EP0185947A1 - Process and apparatus for the rapid cooling of a HIP set-up - Google Patents

Process and apparatus for the rapid cooling of a HIP set-up Download PDF

Info

Publication number
EP0185947A1
EP0185947A1 EP85114965A EP85114965A EP0185947A1 EP 0185947 A1 EP0185947 A1 EP 0185947A1 EP 85114965 A EP85114965 A EP 85114965A EP 85114965 A EP85114965 A EP 85114965A EP 0185947 A1 EP0185947 A1 EP 0185947A1
Authority
EP
European Patent Office
Prior art keywords
heat
container
cooling
hip
heat accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85114965A
Other languages
German (de)
French (fr)
Other versions
EP0185947B1 (en
Inventor
Kurt Prof. Dr.-Ing. Kugeler
Hartmut Dr.-Ing. Kaiser
Peter-W. Dipl.-Ing. Phlippen
Peter Dr.-Ing. Schmidtlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUGELER, KURT, PROF. DR.-ING.
Original Assignee
Thyssen Guss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Guss AG filed Critical Thyssen Guss AG
Priority to AT85114965T priority Critical patent/ATE35098T1/en
Publication of EP0185947A1 publication Critical patent/EP0185947A1/en
Application granted granted Critical
Publication of EP0185947B1 publication Critical patent/EP0185947B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Definitions

  • the invention relates to a method for rapid cooling of the content of a HIP system, a gas flow from the heated HIP material to the inner wall of the container being forced in the container for cooling, and a device for carrying out the method.
  • HIP Hot Isostatic Pressure
  • solid workpieces or those that consist of powder consisting of a die are pressed and compressed under high pressure (up to 2ooo bar) and high temperature (up to 2000 ° C).
  • Materials of the same type or different materials can also be connected using this technology. This is generally done in such a way that the workpiece is placed in a furnace (usually electrical resistance heating) which is arranged in a high-pressure container and is heated there almost to the softening point.
  • all-round pressure of an inert gas, usually argon ensures isostatic compression to full density.
  • This so-called HIP phase extends over a shorter or longer period depending on the material and workpiece.
  • the workpiece is then cooled in the container to such an extent that it is at a sufficiently low temperature. can be removed from the container.
  • cooling after the HIP phase plays an important role because, on the one hand, for many materials it is necessary to maintain a certain cooling rate for reasons of material quality and, on the other hand, the occupancy times of a HIP system depend very much on the length of the cooling phase depends, which makes up about half of the total occupancy time.
  • a swirling of the hot furnace contents gas is also known in order to achieve a better dissipation of the heat to the outside. It is also disadvantageous here that the wall of the pressure vessel becomes too hot in larger systems.
  • the present invention is therefore based on the object of providing a method for cooling the HIP material as quickly as possible, avoiding the disadvantages of the known methods and with as little technical outlay as possible.
  • the solution to the problem is that one or more heat stores are arranged in the interior of the container in a substantially colder zone, through which the gas stream coming from the HIP material is passed.
  • the gas flow after the heat store is led directly to the inside wall of the container.
  • the heat store expediently absorbs between 15% and 100% of the total heat to be dissipated.
  • the device for carrying out the method advantageously consists in the fact that a heat store is used which consists of a bed of balls, for example, lying in a cage, made of a material which is a good heat conductor and / or a good heat accumulator.
  • the advantage of the method according to the invention and the device for carrying out this method is, above all, that the cooling rate of the HIP material can be controlled within wide limits and can thus be adapted to the requirements.
  • the heat can memory can be easily adapted to the conditions by increasing or reducing its mass. This adjustment of the cooling rate leads to a significant improvement in the quality of the HIP material and, above all, to a considerable saving in energy.
  • the occupancy time of the HIP furnace can also be significantly reduced, which leads to better utilization of the system.
  • the HIP system consists of a high-pressure container 11 which is closed by the cover 12.
  • the high-pressure container 11 usually has a cylindrical shape and the cover 12 and an provided bottom cover are arranged on the end faces of the cylinder.
  • a heat shield 13 is arranged in the container 11, which shields the container 11 from the furnace chamber 14. Inside the heat shield 13 there is a base stone 15 made of heat-resistant material, which lies tightly in the heat shield 13 and on which the HIP material 16 lies.
  • an insulation plate 18 is fastened in the heat shield 13 in such a way that the space 19 above it forms a colder zone in which the heat accumulator 21 consisting of a ball bed 20 is finally fastened to the hot furnace space.
  • connection openings 22 with a relatively small cross section are provided between the insulation plate 18 and the colder zone 19.
  • the heat accumulator 21 is opposite the annular space 23 between the heat shield 13 and the inner wall of the container 24 open.
  • the feed line 25 for the gas is passed through the base stone 15 and can be regulated by means of the valve 26.
  • the supply and discharge lines for the electrical energy and lines for pressure equalization etc. are arranged in a known manner in the bottom of the container 11
  • the HIP material 16 is first stacked through the opening of the lid 12, possibly in baskets on the floor stone 15, then the insulation plate 18 is inserted into the heat shield 13 and then the heat accumulator 21 is placed on the heat shield 13 in such a way that the space 19 is sealed off from the annular space 23.
  • the furnace space 14 is brought to the required temperature with the heater 17, which can be between 12oo ° C and 2ooo ° C.
  • an inert gas usually argon, but also helium, etc., is blown through the feed line 25 into the furnace chamber 14 with the valve 26 open until the desired pressure has set in the furnace chamber 14 at the end of the heating time.
  • the required pressure also depends on the HIP-Gut 16 and can be between looo and 2ooo bar.
  • the holding time begins, which is also material-dependent and can be up to 4 hours. What is important is the fact that the space 19 behind the insulation plate 18 cannot heat up during this time and at most reaches temperatures of 500.degree.
  • the furnace chamber 14 is relieved of pressure and then, with the valve 26 open, cold inert gas is introduced which flows through the HIP material 16 and cools it down.
  • the now heated gas then flows through the openings 22 past the insulation plate 18 into the room 19 and from there through the much colder heat accumulator 21, the walls and bottom of which have bores and which is filled with balls 20.
  • the gas flows through the heat accumulator 21, the gas releases its heat to the balls 20. From the heat accumulator 21, the gas flows into the Annular space 23 and gives off the last remaining heat to the container inner wall 24, provided that it has not yet cooled sufficiently. From the annular space 23, the gas either flows directly from the container 11 or it is again introduced into the feed pipe 25 through an opening in the heat shield 13. This is done using known means.
  • the filling of the heat accumulator 21 can also be adapted to the circumstances, such as the desired cooling rate, one or more passes through the cooling gas, distribution of the heat, etc.
  • FIG. 2 shows a modified device, the same reference numerals as in FIG. 1 denoting the same parts.
  • the main difference from the device according to FIG. 1 is that the cooling gas coming from the heat accumulator 21 can be cooled down by cooling 27 arranged either directly in the lid 12 of the high-pressure container 11 or by an additional heat exchanger 28 arranged under the lid 12 so that the container inner wall 24 is not heated to a temperature of 3 00 0 C.
  • the cooling gas does not need to be repeatedly passed through the HIP system, but can be drawn off directly from the bottom of the container 11. This has several advantages.
  • the heat shield 29 is designed such that it lies in a sealed manner on the bottom and lid 12 of the container 11 and thus encloses the furnace chamber 14.
  • the cover 12 carries on its underside an insulation plate 3 0, thus coming from the HIP Good 16 heated cooling gas can not release its heat to the cover 12th
  • lateral openings 31 are arranged which lead into the annular space 32 between the heat shield 29 and the inner wall 33 of the container.
  • This annular space 32 is filled laterally with the hot gas zone 35 with a ball bed 34.
  • the balls are made, for. B. made of copper, steel or the like, which material is good heat conductive and good heat spewing.
  • a space 36 is formed below the ball bed 34, which can be connected by valves 37 and 38 either to a drain or to the gas supply valve 26.
  • the cooling gas is first passed through the HIP material 16, where it absorbs heat, then past the cover 12 without releasing heat there through the openings 31 in the heat shield 29 into the heat accumulator 34 and gives there if not the whole but a large part of the heat absorbed to the balls of the heat accumulator 34. If the cooling gas has cooled sufficiently, it can be released by opening the valve 38. However, if the cooling gas has not yet cooled sufficiently or if the cooling rate of the HIP material 16 is to be slowed down appreciably, the gas can be returned from the chamber 36 to the furnace chamber 14 by opening the valve 37 and closing the valve 38. It is also possible to divide the gas stream coming from the heat accumulator 34 by partially opening both valves 37 and 38, that is to say partly draining it off and returning another part to the furnace chamber 14. This depends on the requirements.
  • the gases coming from the heat accumulator can be divided in all embodiments for carrying out the method according to the invention, and the proportion which is returned to the furnace chamber 14 can be varied as desired.
  • the heat store it is also easily possible to divide the heat store into several units, e.g. to combine the embodiment according to FIG. 1 with the embodiment according to FIG. 3. It is also possible to place the heat store elsewhere, e.g. to be arranged at the bottom of the container or to direct the cooling gas flow so that it e.g. starts at the lid or bottom, is pre-cooled there and only then is it led through the heat accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat Treatment Of Articles (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

1. Process for the rapid cooling of the contents of an installation for hot isostatic pressing (HIP installation), in which in the container a gas stream is established from the heated HIP material towards the inner wall of the container, for the purpose of cooling, wherein one or more heat regenerators (21, 34) are arranged inside the container (11) in a substantially cooler zone (19), the stream of cooling gas coming from the HIP material (16) being passed through said heat regenerators.

Description

Die Erfindung betrifft ein Verfahren zur schnellen Abkühlung des Inhaltes einer HIP-Anlage, wobei im Behälter zur Kühlung zwangsweise ein Gasstrom vom aufgeheizten HIP-Gut zur Behälterinnenwand eingestellt wird, sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for rapid cooling of the content of a HIP system, a gas flow from the heated HIP material to the inner wall of the container being forced in the container for cooling, and a device for carrying out the method.

Beim HIP- (Hot Isostatic Pressure) - Verfahren werden feste Werkstücke oder solche, die aus Pulver bestehend in einer Matrize vorliegen, unter hohem Druck (bis 2ooo bar) und hoher Temperatur (bis zu 2000°C) verpresst und verdichtet. Auch artgleiche oder unterschiedliche Werkstoffe können mit Hilfe dieser Technik miteinander verbunden werden. Dies geschieht im allgemeinen so, dass das Werkstück in einen Ofen (meist elektrische Widerstandsheizung), welcher in einem Hochdruckbehälter angeordnet ist, eingebracht und dort fast bis zum Erweichungspunkt aufgeheizt wird. Gleichzeitig wird durch allseitigen Druck eines Inertgases, meist Argon, für eine isostatische Verpressung bis zur vollen Dichte gesorgt. Diese sogenannte HIP-Phase erstreckt sich je nach Werkstoff und Werkstück über einen kürzeren oder längeren Zeitraum. Danach wird das Werkstück im Behälter soweit abgekühlt, dass es mit hinreichend niedriger Temperatur aus. dem Behälter entnommen werden kann.In the HIP (Hot Isostatic Pressure) process, solid workpieces or those that consist of powder consisting of a die are pressed and compressed under high pressure (up to 2ooo bar) and high temperature (up to 2000 ° C). Materials of the same type or different materials can also be connected using this technology. This is generally done in such a way that the workpiece is placed in a furnace (usually electrical resistance heating) which is arranged in a high-pressure container and is heated there almost to the softening point. At the same time, all-round pressure of an inert gas, usually argon, ensures isostatic compression to full density. This so-called HIP phase extends over a shorter or longer period depending on the material and workpiece. The workpiece is then cooled in the container to such an extent that it is at a sufficiently low temperature. can be removed from the container.

Es ist nun bekannt, dass die Abkühlung nach der HIP-Phase eine wesentliche Rolle spielt, weil einerseits bei vielen Werkstoffen das Einhalten einer bestimmten Abkühlungsgeschwindigkeit aus Gründen der Werkstoffqualität notwendig ist und weil andererseits die Belegungszeiten einer HIP-Anlage sehr stark von der Länge der Abkühlphase abhängt, welche etwa die Hälfte der Gesamtbelegungszeit ausmacht.It is now known that cooling after the HIP phase plays an important role because, on the one hand, for many materials it is necessary to maintain a certain cooling rate for reasons of material quality and, on the other hand, the occupancy times of a HIP system depend very much on the length of the cooling phase depends, which makes up about half of the total occupancy time.

Bei HIP-Anlagen mit kleinem Durchmesser des Arbeitsraums (D< 50o mm) kann die Wärmeabfuhr noch über die Wand des Druckbehälters an aussen am Behälter entlang strömendes Wasser erfolgen. Bei grösseren Durchmessern der Anlage werden bei dieser Kühlmethode die Wandtemperaturen zu hoch.In HIP systems with small diameter of the working space (D <5 0 o mm), the heat dissipation nor the wall of the pressure container to the outside of the container along flowing Water. With larger system diameters, the wall temperatures become too high with this cooling method.

Bekannt ist ferner eine Verwirbelung des heissen Ofeninhaltsgases, um eine bessere Ableitung der Wärme nach aussen zu erreichen. Auch hier ist es nachteilig, dass bei grösseren Anlagen die Wand des Druckbehälters zu heiss wird.A swirling of the hot furnace contents gas is also known in order to achieve a better dissipation of the heat to the outside. It is also disadvantageous here that the wall of the pressure vessel becomes too hot in larger systems.

Weiter ist bekannt, das Gas aus dem Behälter abzuziehen und in einem Wärmetauscher ausserhalb der Anlage zu kühlen und dann wieder in den Ofen zurückzugeben. Dies bedingt jedoch einen erheblichen technischen Aufwand.It is also known to withdraw the gas from the container and to cool it in a heat exchanger outside the system and then to return it to the furnace. However, this requires considerable technical effort.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zur möglichst schnellen Abkühlung des HIP-Gutes zu schaffen, die Nachteile der bekannten Verfahren zu vermeiden und dies mit einem möglichst geringen technischen Aufwand.The present invention is therefore based on the object of providing a method for cooling the HIP material as quickly as possible, avoiding the disadvantages of the known methods and with as little technical outlay as possible.

Die Lösung der Aufgabe besteht darin, dass im Innenraum des Behälters in einer wesentlich kälteren Zone ein oder mehrere Wärmespeicher angeordnet sind, durch die der vom HIP-Gut kommende Gasstrom hindurchgeführt wird.The solution to the problem is that one or more heat stores are arranged in the interior of the container in a substantially colder zone, through which the gas stream coming from the HIP material is passed.

Vorteilhaft wird der Gasstrom nach dem Wärmespeicher direkt auf die Behälterinnenwand geführt.Advantageously, the gas flow after the heat store is led directly to the inside wall of the container.

Zweckmässig nimmt der Wärmespeicher zwischen 15% und 100% der insgesamt abzuführenden Wärme auf.The heat store expediently absorbs between 15% and 100% of the total heat to be dissipated.

Vorteilhaft besteht die Vorrichtung zur Durchführung des Verfahrens darin, dass ein Wärmespeicher verwendet wird, der aus einer beispielsweise in einem Käfig liegenden Schüttung von Kugeln etc. aus gut wärmeleitendem und/oder gut wärmespeicherndem Material.The device for carrying out the method advantageously consists in the fact that a heat store is used which consists of a bed of balls, for example, lying in a cage, made of a material which is a good heat conductor and / or a good heat accumulator.

Der Vorteil des erfindungsgemässen Verfahrens und der Vorrichtung zur Durchführung dieses Verfahrens besteht vor allem darin, dass die Abkühlungsgeschwindigkeit des HIP-Gutes innerhalb weiter Grenzen gesteuert und damitden Erfordernissen angepasst werden kann. Dabei kann der Wärmespeicher durch Vergrösserung oder Verringerung seiner Masse leicht den Verhältnissen angepasst werden. Diese Anpassung der Abkühlungsgeschwindigkeit führt zu einer wesentlichen Verbesserung der Qualität des HIP-Gutes und vor allem auch zu einer erheblichen Einsparung von Energie. Auch kann die Belegungszeit des HIP-Ofens wesentlich verringert werden, was zu einer besseren Ausnutzung der Anlage führt.The advantage of the method according to the invention and the device for carrying out this method is, above all, that the cooling rate of the HIP material can be controlled within wide limits and can thus be adapted to the requirements. The heat can memory can be easily adapted to the conditions by increasing or reducing its mass. This adjustment of the cooling rate leads to a significant improvement in the quality of the HIP material and, above all, to a considerable saving in energy. The occupancy time of the HIP furnace can also be significantly reduced, which leads to better utilization of the system.

In den Zeichnungen sind beispielsweise Ausführungsformen der für die Durchführung des erfindungsgemässen Verfahrens zu verwendenden Vorrichtungen dargestellt und zwar zeigt :

  • Figur 1 einen schematischen Schnitt durch eine HiP-Anlage in der einfachsten Form,
  • Figur 2 eine Ausführung einer HIP-Anlage mit zusätzlich zu dem Wärmespeicher vorgesehener Kühlung,
  • Figur 3 eine Ausführung mit seitlich angeordnetem Wärmespeicher.
In the drawings, for example, embodiments of the devices to be used for carrying out the method according to the invention are shown, namely:
  • FIG. 1 shows a schematic section through a HiP system in the simplest form,
  • FIG. 2 shows an embodiment of a HIP system with cooling provided in addition to the heat store,
  • Figure 3 shows an embodiment with a laterally arranged heat accumulator.

Nach Figur 1 besteht die HIP-Anlage aus einem Hochdruckbehälter 11, welcher durch den Deckel'12 geschlossen ist. Der Hochdruckbehälter 11 besitzt meist zylindrische Form und der Deckel 12 sowie ein of vorgesehener Bodendeckel sind an den Endflächen des Zylinders angeordnet. Im Behälter 11 ist ein Hitzeschild 13 aangeordnet, welcher den Behälter,11 gegenüber dem Ofenraum 14 abschirmt. Innerhalb des Hitzeschildes 13 ist ein Bodenstein 15 aus hitzebeständigem Material angebracht, welcher dicht im Hitzeschild 13 liegt und auf dem das HIP-Gut 16 liegt. Seitlich vom HIP-Gut 16 ist die Heizung 17, meist als elektrische Widerstandsheizung ausgeführt, untergebracht. Gegen das obere Ende des Hitzeschildes 13 hin ist eine Isolationsplatte 18 so im Hitzeschild 13 befestigt, dass der darüberliegende Raum 19 eine kältere Zone bildet, in der der aus einer Kugelschüttung 2o bestehende Wärmespeicher 21 den heissen Ofenraum abschliessend befestigt ist. Zwischen Isolationsplatte 18 und der kälteren Zone 19 sind Verbindungsöffnungen 22 mit relativ kleinem Querschnitt vorgesehen. Der Wärmespeicher 21 ist gegenüber dem Ringraum 23 zwischen Hitzeschild 13 und Bhälterinnenwand 24 offen. Durch den Bodenstein 15 ist die Zuleitung 25 für das Gas hindurchgeführt, welche mittels des Ventils 26 reguliert werden kann. Im übrigen sind in bekannter Weise im Boden des Behälters 11 die Zu- und Ableitungen für die elektrische Energie und Leitungen für den Druckausgleich etc. angeordnetAccording to FIG. 1, the HIP system consists of a high-pressure container 11 which is closed by the cover 12. The high-pressure container 11 usually has a cylindrical shape and the cover 12 and an provided bottom cover are arranged on the end faces of the cylinder. A heat shield 13 is arranged in the container 11, which shields the container 11 from the furnace chamber 14. Inside the heat shield 13 there is a base stone 15 made of heat-resistant material, which lies tightly in the heat shield 13 and on which the HIP material 16 lies. The heater 17, usually in the form of an electrical resistance heater, is accommodated to the side of the HIP good 16. Towards the upper end of the heat shield 13, an insulation plate 18 is fastened in the heat shield 13 in such a way that the space 19 above it forms a colder zone in which the heat accumulator 21 consisting of a ball bed 20 is finally fastened to the hot furnace space. Between the insulation plate 18 and the colder zone 19, connection openings 22 with a relatively small cross section are provided. The heat accumulator 21 is opposite the annular space 23 between the heat shield 13 and the inner wall of the container 24 open. The feed line 25 for the gas is passed through the base stone 15 and can be regulated by means of the valve 26. In addition, the supply and discharge lines for the electrical energy and lines for pressure equalization etc. are arranged in a known manner in the bottom of the container 11

Bei der Benutzung dieser Anlage wird zuerst durch die Öffnung des Deckels 12 das HIP-Gut 16, gegebenenfalls in Körben auf den Bodenstein 15 gestapelt, anschliessend die Isolationsplatte 18 in den Hitzeschild 13 eingesetzt und dann der Wärmespeicher 21 auf den Hitzeschild 13 so aufgesetzt, dass der Raum 19 gegenüber dem Ringraum 23 abgedichtet ist. Nach dichtem Schliessen des Deckels 12 wird der Ofenraum 14 mit der Heizung 17 auf die erforderliche Temperatur gebracht, welche zwischen 12oo°C und 2ooo°C liegen kann. Während der Aufheizung des HIP-Gutes 16 wird ein inertes Gas, meist Argon, aber auch Helium etc. bei geöffnetem Ventil 26 durch die Zuleitung 25 in den Ofenraum 14 geblasen, bis sich am Ende der Aufheizzeit im Ofenraum 14 der gewünschte Druck eingestellt hat. Auch der erforderliche Druck ist vom HIP-Gut 16 abhängig und kann zwischen looo und 2ooo bar liegen. Nun beginnt bei geschlossenem Ventil 26 die Haltezeit, welche ebenfalls materialabhängig ist und bis zu 4 Stunden betragen kann. Wichtig ist die Tatsache, dass sich auch in dieser Zeit der Raum 19 hinter der Isolationsplatte 18 nicht aufheizen kann und höchstens Temperaturen von 500°C erreicht. Am Ende der Haltezeit wird der Ofenraum 14 druckentlastet und anschliessend bei geöffnetem Ventil 26 kaltes inertes Gas eingeleitet, welches das HIP-Gut 16 durchfliesst und dieses dabei abkühlt. Das nun erwärmte Gas fliesst dann durch die Öffnungen 22 an der Isolationsplatte 18 vorbei in den Raum 19 und von da aus durch den wesentlich kälteren Wärmespeicher 21, dessen Wände und Boden Bohrungen tragen und der mit Kugeln 2o gefüllt ist. Beim Durchfliessen des Gases durch den Wärmespeicher 21 gibt das Gas seine Wärme an die Kugeln 2o ab. Vom Wärmespeicher 21 fliesst das Gas in den Ringraum 23 und gibt dabei den letzten Rest Wärme an die Behälterinnenwand 24 ab, sofern es noch nicht genügend abgekühlt war. Vom Ringraum 23 fliesst das Gas entweder direkt aus dem Behälter 11 oder es wird wieder durch eine Öffnung im Hitzeschild 13 in das Zuleitungsrohr 25 gegeben. Dies geschieht mit bekannten Mitteln.When using this system, the HIP material 16 is first stacked through the opening of the lid 12, possibly in baskets on the floor stone 15, then the insulation plate 18 is inserted into the heat shield 13 and then the heat accumulator 21 is placed on the heat shield 13 in such a way that the space 19 is sealed off from the annular space 23. After tightly closing the cover 12, the furnace space 14 is brought to the required temperature with the heater 17, which can be between 12oo ° C and 2ooo ° C. During the heating of the HIP material 16, an inert gas, usually argon, but also helium, etc., is blown through the feed line 25 into the furnace chamber 14 with the valve 26 open until the desired pressure has set in the furnace chamber 14 at the end of the heating time. The required pressure also depends on the HIP-Gut 16 and can be between looo and 2ooo bar. Now, with the valve 26 closed, the holding time begins, which is also material-dependent and can be up to 4 hours. What is important is the fact that the space 19 behind the insulation plate 18 cannot heat up during this time and at most reaches temperatures of 500.degree. At the end of the holding time, the furnace chamber 14 is relieved of pressure and then, with the valve 26 open, cold inert gas is introduced which flows through the HIP material 16 and cools it down. The now heated gas then flows through the openings 22 past the insulation plate 18 into the room 19 and from there through the much colder heat accumulator 21, the walls and bottom of which have bores and which is filled with balls 20. When the gas flows through the heat accumulator 21, the gas releases its heat to the balls 20. From the heat accumulator 21, the gas flows into the Annular space 23 and gives off the last remaining heat to the container inner wall 24, provided that it has not yet cooled sufficiently. From the annular space 23, the gas either flows directly from the container 11 or it is again introduced into the feed pipe 25 through an opening in the heat shield 13. This is done using known means.

Damit lassen sich Abkühlungsgeschwindigkeiten von 2o bis 6o°C/min des HIP-Gutes einstellen, was weitgehend vom Material des HIP-Gutes und der gewünschten Wirkung der HIP-Phase abhängt. Die Füllung des Wärmespeichers 21 kann dabei ebenfalls den Gegebenheiten, wie gewünschte Abkühlungsgeschwindigkeit, ein oder mehrmaliger Durchlauf des Kühlgases, Verteilung der Wärme, etc. angepasst werden.This allows cooling rates of 2o to 6o ° C / min of the HIP material to be set, which largely depends on the material of the HIP material and the desired effect of the HIP phase. The filling of the heat accumulator 21 can also be adapted to the circumstances, such as the desired cooling rate, one or more passes through the cooling gas, distribution of the heat, etc.

In Figur 2 ist eine modifizierte Vorrichtung dargestellt, wobei die gleichen Bezugszeichen wie in Figur 1 die gleichen Teile bezeichnen. Der wesentliche Unterschied zu der Vorrichtung nach Figur 1 besteht darin, dass das aus dem Wärmespeicher 21 kommende Kühlgas von einer entweder direkt im Deckel 12 des Hochdruckbehälters 11 angeordneten Kühlung 27 oder von einem zusätzlich unter dem Deckel 12 angeordneten Wärmetauscher 28 soweit heruntergekühlt werden kann, dass die Behälterinnenwand 24 nicht über eine Temperatur von 300 0C erwärmt wird. In diesem Falle braucht auch das Kühlgas nicht mehrmals-im Kreislauf durch die HIP-Anlage hindurchgeführt zu werden, sondern kann direkt vom Boden des Behälters 11 abgezogen werden. Dies hat einige Vorteile.FIG. 2 shows a modified device, the same reference numerals as in FIG. 1 denoting the same parts. The main difference from the device according to FIG. 1 is that the cooling gas coming from the heat accumulator 21 can be cooled down by cooling 27 arranged either directly in the lid 12 of the high-pressure container 11 or by an additional heat exchanger 28 arranged under the lid 12 so that the container inner wall 24 is not heated to a temperature of 3 00 0 C. In this case, the cooling gas does not need to be repeatedly passed through the HIP system, but can be drawn off directly from the bottom of the container 11. This has several advantages.

Nach Figur 3, bei der ebenfalls gleiche Teile wie in Figur 1 mit gleichen Bezugszeichen bezeichnet sind, ist der Hitzeschild 29 so ausgeführt, dass er am Boden und Deckel 12 des Behälters 11 abgedichtet anliegt und somit den Ofenraum 14 umschliesst. Der Deckel 12 trägt an seiner Unterseite eine Isolationsplatte 30, damit das vom HIP-Gut 16 kommende aufgeheizte Kühlgas nicht seine Wärme an den Deckel 12 abgeben kann. Im oberen Teil des Hitzeschildes 29 sind seitliche Öffnungen 31 angeordnet, die in den Ringraum 32 zwischen Hitzeschild 29 und Behälterinnenwand 33 führen. Dieser Ringraum 32 ist seitlich der Heissgaszone 35 mit einer Kugelschüttung 34 aufgefüllt. Die Kugels bestehen z. B. aus Kupfer, Stahl o.ä., welches Material gut wärmeleitend und gut wärmespeiebernd ist. Unterhalb der Kugelschüttung 34 ist ein Raum 36 gebildet, welcher durch Ventile 37 und 38 entweder mit einem Ablass oder dem Gaszuführungsventil 26 verbunden werden kann. In diesem Falle wird das Kühlgas zuerst.durch das HIP-Gut 16 geführt, wo es Wärme aufnimmt, anschliessend am Deckel 12 vorbei ohne dort Wärme abzugeben durch die Öffnungen 31 im Hitzeschild 29 in den Wärmespeicher 34 geführt und gibt dort wenn nicht die gesamte so doch einen Grossteil der aufgenommenen Wärme an die Kugeln des Wärmespeichers 34 ab. Ist das Kühlgas genügend abgekühlt, so kann es durch Öffnen des Ventils 38 abgelassen werden. Ist das Kühlgas aber noch nicht genügend abgekühlt oder soll die Abkühlungsgeschwindigkeit des HIP-Gutes 16 merklich verlangsamt werden, so kann das Gas durch Öffnen des Ventils 37 und Schliessen des Ventils 38 aus dem Raum 36 wieder in den Ofenraum 14 zurückgeführt werden. Man kann auch durch teilweises Öffnen beider Ventile 37 und 38 den aus dem Wärmspei= cher 34 kommenden Gasstrom teilen, nämlich zum Teil ablassen und einen anderen Teil wieder in den Ofenraum 14 zurückführen. Dies hängt von den Erfordernissen ab.According to FIG. 3, in which the same parts as in FIG. 1 are denoted by the same reference numerals, the heat shield 29 is designed such that it lies in a sealed manner on the bottom and lid 12 of the container 11 and thus encloses the furnace chamber 14. The cover 12 carries on its underside an insulation plate 3 0, thus coming from the HIP Good 16 heated cooling gas can not release its heat to the cover 12th In the upper part of the heat shield 29, lateral openings 31 are arranged which lead into the annular space 32 between the heat shield 29 and the inner wall 33 of the container. This annular space 32 is filled laterally with the hot gas zone 35 with a ball bed 34. The balls are made, for. B. made of copper, steel or the like, which material is good heat conductive and good heat spewing. A space 36 is formed below the ball bed 34, which can be connected by valves 37 and 38 either to a drain or to the gas supply valve 26. In this case, the cooling gas is first passed through the HIP material 16, where it absorbs heat, then past the cover 12 without releasing heat there through the openings 31 in the heat shield 29 into the heat accumulator 34 and gives there if not the whole but a large part of the heat absorbed to the balls of the heat accumulator 34. If the cooling gas has cooled sufficiently, it can be released by opening the valve 38. However, if the cooling gas has not yet cooled sufficiently or if the cooling rate of the HIP material 16 is to be slowed down appreciably, the gas can be returned from the chamber 36 to the furnace chamber 14 by opening the valve 37 and closing the valve 38. It is also possible to divide the gas stream coming from the heat accumulator 34 by partially opening both valves 37 and 38, that is to say partly draining it off and returning another part to the furnace chamber 14. This depends on the requirements.

Selbstverständlich können bei allen Ausführungen zur Durchführung des erfindungsgemässen Verfahrens die aus dem Wärmespeicher kommenden Gase aufgeteilt werden, wobei der Anteil, der in den Ofenraum 14 zurückgeführt wird, beliebig variiert werden kann.Of course, the gases coming from the heat accumulator can be divided in all embodiments for carrying out the method according to the invention, and the proportion which is returned to the furnace chamber 14 can be varied as desired.

Ebenso ist es ohne weiteres möglich, den Wärmespeicher in mehrere Einheiten aufzuteilen, z.B. die Ausführung nach Figur 1 mit der Ausführung nach Figur 3 zu kombinieren. Auch ist es möglich, den Wärmespeicher an anderer Stelle, z.B. am Boden des Behälters anzuordnen oder den Kühlgasstrom so zu leiten, dass er erst z.B. am Deckel oder Boden anläuft, dort vorgekühlt wird und erst dann durch den Wärmespeicher geleitet wird.It is also easily possible to divide the heat store into several units, e.g. to combine the embodiment according to FIG. 1 with the embodiment according to FIG. 3. It is also possible to place the heat store elsewhere, e.g. to be arranged at the bottom of the container or to direct the cooling gas flow so that it e.g. starts at the lid or bottom, is pre-cooled there and only then is it led through the heat accumulator.

Claims (12)

1.)Verfahren zur schnellen Abkühlung des Inhaltes einer HIP-Anlage, wobei im Behälter zur Kühlung zwangsweise ein Gasstrom vom aufgeheizten HIP-Gut zur Behälterinnenwand hin eingestellt wird, dadurch gekennzeichnet, dass im Innenraum des Behälters (11) in einer wesentlich kälteren Zone (19) ein oder mehrere Wärmespeicher (21,34) angeordnet sind, durch die der vom HIP-Gut (16) kommende Kühlgasstrom hindurchgeführt wird.1.) Method for rapid cooling of the content of a HIP system, a gas flow from the heated HIP material to the inner wall of the container being forced in the container for cooling, characterized in that in the interior of the container (11) in a substantially colder zone ( 19) one or more heat stores (21, 34) are arranged, through which the cooling gas stream coming from the HIP material (16) is passed. 2.)Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Kühlgasstrom nach dem Wärmespeicher (21) direkt auf die Behälterinnenwand (24) geführt wird.2.) Method according to claim 1, characterized in that the cooling gas flow after the heat accumulator (21) is guided directly onto the inner wall of the container (24). 3.)Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kühlgasstrom vom HIP-Gut (16) zum gegebenenfalls gekühlten Deckel (12) oder Boden des Behälters (11) und anschliessend durch den Wärmespeicher hindurch zur Behälterinnenwand (24) geführt wird.3.) Method according to claim 1 or 2, characterized in that the cooling gas flow from the HIP material (16) to the optionally cooled lid (12) or bottom of the container (11) and then through the heat accumulator to the inner wall of the container (24) . 4.)Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Richtung des Kühlgasstroms gesehen hinter dem Wärmespeicher (21) zusätzlich eine Kühlung, z.B. ein Wärmetauscher (28), ein gekühlter Deckel (27), eine Kühlplatte etc., angeordnet ist.4.) Method according to one of claims 1 to 3, characterized in that viewed in the direction of the cooling gas flow behind the heat accumulator (21) additionally cooling, e.g. a heat exchanger (28), a cooled cover (27), a cooling plate etc. is arranged. 5.) Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmespeicher (34) seitlich der Heissgaszone (35) in einem wärmeisolierten Raum, gegebenenfalls unter Wärmeisolation gegenüber der Behälterinnenwand (33), angeordnet ist.5.) Method according to one of claims 1 to 4, characterized in that the heat accumulator (34) is arranged to the side of the hot gas zone (35) in a heat-insulated room, optionally with heat insulation with respect to the inner wall of the container (33). 6.)Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Wärmespeicher zwischen 15 und 100% der gesamtabzuführenden Wärme aufnimmt.6.) Method according to one of claims 1 to 5, characterized in that the heat accumulator absorbs between 15 and 100% of the total heat to be dissipated. 7.)Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Durchleitung des Kühlgasstromes durch den Wärmespeicher mehrfach, gegebenenfalls unter Reduzierung der Gasmenge, bis zur Abkühlung des Wärmespeichers auf eine für das HIP-Gut unbedenkliche Temperatur fortgesetzt wird.7.) Method according to one of claims 1 to 6, characterized in that the passage of the cooling gas flow through the heat accumulator is continued several times, possibly with a reduction in the amount of gas, until the heat accumulator cools down to a temperature which is safe for the HIP material. 8.)Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Wärmespeicher nach Aufnahme. der Wärme aus dem HIP-Gut ausserhalb des Behälters gekühlt wird.8.) Method according to one of claims 1 to 7, characterized in that the heat storage after recording. the heat from the HIP material is cooled outside the container. 9.)Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Gasstrom vollständig durch den oder die Wärmespeicher hindurchgeführt wird.9.) Method according to one of claims 1 to 8, characterized in that the gas stream is passed completely through the or the heat accumulator. lo.)Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass der Wärmespeicher (21,34) aus einer beispielsweise in einem Käfig liegenden Schüttung von Kugeln (2o) etc. aus einem gut wärmeleitenden und/oder gut wärmespeichernden Material besteht.lo.) Device for carrying out the method according to claims 1 to 9, characterized in that the heat store (21, 34) consists of a bed of balls (2o) etc., for example in a cage, of a good heat-conducting and / or good heat-storing Material exists. 11.)Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Wärmespeicher in mehrere Einheiten aufgeteilt ist.11.) Device according to claim 1 0 , characterized in that the heat accumulator is divided into several units. 12.)Vorrichtung nach Anspruch 1o oder 11, dadurch gekennzeichnet dass die wesentlich kältere Zone (19) im Innenraum des Behälters (11) durch eine diese Zone (19) gegen den Ofenraum (14)abschiemende Isolationsplatte (18) gebildet wird und zwischen den beiden Räumen (14) und (19) Verbindungsöffnungen (22) wie Bohrung, Ringspalt, etc., mit relativ kleinem Querschnitt vorgesehen sind.12.) Device according to claim 1o or 11, characterized in that the substantially colder zone (19) in the interior of the container (11) is formed by an insulating plate (18) which shields this zone (19) against the furnace chamber (14) and between the two spaces (14) and (19) connecting openings (22) such as bore, annular gap, etc., are provided with a relatively small cross section.
EP85114965A 1984-11-30 1985-11-26 Process and apparatus for the rapid cooling of a hip set-up Expired EP0185947B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85114965T ATE35098T1 (en) 1984-11-30 1985-11-26 METHOD AND DEVICE FOR RAPID COOLING OF HIP PLANT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843443664 DE3443664A1 (en) 1984-11-30 1984-11-30 METHOD AND DEVICE FOR QUICK COOLING A HIP SYSTEM
DE3443664 1984-11-30

Publications (2)

Publication Number Publication Date
EP0185947A1 true EP0185947A1 (en) 1986-07-02
EP0185947B1 EP0185947B1 (en) 1988-06-15

Family

ID=6251535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85114965A Expired EP0185947B1 (en) 1984-11-30 1985-11-26 Process and apparatus for the rapid cooling of a hip set-up

Country Status (5)

Country Link
EP (1) EP0185947B1 (en)
JP (1) JPS61205761A (en)
AT (1) ATE35098T1 (en)
DE (2) DE3443664A1 (en)
NO (1) NO854811L (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502704A1 (en) * 1991-03-04 1992-09-09 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Cooling system and cooling method for hot isostatic pressurizing equipment
WO2009076973A1 (en) * 2007-12-14 2009-06-25 Avure Technologies Ab Hot isostatic pressing arrangement
EP3021063A1 (en) * 2013-07-12 2016-05-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot isostatic pressing device
US9651309B2 (en) 2011-01-03 2017-05-16 Quintus Technologies Ab Pressing arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008694A1 (en) * 2000-02-24 2001-08-30 Ald Vacuum Techn Ag Sintering furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1274974A (en) * 1970-04-01 1972-05-17 Wild Barfield Ltd Improvements in heat treatment furnaces
CH538884A (en) * 1969-04-15 1973-07-15 Atomic Energy Commission Isostatic hot press
DE2722065A1 (en) * 1976-05-25 1977-12-15 Asea Ab OVEN FOR ISOSTATIC HOT PRESSING
US4217087A (en) * 1979-07-16 1980-08-12 Pressure Technology, Inc. Isostatic apparatus for treating articles with heat and pressure
DE3028773A1 (en) * 1979-08-29 1981-03-12 Autoclave Engineers, Inc., Erie, Pa. AUTOCLAVE OVEN WITH MECHANICAL CIRCULATION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH538884A (en) * 1969-04-15 1973-07-15 Atomic Energy Commission Isostatic hot press
GB1274974A (en) * 1970-04-01 1972-05-17 Wild Barfield Ltd Improvements in heat treatment furnaces
DE2722065A1 (en) * 1976-05-25 1977-12-15 Asea Ab OVEN FOR ISOSTATIC HOT PRESSING
US4217087A (en) * 1979-07-16 1980-08-12 Pressure Technology, Inc. Isostatic apparatus for treating articles with heat and pressure
DE3028773A1 (en) * 1979-08-29 1981-03-12 Autoclave Engineers, Inc., Erie, Pa. AUTOCLAVE OVEN WITH MECHANICAL CIRCULATION

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502704A1 (en) * 1991-03-04 1992-09-09 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Cooling system and cooling method for hot isostatic pressurizing equipment
US5251880A (en) * 1991-03-04 1993-10-12 Kabushiki Kaisha Kobe Seiko Sho Cooling system and cooling method for hot isostatic pressurizing equipment
WO2009076973A1 (en) * 2007-12-14 2009-06-25 Avure Technologies Ab Hot isostatic pressing arrangement
US9358747B2 (en) 2007-12-14 2016-06-07 Avure Technologies Ab Hot isostatic pressing arrangement
US9651309B2 (en) 2011-01-03 2017-05-16 Quintus Technologies Ab Pressing arrangement
EP3021063A1 (en) * 2013-07-12 2016-05-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot isostatic pressing device
EP3021063A4 (en) * 2013-07-12 2017-03-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot isostatic pressing device

Also Published As

Publication number Publication date
JPS61205761A (en) 1986-09-11
ATE35098T1 (en) 1988-07-15
EP0185947B1 (en) 1988-06-15
DE3563315D1 (en) 1988-07-21
DE3443664A1 (en) 1986-06-05
NO854811L (en) 1986-06-02

Similar Documents

Publication Publication Date Title
DE2757019A1 (en) PROCESS AND SYSTEM FOR DISTRIBUTING GAS UNDER PRESSURE
DE1501051A1 (en) Process for generating refrigeration and equipment to carry out this process
DE69100056T2 (en) PRESSURE TANK FOR ISOSTATIC PRESSING WITH A FAST COOLING DEVICE.
DE2722065C2 (en) Hot isostatic pressing furnace
DE4216166C2 (en) Device for cooling a distribution chute of a shaft furnace loading system
DE1908207A1 (en) Heatable spinning beam for producing endless threads from synthetic polymers
DE2511480C2 (en) Device for holding samples from molten metal
DE2459218A1 (en) PROCEDURE FOR TRANSFERRING AND / OR TREATMENT OF A FROZEN PREPARATION CUT, IN PARTICULAR AN ULTRAMICROTOME CUT, AND EQUIPMENT FOR CARRYING OUT THE PROCESS
EP0185947B1 (en) Process and apparatus for the rapid cooling of a hip set-up
DE4141020A1 (en) METHOD FOR COATING A SURFACE BY MEANS OF A THERMAL SPRAYING METHOD WITH A FOLLOWING COOLING
DE2501474C2 (en) Magnetic separator for hot material mixtures that contain a magnetic and a non-magnetic component
EP0052351B1 (en) Device for delivering a gas from containers
DE1758658B1 (en) Lance for blowing gas into molten metal
DE3023239A1 (en) HEAT EXCHANGER AND TUBE FOR USE IN THEM
DE2263044A1 (en) THERMAL INSULATING PARTICLES
DE1458149B2 (en) MANUFACTURE OF FERROUSLES
DE3112673C2 (en) Cooling device for metal, in particular for cast steel strands
DE3034122A1 (en) DEVICE FOR RECEIVING THE HEAT EXHAUSTED BY AN EXHAUST PIPE FROM A ENGINE
DE68908547T2 (en) Method and device for adding granules to molten steel.
DE1956550B2 (en) DEVICE FOR MELT FEEDING FOR A CASTING ARRANGEMENT FOR CONTINUOUS WIRE CASTING
DE2944580A1 (en) Cooling system for portable insulating container - has heat-sinking end of Peltier element at condensation end of heat pipe
CH250103A (en) Electrothermal device for heating gases.
DE1458149C (en) Manufacture of ferrous selenium
DE2633054B1 (en) Device for introducing gases into reaction vessels containing liquids
DE1053538B (en) Device for cooling liquids, in particular molten salts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19861114

17Q First examination report despatched

Effective date: 19871119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880615

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19880615

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880615

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880615

Ref country code: BE

Effective date: 19880615

REF Corresponds to:

Ref document number: 35098

Country of ref document: AT

Date of ref document: 19880715

Kind code of ref document: T

RIN2 Information on inventor provided after grant (corrected)

Free format text: KUGELER, KURT, PROF. DR.-ING. * KAISER, HARTMUT, DR.-ING. * PHLIPPEN, PETER-W.,DIPL.-ING. * SCHMIDTLEIN, PETER, DR.-ING.

REF Corresponds to:

Ref document number: 3563315

Country of ref document: DE

Date of ref document: 19880721

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19881126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881130

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
BECN Be: change of holder's name

Effective date: 19880615

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KUGELER, KURT, PROF. DR.-ING.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: PROF. DR.-ING. KURT KUGELER

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ASEA BROWN BOVERI AG

Effective date: 19890314

26N No opposition filed
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KUGELER, KURT, PROF. DR.-ING.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910128

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19920531

EUG Se: european patent has lapsed

Ref document number: 85114965.8

Effective date: 19920604