EP0197227A1 - Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées - Google Patents

Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées Download PDF

Info

Publication number
EP0197227A1
EP0197227A1 EP85400677A EP85400677A EP0197227A1 EP 0197227 A1 EP0197227 A1 EP 0197227A1 EP 85400677 A EP85400677 A EP 85400677A EP 85400677 A EP85400677 A EP 85400677A EP 0197227 A1 EP0197227 A1 EP 0197227A1
Authority
EP
European Patent Office
Prior art keywords
layer
insulation
varnish
cable
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85400677A
Other languages
German (de)
English (en)
Inventor
Edith Bascou
Michel Marechal
Jean-Pierre Ferlier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Filotex SA
Original Assignee
Filotex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR8318816A priority Critical patent/FR2555799B1/fr
Application filed by Filotex SA filed Critical Filotex SA
Priority to EP85400677A priority patent/EP0197227A1/fr
Publication of EP0197227A1 publication Critical patent/EP0197227A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0241Disposition of insulation comprising one or more helical wrapped layers of insulation
    • H01B7/025Disposition of insulation comprising one or more helical wrapped layers of insulation comprising in addition one or more other layers of non-helical wrapped insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat

Definitions

  • the present invention relates to an electrical cable, in particular for aerospace use, with improved electrical characteristics, comprising a central conductor, a first layer of insulation, and at least a second layer of insulation around the first, one of these. ci being formed by a strip of polyimide synthetic resin wound helically, and the different layers being joined together by heat treatment. Such a cable is particularly suitable for aeronautical and space applications.
  • Cables of this type are already known, in which the insulation consists of one or more strips of polyimide synthetic resin, in particular of the quality sold under the brand "Kapton F" by the lich du Pont de Nemours, taped around the conductor central, with the various layers joined together by heating, then coated with a varnish resistant to a high temperature, for example a polyimide varnish.
  • Cables have also been used, the central conductor of which is surrounded by an extruded thermoplastic insulation, for example made of a copolymer of ethylene and tetrafluoroethylene, crosslinked or not.
  • Cables whose insulation consists of one or more strips of polyimide resin have insufficient resistance to the path of the electric arc during overvoltages or short-circuits. In addition, they lack flexibility and must be stripped with perfectly calibrated tools.
  • the object of the present invention is to provide an electric cable having excellent resistance to arc tracking, a sou satisfactory pliability and strippability, while being compact and light, and resistant to thermal overloads and high electrical overvoltages.
  • the electric cable according to the invention is characterized in that the second layer is formed by an extruded layer of a non-crosslinked thermoplastic resin perfluoroalkoxy or polyether-ether-ketone.
  • the electric cable according to the invention has three superposed insulation layers, it is characterized in that the first insulation layer is formed by an extruded layer of a non-crosslinked thermoplastic resin perfluoroalkoxy or polyether-ether-ketone, in that the second layer of insulation is formed by a strip of synthetic polyimide resin wound helically around the first, and in that the third layer is formed by a varnish hardened by heat treatment of class resistant to a temperature of at least minus 150 ° C.
  • the thickness of the varnish is preferably from 10 to 100 microns.
  • the varnish is preferably a polyurethane varnish.
  • the first insulation layer is formed by a strip of polyimide resin wound helically around the conductor, and its second insulation layer is formed by an extruded layer of a non-crosslinked thermoplastic resin perfluoroalkoxy or polyether-ether-ketone, devoid of protective varnish.
  • the invention further extends to an electric cable comprising a central conductor, a first layer of insulation, and at least a second layer of insulation around the first, characterized in that one of these layers is formed. by a strip of polyazole or polyparabane synthetic resin wound helically, and the other is formed by an extruded layer of a non-crosslinked thermoplastic resin perfluoroalkoxy or polyether-ether-ketone.
  • the thickness of each of the cable insulation layers of the invention is preferably between 0.04 mm and 0.35 mm.
  • FIGS. 1 and 2 relate to cables comprising a layer of thermoplastic resin in addition to the layer of polyimide resin, better results are already obtained than with known cables by providing a layer of a thermosetting synthetic resin, in particular polytetrafluoroethylene, either between the conductor and the polyimide resin tape, or above it.
  • the cable comprises a central conductor 1, a layer 2 of thermoplastic resin such as a perfluoroalkoxy resin, a polyether-ether-ketone resin, or a copolymer resin of ethylene and tetrafluoroethylene, which may or may not be crosslinked , for example by irradiation, a layer 3 formed by a ribbon band of polyimide resin, in particular that sold by the company of Pont de Nemours under the brand "Kapton F", and finally a layer 4 of varnish resistant to at least 150 ° C, for example a fluorocarbon varnish, a polyimide varnish, a polyamidimide varnish or a polyurethane varnish, etc.
  • thermoplastic resin such as a perfluoroalkoxy resin, a polyether-ether-ketone resin, or a copolymer resin of ethylene and tetrafluoroethylene, which may or may not be crosslinked , for example by irradiation
  • a layer 3 formed by a ribbon band of
  • the central conductor 1 can be made of copper or copper alloy, protected by a coating of tin, silver or nickel, or else of aluminum or aluminum alloy, protected or not by a metallic coating, in particular of tin or nickel. It generally consists of several twisted strands. Its diameter is 1 mm.
  • the layer of thermoplastic resin 2, with a softening point at least equal to 250 ° C, and preferably at least equal to 300 ° C, obtained by extrusion around the central conductor, has a radial thickness of 0.07 mm.
  • Layer 3 formed by the strip of polyimide resin tape "Kapton F" has a thickness of 0.06 mm.
  • a thermoplastic coating of copolymer of ethylene and fluorinated propylene is achieved by heating to at least 275 ° C for 15 seconds to 3 minutes.
  • the varnish 4 for coating the layer 3 has a thickness of 0.02 mm. It is for example a polyurethane varnish, formed of several successive layers applied by dipping, each coating pass being followed by a drying and baking operation at at least 250 ° C for 15 seconds to 3 minutes.
  • the cable comprises a central conductor 11, a layer 13 formed by a polyimide strip "KAPTON F" with layers joined together by heat treatment, and a layer 12 of a thermoplastic resin, deposited by extrusion, without coating of a varnish.
  • the layer 13 of polyimide resin has the same thickness as that described with reference to FIG. 1, and the bonding of its layers is ensured in the same way.
  • the conductor when it is made up of several tinned copper strands, will preferably be manufactured by the process which was the subject of patent application FR-A-2472253 of the applicant, so as to avoid soldering of its strands between them, while allowing the layers of the polyimide resin strip to be bonded together.
  • the thermoplastic resin of layer 12 is for example a copolymer of ethylene and fluorinated propylene, a copolymer of ethylene and tetrafluoroethylene, a polyether-ether-ketone or a perfluoroalkoxy resin. Its thickness is the same as that of the layer of thermoplastic resin in FIG. 1.
  • the fluorinated ethylene-propylene copolymer acting as an adhesive for the "Kapton F" polyimide resin can optionally be replaced by another adhesive.
  • Some of these, in particular those based on polyesters or on silicones, are compatible with the use as thermoplastic resin of the first layer of the cable shown in FIG. 1 of another polymer such as a copolymer of ethylene and of fluorinated propylene, a copolymer of ethylene and uncrosslinked tetrafluoroethylene, or polyvinylidene fluoride.
  • the insulation layer other than that of polyimide resin ensures better resistance to the path of the electric arc, preventing any arcing with the adjacent cables of a bundle. , than the insulation of a known cable. This improvement is all the more significant as this other layer of insulation is thicker, and it is more marked when the resin of this layer is a thermoplastic resin.
  • the polyimide resin layer provides excellent thermal and mechanical resistance and good resistance to large overvoltages.
  • the combination of the two insulation layers makes it possible to give the cable a thickness, and consequently a weight, which is lower than for a cable with thermoplastic resin insulation, and also ensures a more smoke emission rate in the event of fire. low.
  • the arc path resistance test device represented in FIG. 3 comprises a cable element to be tested 21, with a length of 20 cm, notched in the middle by a slot 22 from 0.13 to 0.25 mm wide reaching the central conductor.
  • This cable element is placed between two other adjacent cable elements 23, 24 which are identical, but not notched, arranged like it 0.25 mm above a flat aluminum plate 25, cleaned and pickled for remove all impurities and traces of oxide, and earth at 26.
  • the two conductors of the elements 23, 24 are connected at their ends by conductors 27, 28, and connected on one side to the aluminum plate 25 and by it to the earth.
  • the cable element 21 to be tested is arranged in a circuit comprising a power supply 29, which can be either continuously at 28 volts or alternatively 400 Hz at 115 volts.
  • the circuit further comprises a circuit breaker 30 tripping at 7.5 amps, a load resistor 31 and an ammeter 32.
  • a burette 33 disposed vertically from the slot 22 of the element to be tested is filled with a solution of sodium chloride at 3% by weight. Its tap 34 is adjusted so as to let the solution drop drop by drop on the slot.
  • the arc path resistance test which is more severe than that defined in standard ASTM D 3638-77, and intended to correspond to the conditions of use of cables on board aircraft, is as follows.
  • the test is continued for 24 hours, even when the driver breaks, except in the event of circuit breaker operation.
  • the phenomena and the appearance of the cable elements are observed at the end of the test.
  • the surface propagation of the arc on the central cable element must not exceed 10 mm.
  • control cable and the cable of the invention are first subjected to the DC test at 28 volts.
  • the central conductor breaks after approximately 10 minutes.
  • the deterioration of the insulation spreads to the adjacent cables.
  • the test is stopped after 3 h by tripping of the circuit breaker. There is arcing with the other conductors, and propagation of the arc over approximately 50 mm.
  • the central conductor breaks after approximately 20 hours. After 24 h, no propagation of the arc is observed, nor visible damage on the adjacent cables.
  • control cable and the cable of the invention are then subjected to the test in alternating current 115 volts, 400 Hz.
  • the central conductor breaks after 5 minutes.
  • the arc quickly propagates to the adjacent cables and trips the circuit breaker.
  • the central conductor breaks after 5 h. After 24 hours, the arc has spread over 3 mm on the central cable. There is no propagation of the arc to the adjacent cables.
  • the cable according to the invention is more particularly suitable for uses in aviation and on spacecraft, but it is also advantageous in all applications where it is desired to have a small footprint, excellent mechanical and thermal resistance and great security against with regard to the possibility of fire due to short circuits or loss of insulation.

Landscapes

  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Câble électrique, notamment pour usade aérospatial, à caractéristiques électriques améliorées, comprenant un conducteur central, une première couche d'isolation, et au moins une deuxième couche d'isolation autour de la première, l'une de celles-ci étant formée par une bande de résine synthétique polyimide enroulée héliocoidalement,et les différentes couches étant solidarisées par traitement thermique, caractérisé en ce que la deuxième couche est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéthether-éthercétone.

Description

  • La présente invention concerne un câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées, comprenant un conducteur central, une première couche d'isolation, et au moins une deuxième couche d'isolation autour de la première, l'une de celles-ci étant formée par une bande de résine synthétique polyimide enroulée hélicoidalement, et les différentes couches étant solidarisées par traitement thermique. Un tel câble convient notamment pour les applications aéronautiques et spatiales.
  • On connaît déjà des câbles de ce genre, dans lesquels l'isolation est constituée par une ou plusieurs bandes de résine synthétique polyimide, notamment de la qualité commercialisée sous la marque "Kapton F" par la Société du Pont de Nemours, rubanées autour du conducteur central, avec solidarisation des différentes couches par chauffage, puis revêtues d'un vernis résistant à une température élevée, par exemple d'un vernis polyimide.
  • On a également utilisé des câbles dont le conducteur central est entouré d'un isolant thermoplastique extrudé, par exemple en copolymère d'éthylène et de tétrafluoréthylène, réticulé ou non..
  • Les câbles dont l'isolation est constituée par une ou plusieurs bandes de résine polyimide présentent une résistance insuffisante au cheminement de l'arc électrique lors de surtensions ou de courts-circuits. Par ailleurs ils manquent de souplesse et doivent être dénudés avec des outils parfaitement calibrés.
  • Ceux dont l'isolation est constituée uniquement par une résine thermoplastique réticulée ou non sont relativement encombrants et lourds, et leurs tenues aux surcharges thermiques et aux surtensions électriques élevées laissent à désirer.
  • La présente invention a pour but de procurer un câble électrique présentant une excellente résistance au cheminement de l'arc, une souplesse et une dénudabilité satisfaisantes, tout en étant peu encombrant et léger, et résistant aux surcharges thermiques et aux surtensions électriques élevées.
  • Le câble électrique selon l'invention est caractérisé en ce que la deuxième couche est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone.
  • Lorsque le câble électrique selon l'invoention comporte trois couches d'isolation superposées, il est caractérisé en ce que la première couche d'isolation est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone, en ce que la deuxième couche d'isolation est formée par,une bande de résine synthétique polyimide enroulée hélicoidalement autour de la première, et en ce que la troisième couche est formée par un vernis durci par traitement thermique de classe résistant à une température d'au moins 150°C.
  • L'épaisseur du vernis est de préférence de 10 à 100 microns.
  • Le vernis est de préférence un vernis polyuréthane.
  • Lorsque le câble électrique ne comporte que deux couches, la première couche d'isolation est formée par une bande de résine polyimide enroulée hélicoidalement autour du conducteur, et sa deuxième couche d'isolation est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone, dépourvue de vernis protecteur.
  • L'invention s'étend en outre à un câble électrique comprenant un conducteur central, une première couche d'isolation, et au moins une deuxième couche d'isolation autour de la première, caractérisé en ce que l'une de ces couches est formée par une bande de résine synthétique polyazole ou polyparabanique enroulée hélicoidalement, et l'autre est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone.
  • Pour un diamètre du conducteur central allant de 0,3 mm à 10 mm, l'épaisseur de chacune des couches d'isolation des câbles de l'invention est de préférence comprise entre 0,04 mm et 0,35 mm.
  • Il est décrit ci-après, à titre d'exemples et en référence aux figures du dessin annexé, des structures de câble électrique pour usage aéronautique selon l'invention et un essai comparatif de résistance au cheminement de l'arc électrique d'un câble connu et d'un câble selon l'invention.
    • La figure 1 représente en section droite un câble comprenant une couche d'isolant en résine thermoplastique de point de ramollissement au moins égal à 250°C entre le conducteur central et une couche d'isolant rubané en résine polyimide, revêtue extérieurement d'un vernis.
    • La figure 2 représente en section droite un câble comprenant une couche d'isolant en résine thermoplastique autour de 'la couche formée par une bande de résine polyimide rubanée autour du conducteur central.
    • La figure 3 représente schématiquement en perspective un appareillage d'essai de résistance au cheminement d'arc.
  • Bien que les figures 1 et 2 portent sur des câbles comportant une couche de résine thermoplastique en plus de la couche de résine polyimide, on obtient déjà de meilleurs résultats qu'avec les câbles connus en disposant une couche d'une résine synthétique thermodurcissable, notamment de polytétrafluoréthylène, soit entre le conducteur et le bande rubanée de résine polyimide, soit au-dessus de celle-ci.
  • Dans la figure 1, le câble comprend un conducteur central 1, une couche 2 de résine thermoplastique telle qu'une résine perfluoroalcoxy, une résine polyéther-éther-cétone, ou une résine copolymère d'éthylène et de tétrafluoréthylène, pouvant ou non être réticulée, par exemple par irradiation, une couche 3 formée par une bande rubanée de résine polyimide, notamment celle commercialisée par la société du Pont de Nemours sous la marque "Kapton F", et enfin une couche 4 de vernis résistant à au moins 150°C, par exemple un vernis fluorocarboné, un vernis polyimide, un vernis polyamidimide ou un vernis polyuréthane, etc.
  • Le conducteur central 1 peut être en cuivre ou alliage de cuivre, protégés par un revêtement d'étain, d'argent ou de nickel, ou bien en aluminium ou alliage d'aluminium, protégé ou non par un revêtement métallique, notamment en étain ou en nickel. Il se compose en général de plusieurs brins torsadés. Son diamètre est de 1 mm.
  • La couche de résine thermoplastique 2, de point de ramollissement au moins égal à 250°C, et de préférence au moins égal à 300°C, obtenue par extrusion autour du conducteur central, a une épaisseur radiale de 0,07 mm. La couche 3 formée par la bande de résine polyimide rubanée "Kapton F" a une épaisseur de 0,06 mm. Afin de permettre le collage des couches de la bande entre elles, elle est munie d'un revêtement thermoplastique de copolymère d'éthylène et de propylène fluoré. Ce collage est assuré par un chauffage à au moins 275°C pendant 15 secondes à 3 minutes. Le vernis 4 de revêtement de la couche 3 a une épaisseur de 0,02 mm. C'est par exemple un vernis polyuréthane, formé de plusieurs couches successives appliquées au trempé, chaque passe d'enduction étant suivie d'une opération de séchage et de cuisson à au moins 250°C pendant 15 secondes à 3 minutes.
  • Dans la figure 2, le câble comprend un conducteur central 11, une couche 13 formée par une bande rubanée de polyimide "KAPTON F" à couches solidarisées par traitement thermique, et une couche 12 d'une résine thermoplastique, déposée par extrusion, sans revêtement d'un vernis.
  • La couche 13 de résine polyimide a la même épaisseur que celle décrite en référence à la figure 1, et le collage de ses couches est assuré de la même manière. Le conducteur, lorsqu'il est constitué de plusieurs brins de cuivre étamés, sera fabriqué de préférence par le procédé qui a fait l'objet de la demande de brevet FR-A-2472253 de la demanderesse, de façon à éviter une soudure de ses brins entre eux, tout en permettant de coller entre elles les couches de la bande de résine polyimide.
  • La résine thermoplastique de la couche 12 est par exemple un copolymère d'éthylène et de propylène fluoré, un copolymère d'éthylène et de tétrafluoréthylène, un polyéther-éther-cétone ou une résine par- fluoroalcoxy. Son épaisseur est la même que celle de la couche de résine thermoplastique de la figure 1.
  • Le copolymère d'éthylène et de propylène fluoré jouant le rôle d'adhésif pour la résine polyimide "Kapton F" peut éventuellement être remplacé par un autre adhésif. Certains de ceux-ci, notamment ceux à base de polyesters ou de silicones, sont compatibles avec l'emploi comme résine thermoplastique de la première couche du câble représenté en figure 1 d'un autre polymère tel qu'un copolymère d'éthylène et de propylène fluoré, un copolymère d'éthylène et de tétrafluoréthylène non réticulé, ou du fluorure de polyvinylidène.
  • Dans les deux structures de câble qui viennent d'être décrites, la couche d'isolation autre que celle de résine polyimide assure une meilleure résistance au cheminement de l'arc électrique, empêchant tout amorçage d'arc avec les câbles adjacents d'un faisceau, que l'isolation d'un câble connu. Cette amélioration est d'autant plus sensible que cette autre couche d'isolation est plus épaisse, et elle est plus marquée lorsque la résine de cette couche est une résine thermoplastique.
  • La couche de résine polyimide assure pour sa part une excellente résistance thermique et mécanique et une bonne résistance aux surtensions importantes.
  • L'ensemble des deux couches d'isolation permet de donner au câble une épaisseur, et par suite un poids, plus faibles que pour un câble à isolation en résine thermoplastique, et assure également un taux d'émission de fumées en cas de feu plus faible.
  • Le dispositif d'essai de résistance au cheminement de l'arc représenté en figure 3 comporte un élément de câble à essayer 21, d'une longueur de 20 cm, entaillé en son milieu par une fente 22 de 0,13 à 0,25 mm de large atteignant le conducteur central. Cet élément de câble est disposé entre deux autres éléments de câble adjacents 23, 24 identiques, mais non entaillés, disposés comme lui 0,25 mm au-dessus d'une plaque plane d'aluminium 25, nettoyée et décapée pour éliminer toute impureté et toute trace d'oxyde, et mise à la terre en 26. Les deux conducteurs des éléments 23, 24 sont reliés à leurs extrémités par des conducteurs 27, 28, et reliés d'un côté à la plaque d'aluminium 25 et par elle à la terre.
  • L'élément de câble 21 à essayer est disposé dans un circuit comprenant une alimentation 29, pouvant être, soit en continu sous 28 volts, soit en alternatif 400 Hz sous 115 volts. Le circuit comprend en outre un disjoncteur 30 déclenchant à 7,5 ampères, une résistance de charge 31 et un ampèremètre 32.
  • Par ailleurs, une burette 33 disposée à la verticale de la fente 22 de l'élément à essayer, est remplie d'une solution de chlorure de sodium à 3% en poids. Son robinet 34 est réglé de façon à laisser la solution tomber goutte à goutte sur la fente.
  • L'essai de résistance au cheminement d'arc, qui est plus sévère que celui défini dans la norme ASTM D 3638-77, et destiné à correspondre aux conditions d'utilisation des câbles à bord d'avions, est le suivant.
  • On fait circuler dans le circuit comprenant l'élément de câble à essayer, un courant d'un ampère, soit sous 28 volts en continu, soit sous 115 volts en alternatif 400 Hz, en laissant tomber la solution saline sur sa fente à la cadence de 2 gouttes par minute. On continue l'essai pendant 24h, même quand la conducteur se rompt, sauf en cas de fonctionnement du disjoncteur. On observe les phénomènes et l'aspect des éléments de câble en fin d'essai. La propagation superficielle de l'arc sur l'élément de câble central ne doit pas dépasser 10 mm.
  • Un essai comparatif a été effectué sur, d'une part un élément de câble connu à conducteur central en cuivre étamé de diamètre 1 mm, et à isolation par bande de polyimide rubanée et recouverte d'un vernis, d'épaisseur totale d'isolation 0,15 mm, d'autre part un élément de câble selon l'invention, comportant
    • - autour du même conducteur central de diamètre 1 mm, une première couche de résine perfluoroalcoxy d'épaisseur 0,07 mm,
    • - autour de celle-ci, une seconde couche de bande de polyimide "Kapton F" rubanée à recouvrement et à couches collées, d'épaisseur 0,06 mm,
    • - une couche de vernis polyuréthane d'épaisseur 0,02 mm. L'épaisseur totale d'isolant est donc également de 0,15 mm.
  • On soumet en premier lieu le câble témoin et le câble de l'invention à l'essai en courant continu sous 28 volts.
  • Pour le câble témoin, le conducteur central se rompt après environ 10 minutes. La détérioration de l'isolant se propage aux câbles adjacents. L'essai est arrêté après 3 h par déclenchement du disjoncteur. Il y a amorçage d'arc avec les autres conducteurs, et propagation de l'arc sur environ 50 mm.
  • Pour le câble de l'invention, le conducteur central se rompt après environ 20h. Après 24 h, on n'observe ni propagation de l'arc, ni dommage visible sur les câbles adjacents.
  • On soumet ensuite le câble témoin et le câble de l'invention à l'essai en courant alternatif 115 volts, 400 Hz.
  • Pour le câble témoin, le conducteur central se rompt après 5 minutes. L'arc se propage rapidement aux câbles adjacents et déclenche le disjoncteur.
  • Pour le câble de l'invention, le conducteur central se rompt après 5 h. Au bout de 24 h, l'arc s'est propagé sur 3 mm sur le câble central. Il n'y a pas de propagation de l'arc aux câbles adjacents.
  • Le câble selon l'invention convient plus particulièrement pour les utilisations en aviation et sur engins spatiaux, mais il est avantageux également dans toutes les applications où l'on désire un faible encombrement, d'excellentes résistances mécanique et thermique et une grande sécurité à l'égard des possibilités d'incendie à la suite de courts-circuits ou pertes d'isolation.

Claims (7)

1/ Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées, comprenant un conducteur central, une première couche d'isolation, et au moins une deuxième couche d'isolation autour de la première, l'une de celles-ci étant formée par une bande de résine synthétique polyimide (3, 13) enroulée hélicoidalement, et les différentes couches étant solidarisées par traitement thermique, caractérisé en ce que la deuxième couche est formée par une couche extrudée (2, 12) d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone.
2/ Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées, comprenant un conducteur central et trois couches d'isolations superposées, caractérisé en ce que la première couche d'isolation est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone, en ce que la deuxième couche d'isolation est formée par une bande de résine synthétique polyimide enroulée hélicoidalement autour de la première, et en ce que la troisième couche est formée par un vernis durci par traitement thermique de classe résistant à une température d'au moins 150°C.
3/ Câble électrique selon la revendication 2, caractérisé en ce que l'épaisseur du vernis est comprise entre 10 et 100 microns.
4/ Câble électrique selon les revendications 2 ou 3, caractérisé en ce que le vernis est un vernis polyuréthane.
5/ Câble électrique selon la revendication 1, caractérisé en ce que sa première couche d'isolation est formée par une bande de résine polyimide enroulée hélicoïdalement autour du conducteur, et sa deuxième couche d'isolation est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone, dépourvue de vernis protecteur.
6/ Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées, comprenant un conducteur central, une première couche d'isolation, et au moins une deuxième couche d'isolation autour de la première, caractérisé en ce que l'une de ces couches est formée par une bande de résine synthétique polyazole ou polyparabanique enroulée hélicoidalement, et en ce que l'autre est formée par une couche extrudée d'une résine thermoplastique non réticulée perfluoroalcoxy ou polyéther-éther-cétone.
7/ Câble électrique selon l'une des revendications 1 à 6, dans lequel le diamètre du conducteur central va de 0,3 mm à 10 mm, caractérisé en ce que l'épaisseur de chacune des couches d'isolation va de 0,04 à 0,35 mm.
EP85400677A 1983-11-25 1985-04-04 Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées Withdrawn EP0197227A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR8318816A FR2555799B1 (fr) 1983-11-25 1983-11-25 Cable electrique, notamment pour usage aerospatial, a caracteristiques electriques ameliorees
EP85400677A EP0197227A1 (fr) 1983-11-25 1985-04-04 Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8318816A FR2555799B1 (fr) 1983-11-25 1983-11-25 Cable electrique, notamment pour usage aerospatial, a caracteristiques electriques ameliorees
EP85400677A EP0197227A1 (fr) 1983-11-25 1985-04-04 Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées

Publications (1)

Publication Number Publication Date
EP0197227A1 true EP0197227A1 (fr) 1986-10-15

Family

ID=26099969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85400677A Withdrawn EP0197227A1 (fr) 1983-11-25 1985-04-04 Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées

Country Status (2)

Country Link
EP (1) EP0197227A1 (fr)
FR (1) FR2555799B1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617325A1 (fr) * 1987-06-25 1988-12-30 Aerospatiale Cable electrique, notamment pour aeronef
EP0380244A1 (fr) * 1989-01-27 1990-08-01 AT&T Corp. Câbles pour bâtiment contenant des matières plastiques non halogénées
EP0380245A1 (fr) * 1989-01-27 1990-08-01 AT&T Corp. Câbles de plenum contenant des matières plastiques exemptes d'halogène
KR100866547B1 (ko) * 2007-02-09 2008-11-03 연세대학교 산학협력단 심전도 잡음 제거 수단을 구비한 뇌전도 검사 장치 및 방법
FR2982993A1 (fr) * 2011-11-23 2013-05-24 Axon Cable Sa Cable electrique haute tension adapte aux conditions extremes
US20130278117A1 (en) * 2012-04-20 2013-10-24 Summit Esp, Llc System and method for enhanced magnet wire insulation
US8861679B2 (en) 2010-06-11 2014-10-14 Palodex Group Oy X-ray imaging systems and methods
DE102014201992A1 (de) * 2014-02-04 2015-08-06 Leoni Bordnetz-Systeme Gmbh Elektrische Leitung sowie Verfahren zur Herstellung eines elektrischen Leitungsbündels
CN117637258A (zh) * 2023-11-29 2024-03-01 迈特诺(马鞍山)特种电缆有限公司 一种用于城轨的耐磨型电缆的加工方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555799B1 (fr) * 1983-11-25 1987-04-17 Filotex Sa Cable electrique, notamment pour usage aerospatial, a caracteristiques electriques ameliorees
FR2602904B1 (fr) * 1986-08-05 1989-12-01 Filotex Sa Cable electrique marquable par laser
GB8716305D0 (en) * 1987-07-10 1987-08-19 Raychem Ltd Electrical wire
GB8716307D0 (en) * 1987-07-10 1987-08-19 Raychem Ltd Electrical wire
DE4041168A1 (de) * 1990-12-21 1992-07-02 Reinshagen Kabelwerk Gmbh Verfahren und vorrichtung zur herstellung einer mit fluorkarbon isolierten elektrischen leitung
FR2673318A1 (fr) * 1991-02-22 1992-08-28 Filotex Sa Procede de realisation d'une enveloppe isolante autour d'un corps allonge, et produit obtenu par ce procede.
GB9120917D0 (en) * 1991-10-01 1991-11-13 Raychem Ltd Transmission line
AU5735298A (en) * 1997-01-14 1998-08-03 Raychem Limited Insulated electrical conductors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422215A (en) * 1967-02-16 1969-01-14 Westinghouse Electric Corp Insulated cable
FR1556405A (fr) * 1967-12-29 1969-02-07
US4273829A (en) * 1979-08-30 1981-06-16 Champlain Cable Corporation Insulation system for wire and cable
FR2555799A1 (fr) * 1983-11-25 1985-05-31 Filotex Sa Cable electrique, notamment pour usage aerospatial, a caracteristiques electriques ameliorees

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168417A (en) * 1963-09-25 1965-02-02 Haveg Industries Inc Polyimide coated fluorocarbon insulated wire
FR1579035A (fr) * 1968-06-18 1969-08-22

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422215A (en) * 1967-02-16 1969-01-14 Westinghouse Electric Corp Insulated cable
FR1556405A (fr) * 1967-12-29 1969-02-07
US4273829A (en) * 1979-08-30 1981-06-16 Champlain Cable Corporation Insulation system for wire and cable
FR2555799A1 (fr) * 1983-11-25 1985-05-31 Filotex Sa Cable electrique, notamment pour usage aerospatial, a caracteristiques electriques ameliorees

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617325A1 (fr) * 1987-06-25 1988-12-30 Aerospatiale Cable electrique, notamment pour aeronef
EP0380244A1 (fr) * 1989-01-27 1990-08-01 AT&T Corp. Câbles pour bâtiment contenant des matières plastiques non halogénées
EP0380245A1 (fr) * 1989-01-27 1990-08-01 AT&T Corp. Câbles de plenum contenant des matières plastiques exemptes d'halogène
US5024506A (en) * 1989-01-27 1991-06-18 At&T Bell Laboratories Plenum cables which include non-halogenated plastic materials
KR100866547B1 (ko) * 2007-02-09 2008-11-03 연세대학교 산학협력단 심전도 잡음 제거 수단을 구비한 뇌전도 검사 장치 및 방법
US8861679B2 (en) 2010-06-11 2014-10-14 Palodex Group Oy X-ray imaging systems and methods
FR2982993A1 (fr) * 2011-11-23 2013-05-24 Axon Cable Sa Cable electrique haute tension adapte aux conditions extremes
WO2013076416A1 (fr) 2011-11-23 2013-05-30 Axon Cable Cable electrique haute tension adapte aux conditions extremes
US20130278117A1 (en) * 2012-04-20 2013-10-24 Summit Esp, Llc System and method for enhanced magnet wire insulation
US9800110B2 (en) * 2012-04-20 2017-10-24 Summit Esp, Llc System and method for enhanced magnet wire insulation
DE102014201992A1 (de) * 2014-02-04 2015-08-06 Leoni Bordnetz-Systeme Gmbh Elektrische Leitung sowie Verfahren zur Herstellung eines elektrischen Leitungsbündels
CN117637258A (zh) * 2023-11-29 2024-03-01 迈特诺(马鞍山)特种电缆有限公司 一种用于城轨的耐磨型电缆的加工方法

Also Published As

Publication number Publication date
FR2555799B1 (fr) 1987-04-17
FR2555799A1 (fr) 1985-05-31

Similar Documents

Publication Publication Date Title
EP0197227A1 (fr) Câble électrique, notamment pour usage aérospatial, à caractéristiques électriques améliorées
EP2040267B1 (fr) Cable electrique resistant a la propagation d'arc electrique
EP0763831B1 (fr) Câble multipaires, blindé par paire et aisé à raccorder
EP2557572B1 (fr) Câble électrique résistant aux décharges partielles
EP0554160B1 (fr) Câble électrique haute fréquence
EP2765581B1 (fr) Câble électrique résistant aux décharges partielles
FR2809528A1 (fr) Cable coaxial flexible et procede de fabrication de celui-ci
EP1816656B1 (fr) Cable électrique protégé contre la corrosion
CH695074A5 (fr) Câble de données à hautes performances.
FR2465303A1 (fr) Blindage pour conducteur electrique
FR2522438A1 (fr) Cable electrique destine a etre utilise dans des puits de petrole
JP2001508588A (ja) 絶縁電気導体
FR2617325A1 (fr) Cable electrique, notamment pour aeronef
EP0965138B1 (fr) Cables auto-regulants extrudes et leur procede de fabrication
EP0122826B1 (fr) Conducteur électrique multifilaire aisément connectable et directement soudable
EP3358575B1 (fr) Câble electrique resistant aux decharges partielles
EP2783372B1 (fr) Cable electrique haute tension adapte aux conditions extremes
FR3068504A1 (fr) Cable comprenant un element electriquement conducteur comprenant des fibres de carbone metallisees
US4524241A (en) Insulated multiwire electric cable having protected solderable and non-heat-sealing conductors
EP0803881B1 (fr) Limiteur de courant à polymère à haute tension
FR2693024A1 (fr) Câble mixte pour la transmission de données et la transmission d'énergie.
EP0440127A2 (fr) Conducteur supraconducteur protégé des transitions partielles
EP0030721A1 (fr) Procédé de fabrication de câble électrique souple avec âme multibrins étamée et isolation appliquée à haute température
EP0297219B1 (fr) Procédé de fabrication d'un câble électrique souple
US3800067A (en) Method of manufacturing an electrically insulated metallic conductor with the insulation adhering to the conductor, and product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870414

17Q First examination report despatched

Effective date: 19881012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900818

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FERLIER, JEAN-PIERRE

Inventor name: MARECHAL, MICHEL

Inventor name: BASCOU, EDITH