EP0187396B1 - Verfahren und Zusammensetzung zum Behandeln von Rohren - Google Patents

Verfahren und Zusammensetzung zum Behandeln von Rohren Download PDF

Info

Publication number
EP0187396B1
EP0187396B1 EP85201837A EP85201837A EP0187396B1 EP 0187396 B1 EP0187396 B1 EP 0187396B1 EP 85201837 A EP85201837 A EP 85201837A EP 85201837 A EP85201837 A EP 85201837A EP 0187396 B1 EP0187396 B1 EP 0187396B1
Authority
EP
European Patent Office
Prior art keywords
gel
polymer
cross
grams
per litre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85201837A
Other languages
English (en)
French (fr)
Other versions
EP0187396A1 (de
Inventor
Colin Mckenzie Keary
Colin Sim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWELL SCHLUMBERGER CORP.
Original Assignee
PUMPTECH NV
Compagnie des Services Dowell Schlumberger SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUMPTECH NV, Compagnie des Services Dowell Schlumberger SA filed Critical PUMPTECH NV
Publication of EP0187396A1 publication Critical patent/EP0187396A1/de
Application granted granted Critical
Publication of EP0187396B1 publication Critical patent/EP0187396B1/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/04Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
    • B08B9/053Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction
    • B08B9/055Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction the cleaning devices conforming to, or being conformable to, substantially the same cross-section of the pipes, e.g. pigs or moles
    • B08B9/0555Gelled or degradable pigs

Definitions

  • the present invention relates to a method and composition for the treatment of pipelines to remove solids, water or other contaminants, and for related applications, such as known, for example from US ⁇ A ⁇ 4003 393, on which the first parts of claims 1 and 13 are based.
  • 'pigs' which are propelled through the pipeline, for example by fluid pressure. Pigs are also used to control the interface between two successive, different fluids flowing through the same pipeline.
  • gel pigs in the form of masses of gelled liquid.
  • the liquid may be water, for which acrylamide copolymer or carboxymethylcellulose catalysed with aluminium sulphate is suggested as a gelling agent, or hydrocarbons, which may be gelled by aluminium salts of fatty acids such as aluminium octoate, stearate or caprylate.
  • Similar gelled pigs can be used for other purposes, such as the application of coatings or surface treatments to the pipeline wall, for example as described in Canadian Patent 957 910.
  • Bingham plastic fluid plugs having a closed toroidal circulation when in motion through the pipe, are used to remove liquid or particulate debris from pipelines.
  • the Bingham fluid may be based on mineral oils, which may be gelled with an organo-modified smectite, or on water, which may be gelled by means of xanthan gum (a high molecular weight, linear, natural polysaccharide produced by the micro-organism Xanthomonas Campestris) cross-linked with a multivalent metal provided by aluminium sulphate, ferric sulphate or chromium chloride, or by means of other watersoluble polymers such as guar gum, carboxymethylcellulose or polyacrylamide with the addition of bentonite.
  • xanthan gum a high molecular weight, linear, natural polysaccharide produced by the micro-organism Xanthomonas Campestris
  • xanthan gum a high molecular weight, linear, natural polysaccharide produced by
  • the U.S. Patent 4 003 393 is also part of the prior art. It describes a gelly mass for use as interfacial control for different fluids flowing in the same pipeline, and also to remove residual fluids and/or solids from a pipeline.
  • the background art comprises US ⁇ A ⁇ 3 209 771 (cited above), US-A-3 225 787, and Canadian Patent 903,261.
  • the present invention now provides a method and composition which overcome some or all of these disadvantages.
  • the invention provides a method of treating the interior of a pipeline or other surface by applying a gelled mass to the surface, of the type resulting from the cross-linking of a dissolved polymer with a salt of a multivalent metal, in which the gelled mass is prepared by dissolving or dispersing a cross-linkable polymer selected among the class of polysaccharides such as xanthan gum and of partially hydrolysed polyacrylamides, in an organic liquid, and the composition is caused to form a viscoelastic gel by cross-linking the polymer with a salt of multivalent metal, characterised in that the said liquid is a non aqueous, hygroscopic organic liquid of low volatility.
  • gels can be used which are essentially non-aqueous and can be prepared with the exclusion of water.
  • the cross-linkable polymer is dissolved or dispersed directly in the organic liquid, and the metal salt is then added to affect the cross-linking and form the gel.
  • the metal salt is preferably one that is soluble in the same organic liquid and may conveniently be dissolved in a further portion of the same liquid and then mixed with the solution or dispersion of the polymer in that liquid.
  • the organic liquid is preferably one of the class of polyhydric alcohols, and more especially mono-ethylene glycol (MEG).
  • MEG mono-ethylene glycol
  • the cross-linkable polymer is preferably an hydroxylated polymer such as a polysaccharide, and more especially xanthan gum, being a class of polysaccharide of microbial origin as described above.
  • the preferred metal species is ferric ions, and it has been found especially effective to employ this metal in the form of ammonium ferric sulphate.
  • compositions contains from 2 to 12 grams gelling agent such as xanthan gum and from 0.2 to 0.6 grams metal salt such as ammonium ferric sulfate per litre of MEG.
  • gelling agent such as xanthan gum
  • metal salt such as ammonium ferric sulfate per litre of MEG.
  • the amount of gelling agent employed may be varied to give a desired viscosity but, for the applications described herein, will most suitably be in the range 4.8 to 6.0 grams per litre.
  • An alternative polymer is a partially hydrolysed polyacrylamide.
  • xanthan gum With xanthan gum, the rate of gel formation can be varied by employing modified xantham gums having different rates of solvation or "hydration".
  • the cross-linking agent is preferably dissolved in a compatible and miscible liquid, preferably the same polyhydric alcohol, before addition to the gelling agent solution.
  • a compatible and miscible liquid preferably the same polyhydric alcohol
  • the preferred concentration of metal salt in polyhydric alcohol for the purpose of addition is from 30 to 60 grams per litre.
  • the preferred gel compositions according to this invention have a highly viscous, semi-rigid structure rendering them useful under conditions similar to those employed for gel pigs based on water or hydrocarbon media. They are highly effective for drying operational pipelines, being completely non-aqueous while at the same time avoiding the various disadvantages of such substances as methanol.
  • the preferred gels can accommodate up to 50% water without significant loss of gel structure.
  • the preferred gels, being based on a water-miscible organic liquid, are completely dispersible in water, which simplifies the cleaning of equipment after use and removal of the gel in situations where water can be tolerated.
  • the present invention also provides a non-aqueous gel composition
  • a non-aqueous gel composition comprising a solution or dispersion of a cross-linkable polymer selected among the class of polysaccharides such as xanthan gum and of partially hydrolysed polyacrylamides, in an organic liquid, the polymer being cross-linked by a multivalent metal, characterised in that the said liquid is a non-aqueous, hygroscopic organic liquid of low volatility.
  • This gel is suitable for use in downhole stimulation, such as the breaking of formations in non- productive wells. It has been found, in accordance with a further aspect of this invention, that the gel can readily be broken by the addition of a gel breaking agent, whereby the gel can be pumped as a liquid out of a location when the treatment has been completed.
  • the preferred gel breaking agents are oxidising agents.
  • the gel can be instantly broken by an agent such as calcium hypochlorite, it is preferred to use an agent providing a controlled delay in gel breaking, and especially ammonium persulphate.
  • the latter agent may be advantageously used in combination with a mild reducing agent such as triethanolamine.
  • non-aqueous gels in MEG could be produced by the use of a 15 to 25% hydrolysed polyacrylamide (Dow type AP 273) or a commercially available xanthan gum (Kelzan XC).
  • Various multivalent and borate cross-linking agents were tested by dissolving them in MEG, with or without an acid or base to control the "pH" of the system.
  • pH in this context is meant the apparent value obtained by subjecting an essentially non-aqueous material to a conventional pH monitoring system.
  • ferric sulphate produced a semi-solid, substantially rigid gel with little or no tendency to flow, but it was highly shear sensitive.
  • the gel produced with ammonium ferris sulphate was therefore preferred, since it was a highly elastic gel with strong cohesive forces.
  • the concentration of cross-linking agent in MEG forming the cross-linker solution can be varied widely, but in the word described it was 50 grams ammonium ferric sulphate per litre MEG. A solution of 100 NaOH per litre MEG was used as "pH" control solution.
  • a base fluid was prepared with the following composition:
  • This pre-mixed base fluid was aged for 1 or 2 days and then placed in a blender and high shear applied.
  • the pH control solution was added to achieve an apparent "pH” of 8-9 and the cross linker solution was added with high shear mixing for 1 minute.
  • the amount of these additions was as follows:
  • a higher concentration of gelling agent should lead to permissible uptakes of water above 50% for applications in which the return to the cross-linked structure is desirable.
  • a base fluid of the following composition was mixed at very high shear for 1 hour:
  • Samples of the cross-linked gel prepared by Method B were mixed with various oxidising agents as gel breakers.
  • the cross-linked gel system consisted of:
  • ammonium persulphate which was added as a solution of 30 grams ammonium persulphate per litre MEG. It was also found advantageous to add a small quantity of triethanolamine (a mild reducing agent) to assist in the gel breaking effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Colloid Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Claims (15)

1. Verfahren zur Behandlung des Inneren einer Pipeline oder von anderen Oberflächen durch Anwendung einer gelförmigen Masser auf die Oberfläche von der Art, die durch die Vernetzung eines gelösten Polymers mit einem Salz eines multivalenten Metalls entsteht, worin die gelförmige Masse hergestellt wird durch Auflösen oder Dispergieren eines vernetzbaren Polymers, ausgewählt aus der Klasse der Polysaccharide wie Xanthangummi und der teilweise hydrolysierten Polyacrylamide in einer organischen Flüssigkeit und die Zusammensetzung veranlaßt wird, ein viskoelastisches Gel durch Vernetzung des Polymers mit einem Salz eines multivalenten Metalls zu bilden, dadurch gekennzeichnet, daß die Flüssigkeit eine nicht wäßrige, hygroskopische organische Flüssigkeit mit niedriger Flüchtigkeit ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein hydroxyliertes Polymer in einem mehrwertigen Alkohol aufgelöst oder dispergiert wird und das Metallsalz in demselben Alkohol aufgelöst wird und mit der Polymerlösung gemischt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Polymer ein vernetzbares Polysaccharid und das Metallsalz ein Eisensalz ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Polymer Xanthangummi und das Vernetzungsmittel Ammoniumeisensulfat ist.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß 2 bis 12 g Polymer pro Liter mehrwertigem Alkohol aufgelöst oder dispergiert werden und 0,2 bis 0,6 g des multivalenten Metallsalzes pro Liter des mehrwertigen Alkohols zugegeben werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Metallsalz gelöst in dem Alkohol mit einer Konzentration im Bereich von 30 bis 60 g/I zugegeben wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß 4 bis 6 g Xanthangummi pro Liter Monoethylenglykol aufgelöst werden und etwa 0,4 g Ammoniumeisensulfat pro Liter Glykol zugegeben werden.
8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die Polymerlösung oder Dispersion mindestens einen Tag altern gelassen wird vor der Zugabe zu dem multivalenten Metall.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gel nach und nach gebrochen wird durch Zugabe eines Gelbrechungsmittels vor seiner Entfernung von der Oberfläche.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Gelbrechungsmittel Ammoniumpersulfat ist.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Brechen des Gels erreicht wird durch die zusätzliche Einführung von Triethanolamin.
12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Menge von zugegebenem Ammoniumpersulfat 0,12 bis 1,2 g/I organischer Flüssigkeit in dem Gel beträgt.
13. Nichtwäßrige Gelzusammensetzung, umfassend eine Lösung oder Dispersion eines vernetzbaren Polymers, ausgewählt aus der Klasse der Polysaccharide wie Xanthangummi und der teilweise hydrolysierten Polyacrylamide in einer organischen Flüssigkeit, wobei das Polymer durch ein multivalentes Metall vernetzt ist, dadurch gekennzeichnet, daß die Flüssigkeit eine nicht wäßrige hygroskopische organische Flüssigkeit mit niedriger Flüchtigkeit ist.
14. Zusammensetzung nach Anspruch 13, dadurch gekennzeichnet, daß die organische Flüssigkeit ein mehrwertiger Alkohol, das Polymer Xanthangummi und das vernetzende Metall dreiwertiges Eisen ist.
15. Zusammensetzung nach Anspruch 14, dadurch gekennzeichnet, daß sie 4 bis 6 g Xanthangummi und etwa 0,4 g Ammoniumeisensulfat pro Liter Monoethylenglykol enthält.
EP85201837A 1984-11-14 1985-11-11 Verfahren und Zusammensetzung zum Behandeln von Rohren Expired EP0187396B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB08428722A GB2167078B (en) 1984-11-14 1984-11-14 Method and composition for the treatment of pipelines
GB8428722 1984-11-14

Publications (2)

Publication Number Publication Date
EP0187396A1 EP0187396A1 (de) 1986-07-16
EP0187396B1 true EP0187396B1 (de) 1989-10-18

Family

ID=10569706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85201837A Expired EP0187396B1 (de) 1984-11-14 1985-11-11 Verfahren und Zusammensetzung zum Behandeln von Rohren

Country Status (4)

Country Link
EP (1) EP0187396B1 (de)
DE (1) DE3573740D1 (de)
GB (1) GB2167078B (de)
NO (1) NO172295C (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2195738A (en) * 1986-10-06 1988-04-13 Shell Int Research Method of isolating a portion of a pipeline
GB0113006D0 (en) * 2001-05-30 2001-07-18 Psl Technology Ltd Intelligent pig
WO2013169679A1 (en) * 2012-05-07 2013-11-14 M-I L.L.C. Methods for cleaning natural gas pipelines
PT2882837T (pt) * 2013-06-19 2018-03-19 Univ Szegedi Composição em gel para limpeza de oleodutos/gasodutos e redes de tubagens e seu uso
GB2580986A (en) * 2019-02-04 2020-08-05 Aubin Ltd Method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003393A (en) * 1973-02-14 1977-01-18 The Dow Chemical Company Gel-like composition for use as a pig in a pipeline
CA1145902A (en) * 1979-11-20 1983-05-10 Hydrochem Industrial Services, Inc. Gelled pigs for cleaning and sanitizing pipelines
US4473408A (en) * 1982-01-12 1984-09-25 The Dow Chemical Company Cleaning pipeline interior with gelled pig

Also Published As

Publication number Publication date
GB8428722D0 (en) 1984-12-27
GB2167078B (en) 1988-04-13
NO854530L (no) 1986-05-15
NO172295B (no) 1993-03-22
GB2167078A (en) 1986-05-21
DE3573740D1 (en) 1989-11-23
NO172295C (no) 1993-06-30
EP0187396A1 (de) 1986-07-16

Similar Documents

Publication Publication Date Title
US5460226A (en) Formation fracturing
US5271464A (en) Temporary plugging agent
CA1217329A (en) Method and compositions for fracturing subterranean formations
US5762138A (en) Method of preventing incompatibility between aqueous well treating fluids and hydrocarbons
CA1201887A (en) Method and compositions for fracturing subterranean formations
US4413680A (en) Permeability reduction in subterranean reservoirs
CA1269093A (en) Stabilized fracture fluid and crosslinker therefor
US4470915A (en) Method and compositions for fracturing subterranean formations
US5226479A (en) Fracturing fluid having a delayed enzyme breaker
CA1218228A (en) Method and compositions for fracturing subterranean formations
US5447199A (en) Controlled degradation of polymer based aqueous gels
US4202795A (en) Methods and additives for delaying the release of chemicals in aqueous fluids
DE69632729T2 (de) Carboxyalkyl substituierte polygalactomann enthaltende fracturing-flüssigkeiten
US4502967A (en) Method and compositions for fracturing subterranean formations
US7638468B2 (en) Surfactant based viscoelastic fluids
US5217632A (en) Process for preparation and composition of stable aqueous solutions of boron zirconium chelates for high temperature frac fluids
EP0677642B1 (de) Verfahren zur Spaltung von Flüssigkeiten mit erhöhter Viskosität in einer Bohrquelle
AU2011222788B2 (en) Clean viscosified treatment fluids and associated methods
WO2010093473A1 (en) Methods for controlling depolymerization of polymer compositions
GB2240567A (en) Method of treating subterranean formations using a non-damaging fracturing fluid
CA1211881A (en) Composition and method for stimulating a subterranean formation
WO2014179682A1 (en) Breakers containing iron compounds and their methods of use
EP0187396B1 (de) Verfahren und Zusammensetzung zum Behandeln von Rohren
EP0371616B1 (de) Polyampholyt-Polymere und Verfahren zu deren Verwendung bei hohen Temperaturen
EP0130732B1 (de) Anionische Polymerzusammensetzung und ihre Verwendung zum Stimulieren einer unterirdischen Formation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT NL

17P Request for examination filed

Effective date: 19861119

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOWELL SCHLUMBERGER CORP.

17Q First examination report despatched

Effective date: 19871105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE DES SERVICES DOWELL SCHLUMBERGER

Owner name: PUMPTECH N.V.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DOTT. FRANCO CICOGNA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT NL

REF Corresponds to:

Ref document number: 3573740

Country of ref document: DE

Date of ref document: 19891123

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19901031

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951130

Year of fee payment: 11

Ref country code: DE

Payment date: 19951130

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970801