (preferably alkyl and aryl esters of aromatic carboxylic acids), or silane compounds (alkyl/aryl silanes). A few particular examples are the methyl and ethyl esters of benzoic, toluic and phthalic acid, isobutyl esters of phthalic acid, triethoxysilane, etc.
- The sequence in which the donor is added seems to be very important for the catalyst component according to the invention. In prior art the donor has always been added to the carrier before the titanation and such catalyst components giver very poor results in polymerizing 1-butene, producing very poor and bad looking poly-I-butene, which can be seen from the comparative examples.
- The presence of the external electron donor during the first titanation step affects highly the properties of the polymer and also the reactivities of different comonomers. With the catalyst components according to the invention the distribution of block and random 1-butene-propylene copolymers differs in a very significant way from catalyst components of prior art. With this new non-layer from the block:random ratio was 0,9:1 when with known catalysts the ratio was 7,5:1.
- It is further possible to use Lewis bases and electron donors which are particularly appropriate to be used in the manufacturing of heterogeneous catalysts. These compounds are able to complex Mg and Ti derivatives, and they may be either the same or different compounds as used together with Al alkyl. It is possible in the manufacturing of the catalyst components of the invention to use any electron donor compound which is able to form a complex with an Mg or Ti derivative.
- The catalyst component manufactured by the procedure of the invention may then be used to form a catalyst for olefin polymerization by allowing it to come into contact with an aluminum compound and an external electron donor, which have been mixed at least a couple of minutes in advance, the molar proportion between the electron donor and the aluminum compound being less than 1, and the Al/Ti molar proportion being 10-300, depending on the polymerization system used. The polymerization can be carried out either in a slurry, in a bulk or in a gas phase..
- This new catalytic system is particularly suitable for polymerization of 1-butene, but also for many other polymerization processes of olefins, e.g. ethylene, propylene, isoprene, 4-methyl-I-pentene, butadiene,/as well for copolymers of the said monomers and copolymers of 1-butene with isobutene. Alpha-olefin are preferred .Catalysts mentioned in the prior literature produce stereoregular polypropylene at a high yield, but when these catalysts are used for polymerization of 1-butene in a suspension process in an aliphatic hydrocarbon, the polymer that is produced tends to swell by effect of the fluid medium used, whereby the handling of the end product is hampered by its gel character.
- The transformation of the crystal form of polybutene is usually influenced by copolymerizing 1-butene with another alpha olefin, usually with propylene. In earlier procedures, the polymerizations were carried out with both monomers simultaneously present in a given contant proportion, as is disclosed for instance in the GB publication No. 1,084,953. According to this publication, only such mixed polymers undergo rapid transformation of crystal structure in which the propylene is uniformly distributed.
- In the polymerization procedure of this invention, the combination of the selected catalyst, the hydrocarbon used for reaction fluid and the polymerizing phases, produces a polymer having both a high degree of isotacticity and fast rate of crystal transformation, which has not been possible in any procedure of prior art. Particularly the transformation of the crystal form of polybutene to the stable hexagonal crystal form is very rapid and takes only a few minutes, while normally in prior art processes it may take hours.
- In addition, the procedure is extremely simple, no deactivation and washing out of catalyst from the product being necessary.
- The hydrocarbon used for polymerizing medium in the procedure of the invention has a great significance. Usually in polymerizing, hexane or heptane have been employed. The polymer obtained as product is then gel-like, which impedes the handling of the product. Theoretically the swelling and dissolving of a polymer can be reduced by lowering the polymerization temperature, by increasing the molecular weight of the polymer or by choosing a proper polymerizing medium.
- A suitable polymerizing medium can be chosen by using the difference in the solubility parameters of the polymer and the monomer-polymerizing medium. The bigger this difference is, the less will the polymer swell or dissolve. Use of propane or also isobutane as fluid medium will result in minimal gelification.
- Furthermore, the morphology of the catalyst component influences the swelling properties. The new non-layer form of catalyst component according to the invention is particularly suited for a catalyst for poly-1-butene polymerization.
- A third critical factor in the procedure of the- invention is the way in which the polymerization is carried out. It is essential in the present procedure that in the first phase a small quantity of an olefinic monomer containing 2, 3, 4, 5 or 6 carbon atoms, preferably propylene, is introduced in the polymerizing reactor as monomer, whereupon the temperature to be used may rise as high as 70°C. The polymerizing time in this first phase is 1-20 min. and the monomer quantity to be supplied into the reactor is then not more than 30% and not less than 1% of the quantity of the end product.
- In the second phase, 1-butene is introduced as monomer in the reactor, and the pqlymerizing temperature is now substantially lower than in the first phase. As long as there is still alpha olefin in the reactor which has not reacted, the temperature is kept below 30°C, preferably below 20°C. Hereby, a mixed polymer is produced in the reactor, in which at first the propylene contribution is dominant but falls rapidly as the propylene is used up. Homopolymerization of 1-butene will then continue, and the temperature may be somewhat raised, yet not higher than 45°C. The polymer produced at higher temperatures tends to cake; on.the other hand, the catalyst components used in the procedure of the invention have such high activity that satisfactory yields are obtained even at lower temperatures. The polymerizing time in the second phase may vary between 30 minutes and several hours.
- The residence time is usually minimized in order to achieve maximum production rate. Using the catalytic system of this invention the most suitable residence time in the reactor is 4-5 hours as the catalyst activity half-life is 2.2 hours assuming first order deactivation behavior. The molar mass of the polybutene polymer may be regulated, as is well known in the art, by introducing small amounts of hydrogen.
- The invention is illustrated by the following examples. Solid catalyst components were prepared in an inert atmosphere. The reagents used (alcohol, electron donor, heptane) were dried and bubbled with nitrogen so that their oxygen and moisture contents were below 10 ppm. Preparation of Catalyst Components
- Catalyst components were prepared by placing magnesiumalkyl (20% solution in heptane) in a five-necked flask provided with a mechanical stirrer, reflux-condenser, gas supply valve and thermometer. The suspension wasd bubbled with nitrogen and kept under an inert atmosphere. Alkyl chloride was added from a dropping funnel at the ambient temperature. Thereafter the chlorination was accomplished with chlorine gas at the speed of 5 ml per minute.
- Silicon oil was added and thereafter the alcohol was added drop by drop to the mixture at 25-35°C. The alcohol was ethanol except that in Example D 2-ethylhexanol was used, in Example K ethylene glycol was used and in Example N butanol was used. While adding the alcohol, the chlorinated precipitate became thicker. The mixture was stirred at 40°C for 1 hour. Then the temperature was increased to 75-80°C and the suspension was kept there over the night.
- The hot suspension was transferred to excess of cold TiCl4 (-25°C) slowly by siphoning, allowing the reaction intermediate to precipitate in the cold TiCl4. Then the mixture was allowed to warm up to the room temperature. Di-isobutylphthalate was introduced as the electron donor except Example O where ethyl benzoate was used. The temperature was increased to 100-110°C and the mixture was kept there for 1 hour. After sedimentation of the precipitate the solution was transferred by siphoning. Another portion of TiC14 in excess was added and the mixture was stirred at 110°C for 1 hour. After sedimentation of the precipitate and siphoning of the solution, the completed catalyst component was washed with heptane several times (5-6 times at 80°C) and dried in a slight vacuum.
- Catalyst components were prepared by mixing 300 ml butyloctylmagnesium (20% solution in heptane) and 200 ml heptane in a five-necked flask provided with mechanical stirrer, reflux condenser, gas supply valve and thermometer. Chlorine-gas (about 6 liter) was added for 30 min. The temperature was kept below 30°C. The gas supply was controlled by rotameter. The unreacted chlorine gas was removed by bubbling Nz through the system for 30 min. The mixture was heated to 90°C and 36 ml EtOH was introduced to the warm chlorinated mixture of the carrier. The mixture was heated under agitation for 10 min. The product was washed 2-4 times with heptane. The heptane was removed by siphoning.
- 600 ml silicon oil and 36 ml EtOH was added. The temperature was raised to 100°C. The mixture was kept at 100-110°C for 2 hours under agitation. During this procedure a dispersion of carrier-EtOH adduct was obtained. The dispersion was transferred by siphoning slowly into a cold (-20°C) solution of 700 ml TiC14 and 300 ml heptane. The mixture was allowed to warm up very slowly to the room temperature and then 5 ml di-isobutyl phthalate was added. The mixture was heated to 110°C and kept there for 1 hour. After sedimentation of the precipitate the solution was transferred by siphoning. 800 ml TiC14 was added and the mixture was heated to 110°C, 1 hour. The solid was again left to precipitate and the solution was removed by siphoning. After this treatment the brown powder obtained was washed thoroughly with warm heptane. The catalyst component was introduced by a siphon into a 3-necked flask and dried in Nz stream 1 hr with shaking.
- A comparative catalyst component was prepared in the same way as catalyst components A-L except that instead of chlorine gas hydrogen chloride was used as second chlorination agent.
- A comparative catalyst component was prepared in the same way as catalyst components A-L except that electron donor was added after the second titanation step.
- A comparative catalyst component was prepared by using hydrogen chloride as chlorinating agent, electron donor treatment before titanation and the titanation was carried out in one step. 70 cm3 of dry n-heptane was placed into a three-necked flask. To the flask was then added 18 cm3 of a solution of dibutylmagnesium in n-heptane. The contents of the flask were stirred and 100 cm3 of dry hydrogen chloride was adder as a chlorinating agent. The chlorination was repeated three further times. The reaction mixture was stirred at ambient temperature (about 20°C) for one hour. The product was allowed to settle and was then washed four times.with 100 cm3 of n-heptane. The solid material was suspended in 100 cm3 of n-heptane.
- To this suspension 1 cm3 Of ethyl benzoate and 80 cm3 of n-heptane was added. The mixture was stirred overnight at ambient temperature. 100 cm3 of heptane was added and then the mixture was filtered. The solid residue was washed once with 100 cm3 of n-heptane.
- The solid residue obtained was mixed with 100 cm3 of titanium tetrachloride and the mixture was heated at 80°C for 2 hours. The solid product was then filtered and was washed four times at 80°C with 100 cm3 of n-heptane. The product obtained was slurried in 50 cm3 of n-heptane.
- A comparative catalyst component was prepared by using SiCl4 as chlorinating agent, electron donor treatment before titanation and the titanation was carried out in one step. 17 g Mg (n-C4H9)2 in 240 ml n-heptane was introduced to 20 ml of solution containing 22 g SiCl4 and 4 g ethylbenzoate at room temperature with stirring for 10 min. The temperature was raised to 95°C, and kept there for 2 hours. 22 g SiC14 was added and heated for 2 hours. The white precipitate formed by cooling was washed with n-heptane.
- After filtration the precipitate was treated with 240 ml boiling TiCl4 for 2 hours. The hot solution was filtrated and the precipitate was washed with cold n-heptane and dried in vacuum.
- = A comparative catalyst component was prepared by using tert-butyl chloride as chlorinating agent. The titanation was carried out in one step. 70 ml dibutylmagnesium and 40 ml diisoamylether were introduced into a reactor at ambient temperature. The reactor was heated to 50°C and 90 ml tert- butylchloride were added drop by drop during 2 hours. After the addition the mixture was kept at 50°C for 2 hours and then the precipitation was washed at the same temperature with n-hexane. 1 ml ethylbenzoate was introduced at 50°C. The mixture as agitated for 1 hour at 50°C, after which the temperature was increased to 80°C to remove hexane with nitrogen. 120 ml titanium tetrachloride was added and the mixture was agitated for 2 hours at 80°C. The solid catalyst component was washed with n-hexane at 50°C.
- The preparation and the properties of the catalyst components above are presented in TABLE 1.
- The silicon oil is used in an amount of above 40 weight-% in relation to the starting materials excluding solvents.
-
- Polymerizations of propylene by using catalyst components prepared as mentioned in TABLE 1, were carried out in a heptane slurry in the following way.
- Into a polymerization reactor containing 700 ml dry heptane was introduced the catalyst which was prepared by mixing the aluminum alkyl compound, for instance triethylaluminum .and, a Lewis alkali, for instance diphenyldimethoxysilane, in the Al:donor molar ratio of 20 in 50 ml heptane, into which after 5 minutes was added the catalyst component prepared as above so that the Al:Ti molar ratio will be 200. The polymerization was accomplished under the following conditions: propylene partial pressure 9.0 bar, hydrogen partial pressure 0.3 bar, temperature 70°C and polymerization time 3 hours.
- Polymerizations in liquid monomer were carried out in the following way:
- The catalyst was prepared as described in Examples 1-5, 7-15 and this catalyst was introduced into a cold polymerization reactor. 0.1 bar hydrogen was added (the amount was controlled by utilizing the partial pressure of hydrogen). 900 g propylene was introduced as liquid . The reactor was heated to 70-80°C so that the partial pressure of propylene increased to 31.3 bar and kept there for 120 minutes. After that time the remaining propylene was flashed out.
- Polymerizations of propylene were carried out according to Examples 1-5, 7-15 by using catalyst component M in Example 16 and catalyst component P in Example 17.
- Polymerizations of propylene were carried out as in Examples 1-5, 7-15 by using catalyst components X, Y and Z, respectively.
- The conditions of these polymerizations are listed in TABLE 2.
- Some properties of polymers obtained are presented in TABLE 3. Isotacticity was determined by extraction in heptane. Melt flow index (MFI) was determined according to the standard ASTM D 1238-65T and bulk density according to the standard ASTM D 1895.
- The activity of the catalyst was determined as quantity of solid polymer based on one kilogram of the polymer per one gram of titanium catalyst.
- It is evident from TABLES 2 and 3 that the catalyst prepared according to the invention have better properties compared to the counterexamples of catalysts prepared according to prior art. In Example 16 there was used a catalyst prepared from catalyst component M, which was obtained by using hydrogen chloride as the second chlorination agent instead of chlorine gas. The catalyst had poor activity compared to catalysts according to the invention. Example 17 shows that by adding electron donor after the second titanation a catalyst component is obtained which also gives a catalyst with very low activity in the polymerization of propylene. Examples 18-20 show clearly that polymerization by using catalysts obtained from comparative catalyst components X, Y and Z give polymers which have poor isotacticity properties compared to polymers prepared according to the invention. These catalysts have also very poor activity.
- Below are presented some examples which illustrate the procedure of the polymerization 1-butene. The phase - transformation of the polymers prepared in the examples was monitored by evaluating the relative heights of the respective peaks of PB-1 and PB-2 in the XRD at 2θ=9.9° and 11.8°. For measuring purposes, the samples were mixed for 10 min. in a Brabender Plasticorder at 190°C under 200 bar pressure for 5 min., whereafter the sample was rapidly cooled to room temperature.
- The degree of isotacticity was determined by measuring the part insoluble in diethylether by extracting 4-5 g of the polymer sample in 200 ml boiling diethylether for 6-7 hours.
- The proportion of propylene in the polymer was determined by 13C-NMR analysis (Fig. 3) according to (J.Polym. Sci.Polym.Phys.Ed., Vol. 21, 573-581 (1983), Anal.Chem., Vol. 49, No. 9 (1977)). In the spectrum (Fig. 3), the intensity of propylene (P) goes down in the peaks due to the homo (and block) form: PPPP > PPPB > BPPB. After the propylene has been used up, its content in the mixed polymer being formed goes down: BPBP + BPBB > PPBP + PPBB.
- The polymerizing runs were made in reactors of approximately 4 liters capacity and comprising a catalyst introduction system, a supply system for liquid and gaseous monomer, a hydrogen addition system, and a system for introducing dry nitrogen. The catalyst was prepared by mixing the aluminum alkyl compound, for instance triisobutylaluminum and, a Lewis base, for instance diphenyldimethoxysilane, in the Al:Lewis base molar ratio of 20 in 50 ml liquid, into which after 5 minutes is added the catalyst component prepared according to the invention so that the Al:Ti molar ratio-will be 200.
- The product was removed by means of a bottom tap on the reactor. In heating and control, conventional technology was applied.
- The pressure in the polymerizing reactor was 3-4 bar during the initial phase and 5-6 bar in the end phase, depending on the temperatures used.
- Into the reactor was introduced isobutane, and it was heated or cooled to desired temperature. Hydrogen was added (the quantity was controlled utilizing the partial pressure of hydrogen). The catalyst component, cocatalyst and Lewis alkali were introduced by aid of nitrogen pressure in the reactor and 0-50 g propylene were added. The propylene was allowed to react for 10-30 min. After the first phase, the discharge valve was opened on the cover of the reactor, whereby the hydrogen and any propylenethat had not reacted could evaporate.
- The desired reaction temperature of the second phase was regulated, hydrogen and 1-butene were added.
- The reaction time was 2 hours. The polymers were usually left overnight in the reactor, whereafter the bottom valve was opened and the contents of the reactor were discharged to atmospheric pressure. The polymer was dried and analyzed as described above. The conditions in these tests are given in Table 4.
-
- Polymerization was carried out as in Examples 21-33 except that there was no intervening evaporation of hydrogen and propylene after phase 1. A mixed polymer is produced in which the content of propylene decreases as it passes from the monomer mixture until it is used up. This phase takes 20-30 min. as followed by the pressure gauge.
- In phase 3, after all propylene has been used, pure polybutene is produced. After the reaction, the bottom valve is opened and the product is dried and processed as described above.
- These reaction conditions are presented in the following TABLE 5. When the polymerization runs are carried out in this manner using a suitable catalyst, the product obtained will be easy to handle, a granular powder with a bulk density of 0.38 g/ml. In addition, the crystal transformation is rapid, taking only 10-120 min. It is followed by X-ray diffraction measurements. Certain physical properties of the polymers prepared in Examples 21-28, 29, 32 and 35-37 are presented in Table 6 below.
- Into the reactor the monomer, I-butene, was introduced, and it was heated or cooled to desired temperature. Hydrogen was added. The catalyst component, cocatalyst and Lewis base were introduced by aid of nitrogen pressure in the reactor: the reaction time was 4 hours, whereafter the bottom valve was opened and the contents of the reactor were discharged. The polymer was dried and analyzed as described above.
- The conditions in this test are given in Table 7 above.
- The polymerizations were carried out as in Example 40, except that isobutane was used as polymerizing medium. Hydrogen pressure was 0.1 bar. These reaction conditions are presented in Table 8. ;
- When the polymerization runs are carried out in this manner using a suitable catalyst and a proper ratio of the monomer to the polymerizing medium, the product obtained will also be easy to handle, a free flowing powder.
-
- Into the reactor were introduced 1500 g isobutane, 50 g propylene and 100 g 1-butene. The reaction temperature was 25°C and hydrogen was added (5 bar). 0.1033 mmol catalyst component A, tri-isobutyl aluminum (TIBA) and diphenyldimethoxysilane (Al:Ti = 200, Al:Lewis base = 20) were added by aid of nitrogen pressure. The propylene and 1-butene were allowed to react for 60 min. Then the discharge valve was opened on the cover of the reactor, whereby hydrogen and any propylene and 1-butene that had not reacted could evaporate.
- The reaction temperature was set to 20°C, and 400 g 1-butene were introduced and hydrogen (0.1 bar) was added. The polymerization was left overnight, whereafter the reactor was discharged, and the polymer was dried and analyzed as described above. The activity,was 0.8 kg PB/g catalyst with isotactic index 95.7%.
- Into the reactor was introduced .1500 g butadiene, and it was heated to 35°C. Hydrogen, 0.1 bar, was added. 0.0473 amol catalyst component F, TIBA (Al:Ti = 200) and diphenyldimethoxysilane (Al:Lewis base = 20) were introduced by aid of nitrogen pressure. The polymerization was left overnight. The yield was 17.2 g polybutadiene.
- Into the reactor was 1300 g isobutane introduced and it was heated to 32°C. 0.1 bar hydrogen was added. 0.0491 mmol catalyst component F, cocatalyst and Lewis base, as in Example 43, were introduced by aid of nitrogen pressure. 25 g isobutene were added. The isobutene was allowed to react for 30 min. Then 400 g 1-butene were added to the reactor. - The reaction temperature was kept at 28°C in this step, and the product was left overnight in the reactor. The yield was 72 g, which means 0.7 kg polymer/g cat. The material insoluble in diethylether was 98.6%. The product was a granular powder.
- Into the reactor 1500 g isobutane were introduced. The temperature ws 26°C. Hydrogen was added (0.1 bar). 0.0525 mmol catalyst component F, cocatalyst and Lewis base, as in Example 43, were introduced. 25 g ethylene were added. The ethylene was allowed to react for 30 min. Then 100 + 436 g 1-butene were added. The reaction temperature was 28°C and the polymerization was. left overnight. The yield was 127.2 g, which means 1.16 kg copolymer/g catalyst.
- Into 1 1 reactor 300 ml heptane were introduced. Hydrogen was added (0.1 bar). 36 x 4 mg catalyst component F, cocatalyst and Lewis base, as in Example 43, were introduced. 33 g 4-methyl-l-pentene were added. The polymerization temperature was 50°C and reaction time was 120 min. The yield of white polymer was 21 g.
- A comparative catalyst component was prepared according to prior art by using magnesium dichloride as starting material for the solid Ti-containing catalyst compound.
- 50 g of anhydrous magnesium chloride, 80 g of anhydrous ethyl alcohol were introduced into a 2 liter autoclave. The reaction mass was heated to 120°C with stirring and an adduct was obtained of MgClz with 3 moles of ethyl alcohol, which melted.
- The dispersion was collected in a stirred 5 liter flask containing 2,5 liters of anhydrous heptane cooled to -40°C. The solid product was separated by decanting and filtering and washed with heptane and dried.
- The product was suspended in 80 ml of anhydrous n-heptane and 200 ml of triethyl aluminum in heptane. The mixture was heated to 80°C for 2 hours. Thereafter the mixture was filtered and then washed five times with 100 ml of n-heptane at 80°C. The product was suspended in 100 ml of n-heptane and into this suspension was added 8 ml of a heptane solution containing 1 g of ethyl benzoate and heated to 80°C for 2 hours. The mixture was then filtered and washed 5 times with 100 ml of heptane at 80°C. The mixture was then filtered and dried under vacuum at 45°C.
- To the MgCl2 was added 80 ml of TiCl4 under stirring and the mixture was heated at 110°C for 2 hours. The product was then filtered and the treatment was repeated with 100 ml of TiC14 for 2 hours, also at 110°C. The product was then filtered cooled to 80°C and then washed with heptane at 80°C and dried under vacuum at 45°C.
- Another comparative catalyst component according to prior art was prepared by using magnesium dichloride as starting material for the solid Ti-containing catalyst compound.
- 30 g of anhydrous MgCl2 and 50 g of anhydrous - ethanol and 100 ml of silicon oil and 100 ml of mineral oil were introduced into a flask at 120°C with stirring until all the MgCl2 was dissolved.
- The MgCl2 adduct with ethanol was thus formed. The hot mixture was
- maintained at 120°C and stirred and then discharged into 1000 ml of n-heptane which was kept under stirring and cooled so that the final temperature did not exceed 0°C. The MgC12.3EtOH microspheres obtained after filtering were dried under vacuum. The adduct was activated as in Example 57.
- The polymerization of Examples 21-33 were repeated by using catalysts according to comparative Examples 56 and 57. The difference between a typical catalyst component according to prior art and the catalyst component according to the invention can clearly be seen from Tables 9 and 10. With the catalyst component according to the invention the block:random ratio was 0.9:1 when with known catalysts the ratio was 7.5:1, as can be seen from Table 10.
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT86100617T ATE61593T1 (en) | 1985-01-22 | 1986-01-18 | CATALYST INGREDIENT, A CATALYST AND AN OLEFIN POLYMERIZATION PROCESS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3501858 | 1985-01-22 | ||
DE19853501858 DE3501858A1 (en) | 1985-01-22 | 1985-01-22 | CATALYST COMPONENTS, CATALYST AND METHOD FOR THE POLYMERIZATION OF OLEFINS |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0198151A2 true EP0198151A2 (en) | 1986-10-22 |
EP0198151A3 EP0198151A3 (en) | 1988-08-31 |
EP0198151B1 EP0198151B1 (en) | 1991-03-13 |
Family
ID=6260349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86100617A Expired - Lifetime EP0198151B1 (en) | 1985-01-22 | 1986-01-18 | Catalyst components, a catalyst and a process for the polymerization of olefins |
Country Status (10)
Country | Link |
---|---|
US (2) | US4673661A (en) |
EP (1) | EP0198151B1 (en) |
JP (1) | JPS61168604A (en) |
CN (1) | CN1008907B (en) |
AT (1) | ATE61593T1 (en) |
CA (1) | CA1263858A (en) |
DE (2) | DE3501858A1 (en) |
DK (1) | DK161649C (en) |
FI (1) | FI850322L (en) |
NO (1) | NO169294C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0284005A2 (en) * | 1987-03-23 | 1988-09-28 | Idemitsu Petrochemical Co. Ltd. | Method of production of polyolefins |
EP0575840A1 (en) * | 1992-06-24 | 1993-12-29 | Hoechst Aktiengesellschaft | Process for the production of a catalyst system for the (co)polymerization of ethylene into ultrahighmolecular weight ethylene polymers |
US6114271A (en) * | 1998-01-22 | 2000-09-05 | Ticona Gmbh | Process for the preparation of a polymerization and copolymerization of ethylene to give ultrahigh molecular-weight ethylene polymers |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5241024A (en) * | 1986-08-21 | 1993-08-31 | Idemitsu Petrochemical Co | Method for producing butene-1 polymer |
FI76100C (en) * | 1986-09-29 | 1988-09-09 | Neste Oy | CATALYTIC COMPONENT FOER POLYMERIZATIONSKATALYT FOER -OLEFINER OCH FOERFARANDE FOER FRAMSTAELLNING AV DESSA. |
FI76099C (en) * | 1986-09-29 | 1988-09-09 | Neste Oy | Catalytic Components for Polymerization Catalysts for Alpha-Olefins and Process for their Preparation |
US6121393A (en) * | 1987-02-17 | 2000-09-19 | Mitsui Chemicals | Process for polymerizing alpha-olefins |
FR2629461B1 (en) * | 1988-03-31 | 1993-05-07 | Bp Chimie Sa | PROPYLENE (CO) POLYMERIZATION CATALYST, SUPPORTED ON SPHERICAL PARTICLES OF MAGNESIUM CHLORIDE AND COATED WITH POLYPROPYLENE, AND METHODS OF PREPARATION |
US5556820A (en) * | 1989-12-28 | 1996-09-17 | Idemitsu Petrochemical Co., Ltd. | Catalyst component for olefin polymerization and process for producing polyolefins |
IT1262933B (en) * | 1992-01-31 | 1996-07-22 | Montecatini Tecnologie Srl | PROCESS FOR THE ALFA-OLEFINE GAS POLYMERIZATION |
US5817591A (en) * | 1995-06-07 | 1998-10-06 | Fina Technology, Inc. | Polyolefin catalyst from metal alkoxides or dialkyls, production and use |
DE69600988T2 (en) * | 1995-10-02 | 1999-07-08 | Borealis Ag, Schwechat-Mannswoerth | Supported catalyst for olefin polymerization |
ES2125081T3 (en) | 1995-11-08 | 1999-02-16 | Borealis Ag | SUPPORTED CATALYST FOR THE POLYMERIZATION OF OLEFINS. |
DE69601025T2 (en) * | 1995-11-08 | 1999-06-24 | Borealis Ag, Schwechat-Mannswoerth | Supported catalyst for olefin polymerization |
ES2133881T3 (en) * | 1995-12-01 | 1999-09-16 | Borealis Ag | SUPPORTED CATALYST FOR THE POLYMERIZATION OF OLEFINS. |
EP0776912B1 (en) | 1995-12-01 | 1999-06-16 | Borealis AG | Supported catalyst for olefin polymerization |
US6015779A (en) | 1996-03-19 | 2000-01-18 | Energy & Environmental International, L.C. | Methods for forming amorphous ultra-high molecular weight polyalphaolefin drag reducing agents |
US5849655A (en) * | 1996-12-20 | 1998-12-15 | Fina Technology, Inc. | Polyolefin catalyst for polymerization of propylene and a method of making and using thereof |
CZ34998A3 (en) * | 1997-02-17 | 1999-08-11 | Pcd Polymere Gesellschaft M. B. H. | Process for preparing solid carrier for olefin polymerization catalysts |
ES2205795T5 (en) * | 1998-03-05 | 2009-11-24 | Basell Poliolefine Italia S.R.L. | (CO) POLYMUTENE-1 POLYMERS AND PROCEDURE FOR PREPARATION. |
US6815011B2 (en) | 2000-11-27 | 2004-11-09 | Energy & Environmental International, L.C. | Alpha olefin monomer partitioning agents for drag reducing agents and methods of forming drag reducing agents using alpha olefin monomer partitioning agents |
ATE458758T1 (en) | 2001-01-16 | 2010-03-15 | Beta Technologie Ag | METHOD FOR PRODUCING ULTRA-HIGH MOLECULAR WEIGHT AMORPHIC POLYOLEFINS FOR FLOW ACCELERATION |
US7012046B2 (en) * | 2001-06-08 | 2006-03-14 | Eaton Gerald B | Drag reducing agent slurries having alfol alcohols and processes for forming drag reducing agent slurries having alfol alcohols |
US20030069372A1 (en) * | 2001-10-09 | 2003-04-10 | Formosa Plastics Corporation, U.S.A. | Olefin polymerization catalyst and process for preparing polyolefins with said catalyst |
CN1845940A (en) * | 2003-08-29 | 2006-10-11 | 陶氏环球技术公司 | Method for making partially dried readily dispersible olefin polymerization procatalyst |
RU2623228C2 (en) * | 2012-09-24 | 2017-06-23 | Индийская Нефтяная Корпорация Лимитэд | Precursor for catalyst, method of its production and application |
CN104583244B (en) * | 2012-09-24 | 2017-10-24 | 印度石油有限公司 | Catalyst for olefines polymerizing and preparation method thereof |
EP3653631A1 (en) * | 2012-09-24 | 2020-05-20 | INDIAN OIL CORPORATION Ltd. | Processes for the preparation of an olefin polymerization catalyst based on treating solid organomagnesium compounds with titanium moieties |
CN104672356B (en) * | 2015-03-09 | 2016-08-24 | 陈伟 | Catalyst component for olefin, the preparation method of this component and catalyst |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0019330A1 (en) * | 1979-05-17 | 1980-11-26 | Shell Internationale Researchmaatschappij B.V. | Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions |
EP0015048B1 (en) * | 1979-01-10 | 1983-02-16 | Imperial Chemical Industries Plc | Olefine polymerization catalyst and use thereof |
US4442225A (en) * | 1981-06-11 | 1984-04-10 | Toyo Stauffer Chemical Co., Ltd. | Catalytic component for polymerization of α-olefin and method for homo- or co-polymerization of α-olefin |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3135809A (en) * | 1960-07-21 | 1964-06-02 | Southern Res Inst | Isomerization process |
CA1104298A (en) * | 1978-02-23 | 1981-06-30 | Akinobu Shiga | Catalysts for the polymerization of olefins |
IT1098272B (en) * | 1978-08-22 | 1985-09-07 | Montedison Spa | COMPONENTS, CATALYSTS AND CATALYSTS FOR THE POLYMERIZATION OF ALPHA-OLEFINS |
JPS5846202B2 (en) * | 1979-01-31 | 1983-10-14 | 住友化学工業株式会社 | Production method of olefin polymer |
GB2059973B (en) * | 1979-09-25 | 1984-05-31 | Asahi Chemical Ind | Process and catalyst for polymerizing an -olefin |
-
1985
- 1985-01-22 DE DE19853501858 patent/DE3501858A1/en not_active Ceased
- 1985-01-24 FI FI850322A patent/FI850322L/en not_active Application Discontinuation
-
1986
- 1986-01-18 EP EP86100617A patent/EP0198151B1/en not_active Expired - Lifetime
- 1986-01-18 AT AT86100617T patent/ATE61593T1/en active
- 1986-01-18 DE DE8686100617T patent/DE3678019D1/en not_active Expired - Fee Related
- 1986-01-21 NO NO860201A patent/NO169294C/en unknown
- 1986-01-21 CA CA000500021A patent/CA1263858A/en not_active Expired
- 1986-01-21 DK DK030986A patent/DK161649C/en not_active IP Right Cessation
- 1986-01-21 US US06/821,070 patent/US4673661A/en not_active Expired - Fee Related
- 1986-01-22 CN CN86100355A patent/CN1008907B/en not_active Expired
- 1986-01-22 JP JP61012966A patent/JPS61168604A/en active Pending
- 1986-12-22 US US06/945,309 patent/US4724255A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0015048B1 (en) * | 1979-01-10 | 1983-02-16 | Imperial Chemical Industries Plc | Olefine polymerization catalyst and use thereof |
EP0019330A1 (en) * | 1979-05-17 | 1980-11-26 | Shell Internationale Researchmaatschappij B.V. | Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions |
US4442225A (en) * | 1981-06-11 | 1984-04-10 | Toyo Stauffer Chemical Co., Ltd. | Catalytic component for polymerization of α-olefin and method for homo- or co-polymerization of α-olefin |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0284005A2 (en) * | 1987-03-23 | 1988-09-28 | Idemitsu Petrochemical Co. Ltd. | Method of production of polyolefins |
EP0284005A3 (en) * | 1987-03-23 | 1989-11-23 | Idemitsu Petrochemical Co. Ltd. | Method of production of polyolefins |
US4981930A (en) * | 1987-03-23 | 1991-01-01 | Idemitsu Petrochemical Company Limited | Method of production of polyolefins |
EP0575840A1 (en) * | 1992-06-24 | 1993-12-29 | Hoechst Aktiengesellschaft | Process for the production of a catalyst system for the (co)polymerization of ethylene into ultrahighmolecular weight ethylene polymers |
US6114271A (en) * | 1998-01-22 | 2000-09-05 | Ticona Gmbh | Process for the preparation of a polymerization and copolymerization of ethylene to give ultrahigh molecular-weight ethylene polymers |
Also Published As
Publication number | Publication date |
---|---|
ATE61593T1 (en) | 1991-03-15 |
DK161649C (en) | 1992-01-06 |
CN86100355A (en) | 1986-08-13 |
DK30986A (en) | 1986-07-23 |
EP0198151A3 (en) | 1988-08-31 |
EP0198151B1 (en) | 1991-03-13 |
US4724255A (en) | 1988-02-09 |
NO169294B (en) | 1992-02-24 |
FI850322L (en) | 1986-07-23 |
DK161649B (en) | 1991-07-29 |
NO169294C (en) | 1992-06-03 |
DE3678019D1 (en) | 1991-04-18 |
JPS61168604A (en) | 1986-07-30 |
DK30986D0 (en) | 1986-01-21 |
DE3501858A1 (en) | 1986-07-24 |
CA1263858A (en) | 1989-12-12 |
FI850322A0 (en) | 1985-01-24 |
US4673661A (en) | 1987-06-16 |
CN1008907B (en) | 1990-07-25 |
NO860201L (en) | 1986-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0198151B1 (en) | Catalyst components, a catalyst and a process for the polymerization of olefins | |
US5081090A (en) | Dry olefin polymerization catalyst | |
EP1751195B1 (en) | Method for the preparation of olefin polymerisation catalyst | |
US4829038A (en) | Alpha-olefin polymerization catalyst system including an advantageous modifier component | |
EP0291958B1 (en) | Process for producing stereoregular polymers having a narrow molecular weight distribution | |
US4393182A (en) | Olefin polymerization process with novel supported titanium catalyst compositions | |
CA1263370A (en) | CATALYST AND PROCESS FOR PRODUCING .alpha.-OLEFIN POLYMERS USING THE SAME | |
EP0856013B1 (en) | Morphology-controlled olefin polymerization catalyst formed from an emulsion | |
EP0250229B2 (en) | Process for polymerising alpha-olefin | |
JP3168341B2 (en) | Olefin polymerization catalyst and method | |
EP0951488B1 (en) | High melt flow propylene polymer produced by gas-phase polymerization | |
RU2114864C1 (en) | Catalytic system for polymerization of olefins | |
US4563436A (en) | Catalyst component for α-olefin polymerization and method of producing the same | |
KR100330059B1 (en) | Elastomer Ethylene-Propylene Copolymer Production Catalyst | |
KR940000014B1 (en) | Highly active ziegler-natta catalyst for polymerizing hdpe and lldpe and method for preparation thereof | |
EP1040132B1 (en) | Process for polymerizing olefins with supported ziegler-natta catalyst systems | |
JPH0859731A (en) | Production of olefin polymerization catalyst | |
EP0111902A2 (en) | Catalyst and process using same for producing olefin polymer | |
KR20020037355A (en) | Catalyst for the polymerization of olefins | |
JPH06145248A (en) | Preparation of copolymer by polymerization of olefin | |
US4321347A (en) | Process for the polymerization of olefins | |
JP3253749B2 (en) | Method for producing olefin polymerization catalyst | |
JP2008534722A (en) | Catalyst component for polymerization of olefins | |
JPS5812886B2 (en) | polyolefin innoseizohouhou | |
US20030045659A1 (en) | Process for polymerizing olefins with supported Ziegler-Natta catalyst systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19890125 |
|
17Q | First examination report despatched |
Effective date: 19900607 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 61593 Country of ref document: AT Date of ref document: 19910315 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3678019 Country of ref document: DE Date of ref document: 19910418 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19911218 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EPTA | Lu: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19930118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19931126 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19931201 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19931231 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940110 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940111 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940118 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19940131 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950118 Ref country code: AT Effective date: 19950118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950119 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 86100617.9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950131 Ref country code: CH Effective date: 19950131 Ref country code: BE Effective date: 19950131 |
|
BERE | Be: lapsed |
Owner name: NESTE OY Effective date: 19950131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950801 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950929 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19950801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951003 |
|
EUG | Se: european patent has lapsed |
Ref document number: 86100617.9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050118 |