EP0185789B1 - Charged-particles analyser - Google Patents

Charged-particles analyser Download PDF

Info

Publication number
EP0185789B1
EP0185789B1 EP19840116209 EP84116209A EP0185789B1 EP 0185789 B1 EP0185789 B1 EP 0185789B1 EP 19840116209 EP19840116209 EP 19840116209 EP 84116209 A EP84116209 A EP 84116209A EP 0185789 B1 EP0185789 B1 EP 0185789B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
analyser according
shape
analyzer
equipotential surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19840116209
Other languages
German (de)
French (fr)
Other versions
EP0185789A1 (en
Inventor
Hana Dr. Krizek
Georg Dr. Krizek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VG Instruments Group Ltd
Original Assignee
VG Instruments Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VG Instruments Group Ltd filed Critical VG Instruments Group Ltd
Priority to EP19840116209 priority Critical patent/EP0185789B1/en
Priority to DE8484116209T priority patent/DE3484246D1/en
Publication of EP0185789A1 publication Critical patent/EP0185789A1/en
Application granted granted Critical
Publication of EP0185789B1 publication Critical patent/EP0185789B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • H01J49/484Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with spherical mirrors

Definitions

  • the invention relates to a charged particle analyzer with two electrodes which serve to generate an axially symmetrical electric field and which, together with the trajectories of the particles to be analyzed, extend along a desired circle located between the electrodes.
  • Analyzers of this type are used wherever the energy of charged particles is to be examined or measured.
  • An example is the examination of the surface of a sample in which the area to be examined is excited with primary particles or quanta and this excitation leads to the emission of charged secondary particles.
  • the energy distribution of the emitted charged particles allows conclusions to be drawn about the composition of the sample.
  • Analyzers of the type concerned are e.g. B. from "Focussing of Charged Particles", Vol.2, Chapter 4.1, 1967, Prof. H. Wollnik, and from "Z.Naturforsch.”, 10a, 872, 1955, H.Ewald, H.Liebl, known.
  • analyzers of the type concerned are based on the fact that particles of the same mass but different energy, which enter the electrical field generated by the electrodes in the area of the target circle, are deflected to different extents.
  • the electrical field is usually as narrow as possible
  • Energy window set so that only particles with a certain energy penetrate the analyzer in the area of the target path or the target circle and reach the downstream detector.
  • the desired energy distribution is obtained by changing the electrical field.
  • position-sensitive detectors in the outlet area of the analyzer, so that charged particles of different energy can be registered at the same time. In general, efforts are made to achieve the greatest possible energy resolution and the best possible transmission in the measurements.
  • the deflection electrodes and thus the equipotential surfaces generated have the shape of cutouts from concentrically arranged cylinder surfaces which extend over an angle of 127 °.
  • the pass energy that is to say the energy that the particles should have when passing through the analyzer, should not be higher than 20 eV, if possible.
  • the time that the particle to be examined spends in the analyzer and in which the deflecting forces are effective becomes too short to achieve an effective dispersion of particles which differ only slightly in their energy. Because e.g. B.
  • An improvement of the cylinder analyzer is the ball analyzer, which consists of two spherical surface sections. It extends over 180 °, so that its nominal circle is somewhat longer and its properties are therefore somewhat better than with the cylinder analyzer.
  • the toroid analyzer which is formed by two toroidal focus surface sections, extends over a little more than 180 ° (over 1.057 ⁇ ).
  • the toroid analyzer has better properties than the other analyzers only for particles flying on its target path. It has the fundamental disadvantage that the focus of the particles in the exit area depends on the shot angle. The larger the bullet angle is chosen for the purpose of increasing the transmission, the poorer its energy resolution. The toroid analyzer is therefore also unsuitable for exact analyzes in which the particles to be registered have low intensities.
  • the present invention has for its object to provide an analyzer of the type mentioned, which has improved transmission properties at certain energy resolutions.
  • the electrodes of the analyzer have such a shape that the axially symmetrical electric field generated by them Has equipotential surfaces which are at least approximately elliptical in section in a section perpendicular to the nominal circle.
  • an electrical field of this type which expediently extends over an azimuth angle of approximately 23 °, the focus of the particle tracks in the exit area is largely independent of the shot angle and the particle energy.
  • the ability of a field of this type to separate particles with different energies (dispersion) is therefore much better than with all previously known types of analyzers. This makes it possible to allow much higher pass energies.
  • lens systems upstream of the analyzer either no longer have to brake the particles to be examined for their energy or only with a significantly smaller braking factor than was previously necessary.
  • the transmission which is quadratic depending on the braking factor, can thereby be increased considerably.
  • the electrodes themselves expediently have the shape of the desired equipotential surfaces.
  • the electrodes have the shape of mutually corresponding sections of an ellipse-torus family, then the equipotential surfaces generated by electrodes of this type also have the shape of ellipse-torus sections.
  • a wide variety of ellipse-torus groups are conceivable.
  • the generating ellipses can e.g. B. have a common focus, the same eccentricity and / or the same focus distance. It is only important that the individual ellipses do not intersect.
  • the electrodes Another possibility is to give the electrodes the shape of mutually corresponding sections of a spheroid share with common focal points.
  • the equipotential surfaces generated by the electrodes of this shape are spheroidal section-shaped.
  • equipotential surfaces of the type according to the invention are produced, that is to say with a shape that is elliptical in section in the section perpendicular to the plane of the desired circle.
  • the electrodes should generate a field whose equipotential surfaces are given by the following equation:
  • An electric field fulfilling this condition deviates slightly from the exact spheroid shape in the direction of the elliptical toroid shape.
  • An exact spheroid is created e.g. B. in that an ellipse rotates about its shorter axis.
  • the term in square brackets means that the axis of rotation is parallel to the ellipse axis by a small amount (about 1 to 3%). If the larger part of the ellipse is rotated about this axis of rotation, then surfaces of the desired shape and fulfilling the aforementioned equation are created.
  • further correction electrodes can be provided, at least in the inlet area, for further reduction of field disturbances, which extend parallel to the nominal circle over a short distance into the analyzer and which correspond in shape to equipotential surfaces. Their potential is also adapted to these potential areas.
  • Fig. 1 shows an ellipse family 1 with common foci F1 and F2.
  • An analyzer designed according to the invention is produced when the two electrodes are cut in a section perpendicular to the target circle in the shape of two corresponding to one another Ellipse sections are there, which extend in the region of the main axis and symmetrically thereto, and can rotate them about the x3 axis.
  • Two such ellipse sections are indicated in the left part of FIG. 1 by reinforced lines and are designated by 2 and 3.
  • the target circle of the analyzer which corresponds to the drawn point x o .
  • the nominal circle radius ⁇ o 1, the following applies to x o :
  • c is the eccentricity of the ellipse that corresponds to the target circle.
  • the equipotential surfaces generated by electrodes of this type then also have an elliptical section shape in a section perpendicular to the nominal circle.
  • the direction of the electric field is given by the hyperbolic curve sections shown in dashed lines.
  • Fig. 2 shows in the left area the ellipse family 1 according to Fig. 1.
  • This family is characterized in that all Ellipses have identical foci F1 and F2.
  • Comparable sets of ellipses which can also be used for the shaping of the electrodes of the analyzer according to the invention, are, for. B. characterized by the same eccentricity. The distance between the focal points in such an ellipse family would increase with increasing radii.
  • FIG. 2 shows an array of ellipses 5, which is characterized in that the focal point distance is the same for all ellipses, but the location of the focal points is shifted to the right with increasing radii.
  • a similar set of ellipses occurs when all ellipses have a focal point in common, have the same eccentricity and the second focal point moves outwards with increasing radii. All of these sets of ellipses can be used to shape the electrodes of the analyzer according to the invention.
  • two mutually corresponding ellipse sections are shown reinforced and designated 6 and designated 6 and 7. If this is rotated in the manner described in FIG. 1 about the x3 axis or another axis parallel to it, surfaces are formed which can form the desired electrode shape.
  • Fig. 3 shows an embodiment of an analyzer according to the invention, namely cut in the plane of the target circle 10.
  • the analyzer comprises the main electrodes 8 and 9, which enclose between them the desired circle 10 with the radius x o .
  • the inner surfaces of the electrodes 8 and 9 have the shape of elliptical sections in a section perpendicular to the desired circular plane.
  • the electrodes 8 and 9 and thus the electric field generated by them extends over an azimuth angle ⁇ of 230 °.
  • a diaphragm 11 with an input slot 12 provided in the area of the desired circuit 10 is arranged in the input area of the analyzer shown.
  • This plate expediently has the potential of the equipotential surface passing through the target circle.
  • the input slot 12 extends parallel to this equipotential surface and therefore also has an elliptical shape (cf. FIG. 4).
  • a corresponding aperture 13 with the outlet slot 14 is arranged in the region of the outlet of the analyzer. Immediately behind it is the catcher 15 of the downstream detector, not shown in detail for the discharged charged particles.
  • the sample 23 to be examined In front of the inlet opening 22 of the lens system 17 is the sample 23 to be examined. Particles originating from the sample 23 are focused on the inlet slot 12 with the aid of the lens system and brought to the desired pass energy. Particles whose energy corresponds to the set analyzer potential penetrate the analyzer and are imaged on the exit slot 14. Two particle tracks 24 and 25 are shown, for example.
  • FIG. 3 also shows correction electrodes 26, 27 and 28, 29 arranged both in the inlet and in the outlet area of the analyzer shown.
  • These electrodes correspond both in their shape and in their potential to the equipotential surfaces at the respective location. They are practically a substitute for the associated equipotential surfaces, thus further eliminating field disturbances in the inlet and outlet areas of the analyzer.
  • Their distance from the entry slot 12 or exit slot 14 should on the one hand be as close as possible, but on the other hand the transmission should not be impaired. Conveniently it is The respective distance from the target circle 10 is approximately half of the distance from the target circle to the main electrode, each extending by 10 ° into the analyzer.
  • FIG. 4 shows views of the entry area and the exit area of the analyzer shown in FIG. 3.
  • the Herzog plates 11 and 13 upstream of these areas are shown in dashed lines.
  • the shape of the entry or exit slot 12, 14 can be seen. Their long sides extend parallel to the equipotential surfaces. Their short sides coincide with the direction of the electric field.
  • the two electrodes 8 and 9 are each made of solid material.
  • a simpler method of producing the electrodes is that the desired electrode shape is screwed into pre-pressed and stress-free annealed parts.
  • FIG. 5 again shows the output area of the analyzer according to FIG. 3.
  • a multichannel detector 31 is arranged downstream of the analyzer. This makes it possible to process larger energy areas at the same time.
  • x means the polar coordinate
  • c the eccentricity of the equipotential surface passing through the target circle x o
  • V the potential of the respective electrode in units of the pass energy E o .
  • the remaining data can be calculated from the table.
  • the inner walls of the electrodes 8, 9 are expediently roughened in a central region extending over 30 ° to 60 ° to avoid disturbing reflections.
  • Sawtooth-like grooves that extend perpendicular to the desired circle plane are preferably provided. Such measures are known per se from Rev.Sci.Instrum., Vol.46, No.10, October 1975.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)

Description

Die Erfindung bezieht sich auf einen Analysator für geladene Teilchen mit zwei der Erzeugung eines axialsymmetrischen elektrischen Feldes dienenden Elektroden, die sich gemeinsam mit den Bahnen der zu analysierenden Teilchen entlang eines zwischen den Elektroden befindlichen Sollkreises erstrecken.The invention relates to a charged particle analyzer with two electrodes which serve to generate an axially symmetrical electric field and which, together with the trajectories of the particles to be analyzed, extend along a desired circle located between the electrodes.

Analysatoren dieser Art werden überall dort eingesetzt, wo die Energie geladener Teilchen untersucht bzw. gemessen werden soll. Als Beispiel sei die Untersuchung der Oberfläche einer Probe erwähnt, bei der der zu untersuchende Bereich mit Primärteilchen oder Quanten angeregt wird und diese Anregung zur Emission geladener Sekundärteilchen führt. Die Energieverteilung der emittierten geladenen Teilchen läßt Rückschlüsse auf die Zusammensetzung der Probe zu.Analyzers of this type are used wherever the energy of charged particles is to be examined or measured. An example is the examination of the surface of a sample in which the area to be examined is excited with primary particles or quanta and this excitation leads to the emission of charged secondary particles. The energy distribution of the emitted charged particles allows conclusions to be drawn about the composition of the sample.

Analysatoren der betroffenen Art sind z. B. aus "Focussing of Charged Particles", Vol·2, Chapter 4.1, 1967, Prof. H. Wollnik, und aus "Z.Naturforsch.", 10a, 872, 1955, H.Ewald, H.Liebl, bekannt.Analyzers of the type concerned are e.g. B. from "Focussing of Charged Particles", Vol.2, Chapter 4.1, 1967, Prof. H. Wollnik, and from "Z.Naturforsch.", 10a, 872, 1955, H.Ewald, H.Liebl, known.

Die Funktion von Analysatoren der betroffenen Gattung beruht darauf, daß Teilchen gleicher Masse, aber unterschiedlicher Energie, welche im Bereich des Sollkreises in das von den Elektroden erzeugte elektrische Feld eintreten, verschieden stark abgelenkt werden. Beim Arbeiten mit elektrostatischen Analysatoren wird in der Regel mit Hilfe des elektrischen Feldes ein möglichst engesThe function of analyzers of the type concerned is based on the fact that particles of the same mass but different energy, which enter the electrical field generated by the electrodes in the area of the target circle, are deflected to different extents. When working with electrostatic analyzers, the electrical field is usually as narrow as possible

Energiefenster gesetzt, so daß jeweils nur Teilchen mit einer bestimmten Energie den Analysator im Bereich der Sollbahn oder des Sollkreises durchsetzen und den nachgeordneten Detektor erreichen. Durch Veränderung des elektrischen Feldes erhält man die gewünschte Energieverteilung. Es gibt auch die Möglichkeit, im Auslaßbereich des Analysators ortsempfindliche Detektoren anzuordnen, so daß gleichzeitig geladene Teilchen verschiedener Energie registriert werden können. Generell ist man bestrebt, bei den Messungen sowohl eine möglichst große Energieauflösung als auch eine möglichst gute Transmission zu erzielen.Energy window set so that only particles with a certain energy penetrate the analyzer in the area of the target path or the target circle and reach the downstream detector. The desired energy distribution is obtained by changing the electrical field. There is also the possibility of arranging position-sensitive detectors in the outlet area of the analyzer, so that charged particles of different energy can be registered at the same time. In general, efforts are made to achieve the greatest possible energy resolution and the best possible transmission in the measurements.

Bei einer einfachen Ausführung eines Analysators der eingangs genannten Art - beim Zylinderanalysator - haben die Ablenkelektroden und damit die erzeugten Äquipotentialflächen die Form von Ausschnitten aus konzentrisch zueinander angeordneten Zylinderflächen, die sich über einen Winkel von 127° erstrecken. Um mit einem Analysator dieser Art eine ausreichend gute Energieauflösung zu erzielen, sollte die Passenergie, also die Energie, die die Teilchen beim Durchtritt durch den Analysator in etwa haben sollten, möglichst nicht höher als 20 eV sein. Mit wachsender Passenergie wird die Zeit, die das zu untersuchende Teilchen im Analysator verbringt und in der die ablenkenden Kräfte wirksam sind, zu kurz, um eine wirksame Dispersion von sich nur wenig in ihrer Energie unterscheidenden Teilchen zu erzielen. Da z. B. bei den meisten Oberflächenanalyseverfahren, bei denen die Energie von geladenen Sekundärteilchen untersucht wird, die Sekundärteilchenenergie wesentlich höher als 20 eV liegt, ist es erforderlich, die Teilchen vor dem Eintritt in den Analysator mit Hilfe einer geeigneten Elektronen- oder Ionenoptik auf die gewünschte Passenergie abzubremsen. Eine solche Abbremsung geladener Teilchen hat aber den Nachteil einer quadratisch mit dem Bremsfaktor abnehmenden Transmission. Zylinderanalysatoren sind deshalb bei schwachen Intensitäten der zu analysierenden Sekundärteilchen entweder wegen zu langer Meßzeiten oder wegen zu schlechter Meßergebnisse nicht einsetzbar.In the case of a simple design of an analyzer of the type mentioned at the beginning - in the case of the cylinder analyzer - the deflection electrodes and thus the equipotential surfaces generated have the shape of cutouts from concentrically arranged cylinder surfaces which extend over an angle of 127 °. In order to achieve a sufficiently good energy resolution with an analyzer of this type, the pass energy, that is to say the energy that the particles should have when passing through the analyzer, should not be higher than 20 eV, if possible. With increasing pass energy, the time that the particle to be examined spends in the analyzer and in which the deflecting forces are effective becomes too short to achieve an effective dispersion of particles which differ only slightly in their energy. Because e.g. B. in most surface analysis methods, in which the energy of charged secondary particles is examined, the secondary particle energy is significantly higher than 20 eV, it is necessary to enter the particles with the appropriate pass energy before entering the analyzer with the aid of suitable electron or ion optics slow down. Such a slowdown However, charged particles have the disadvantage of a transmission that decreases quadratically with the braking factor. Cylinder analyzers can therefore not be used in the case of weak intensities of the secondary particles to be analyzed, either because of too long measuring times or because of poor measuring results.

Eine Verbesserung des Zylinderanalysators ist der Kugelanalysator, der aus zwei Kugelflächenabschnitten besteht. Er erstreckt sich über 180°, so daß sein Sollkreis etwas länger ist und damit seine Eigenschaften etwas besser sind als beim Zylinderanalysator.An improvement of the cylinder analyzer is the ball analyzer, which consists of two spherical surface sections. It extends over 180 °, so that its nominal circle is somewhat longer and its properties are therefore somewhat better than with the cylinder analyzer.

Über etwas mehr als 180° (über 1,057 π) erstreckt sich der Toroidanalysator, der von zwei toroidförmigen Fokusflächenabschnitten gebildet wird. Der Toroidanalysator besitzt nur für auf seiner Sollbahn fliegende Teilchen bessere Eigenschaften als die übrigen Analysatoren. Er hat den prinzipiellen Nachteil, daß der Fokus der Teilchen im Ausgangsbereich vom Einschußwinkel abhängt. Je größer der Einschußraumwinkel zum Zwecke der Erhöhung der Transmission gewählt wird, desto schlechter ist seine Energieauflösung. Für exakte Analysen, bei denen die zu registrierenden Teilchen geringe Intensitäten haben, ist der Toroidanalysator deshalb ebenfalls nicht geeignet.The toroid analyzer, which is formed by two toroidal focus surface sections, extends over a little more than 180 ° (over 1.057 π). The toroid analyzer has better properties than the other analyzers only for particles flying on its target path. It has the fundamental disadvantage that the focus of the particles in the exit area depends on the shot angle. The larger the bullet angle is chosen for the purpose of increasing the transmission, the poorer its energy resolution. The toroid analyzer is therefore also unsuitable for exact analyzes in which the particles to be registered have low intensities.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Analysator der eingangs genannten Art zu schaffen, der bei bestimmten Energieauflösungen verbesserte Transmissionseigenschaften hat.The present invention has for its object to provide an analyzer of the type mentioned, which has improved transmission properties at certain energy resolutions.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Elektroden des Analysators eine solche Form haben, daß das von ihnen erzeugte axialsymmetrische elektrische Feld Äquipotentialflächen hat, die in einem zum Sollkreis senkrechten Schnitt zumindest annähernd ellipsenabschnittförmig sind. In einem elektrischen Feld dieser Art, das sich zweckmäßigerweise über einen Azimuthwinkel von etwa 23° erstreckt, ist der Fokus der Teilchenbahnen im Ausgangsbereich weitestgehend unabhängig vom Einschußwinkel und von der Teilchenenergie. Die Fähigkeit eines Feldes dieser Art, Teilchen mit unterschiedlichen Energien voneinander zu trennen (Dispersion), ist deshalb wesentlich besser als bei allen vorbekannten Analysatortypen. Dadurch wird es möglich, wesentlich höhere Passenergien zuzulassen. Dieses hat zur Folge, daß dem Analysator vorgelagerte Linsensysteme die auf ihre Energie zu untersuchenden Teilchen entweder nicht mehr oder nur noch mit wesentlich kleinerem Bremsfaktor, als es bisher notwendig war, abbremsen müssen. Die quadratisch vom Bremsfaktor abhängige Transmission kann dadurch erheblich gesteigert werden.According to the invention, this object is achieved in that the electrodes of the analyzer have such a shape that the axially symmetrical electric field generated by them Has equipotential surfaces which are at least approximately elliptical in section in a section perpendicular to the nominal circle. In an electrical field of this type, which expediently extends over an azimuth angle of approximately 23 °, the focus of the particle tracks in the exit area is largely independent of the shot angle and the particle energy. The ability of a field of this type to separate particles with different energies (dispersion) is therefore much better than with all previously known types of analyzers. This makes it possible to allow much higher pass energies. The consequence of this is that lens systems upstream of the analyzer either no longer have to brake the particles to be examined for their energy or only with a significantly smaller braking factor than was previously necessary. The transmission, which is quadratic depending on the braking factor, can thereby be increased considerably.

Es gibt die verschiedensten Möglichkeiten, elektrische Felder der erfindungsgemäßen Art zu erzeugen. Zweckmäßigerweise haben die Elektroden selbst die Form der jeweils gewünschten Äquipotentialflächen.There are various ways of generating electrical fields of the type according to the invention. The electrodes themselves expediently have the shape of the desired equipotential surfaces.

Wenn z. B. die Elektroden die Form von zueinander korrespondierenden Abschnitten einer Ellipsen-Torus-Schar haben, dann haben die von Elektroden dieser Art erzeugten Äquipotentialflächen ebenfalls die Form von Ellipsen-Torus-Abschnitten. Die verschiedensten Ellipsen-Torus-Scharen sind dabei denkbar. Die erzeugenden Ellipsen können z. B. einen gemeinsamen Brennpunkt, gleiche Exzentrizität und/oder gleichen Brennpunktabstand haben. Wesentlich ist nur, daß sich die einzelnen Ellipsen nicht schneiden.If e.g. B. the electrodes have the shape of mutually corresponding sections of an ellipse-torus family, then the equipotential surfaces generated by electrodes of this type also have the shape of ellipse-torus sections. A wide variety of ellipse-torus groups are conceivable. The generating ellipses can e.g. B. have a common focus, the same eccentricity and / or the same focus distance. It is only important that the individual ellipses do not intersect.

Eine weitere Möglichkeit besteht darin, den Elektroden die Form von zueinander korrespondierenden Abschnitten einer Sphäroidschar mit gemeinsamen Brennpunkten zu geben. In diesem Fall sind die von den Elektroden dieser Form erzeugten Äquipotentialflächen sphäroidabschnittförmig. In allen Beispielsfällen entstehen Äquipotentialflächen der erfindungsgemäßen Art, also mit im zur Ebene des Sollkreises senkrechten Schnitt ellipsenabschnittförmiger Gestalt.Another possibility is to give the electrodes the shape of mutually corresponding sections of a spheroid share with common focal points. In this case, the equipotential surfaces generated by the electrodes of this shape are spheroidal section-shaped. In all example cases, equipotential surfaces of the type according to the invention are produced, that is to say with a shape that is elliptical in section in the section perpendicular to the plane of the desired circle.

Bei einer besonders vorteilhaften Ausführungsform sollten die Elektroden ein Feld erzeugen, deren Äquipotentialflächen durch die folgende Gleichung gegeben sind:

Figure imgb0001
In a particularly advantageous embodiment, the electrodes should generate a field whose equipotential surfaces are given by the following equation:
Figure imgb0001

Darin bedeuten:

Figure imgb0002
Ein diese Bedingung erfüllendes elektrisches Feld weicht geringfügig von der exakten Sphäroidform in Richtung Ellipsentoroidform ab. Ein exaktes Sphäroid entsteht z. B. dadurch, daß eine Ellipse um ihre kürzere Achse rotiert. Der in eckigen Klammern befindliche Term bedeutet, daß die Rotationsachse gegenüber der Ellipsenachse um einen geringen Betrag (etwa 1 bis 3 %) parallel verschoben ist. Läßt man um diese Rotationsachse den größeren Teil der Ellipse rotieren, dann entstehen Flächen der gewünschten und die erwähnte Gleichung erfüllenden Form.Where:
Figure imgb0002
An electric field fulfilling this condition deviates slightly from the exact spheroid shape in the direction of the elliptical toroid shape. An exact spheroid is created e.g. B. in that an ellipse rotates about its shorter axis. The term in square brackets means that the axis of rotation is parallel to the ellipse axis by a small amount (about 1 to 3%). If the larger part of the ellipse is rotated about this axis of rotation, then surfaces of the desired shape and fulfilling the aforementioned equation are created.

Aufgrund der guten Fokussierungseigenschaften des erfindungsgemäßen Analysators können relativ große Einschußraumwinkel zugelassen werden. Dieses setzt einen relativ großen Abstand der Elektroden voraus, damit die Flugbahnen von stärker vom Sollkreis abweichenden Teilchen nicht durch die Elektroden gestört werden. Um Randfeldstörungen aufgrund des relativ großen Abstandes der Elektroden zu vermeiden, ist es zweckmäßig, eine Eingangs- und eine Ausgangsblende vorzusehen, die jeweils einen im Bereich des Sollkreises liegenden, sich parallel zu den Äquipotentialflächen erstreckenden Schlitz aufweisen. Haben diese Blenden das Potential der den Sollkreis durchsetzenden Äquipotentialfläche, dann sind Randfeldstörungen stark reduziert.Due to the good focusing properties of the analyzer according to the invention, relatively large shot solid angles can be permitted. This requires a relatively large distance between the electrodes so that the trajectories of particles that deviate more from the target circle are not disturbed by the electrodes. In order to avoid peripheral field disturbances due to the relatively large distance between the electrodes, it is expedient to provide an input and an output aperture, each of which has a slot lying in the area of the target circle and extending parallel to the equipotential surfaces. If these diaphragms have the potential of the equipotential surface passing through the target circle, then peripheral field disturbances are greatly reduced.

Zusätzlich können zur weiteren Reduzierung von Feldstörungen zumindest im Einlaßbereich weitere Korrekturelektroden vorgesehen sein, die sich parallel zum Sollkreis über eine kurze Strecke in den Analysator hinein erstrecken und in ihrer Form mit Äquipotentialflächen übereinstimmen. Auch ihr Potential ist diesen Potentialflächen angepaßt.In addition, further correction electrodes can be provided, at least in the inlet area, for further reduction of field disturbances, which extend parallel to the nominal circle over a short distance into the analyzer and which correspond in shape to equipotential surfaces. Their potential is also adapted to these potential areas.

Weitere Vorteile und Einzelheiten der Erfindung sollen anhand der Figuren 1 bis 5 erläutert werden. Es zeigen:

Fig. 1 und 2
Ellipsenscharen, die Grundlage für die Formgebung der Elektroden sein können;
Fig. 3
einen Schnitt durch einen Analysator nach der Erfindung in der Ebene des Sollkreises
Fig. 4
Ansichten des Eintritts- und Austrittsbereiches und
Fig. 5
einen Fig. 3 entsprechenden Teilschnitt durch den Ausgangsbereich eines Analysators.
Further advantages and details of the invention will be explained with reference to FIGS. 1 to 5. Show it:
1 and 2
Sets of ellipses that can form the basis for the shape of the electrodes;
Fig. 3
a section through an analyzer according to the invention in the plane of the target circle
Fig. 4
Views of the entrance and exit area and
Fig. 5
a partial section corresponding to FIG. 3 through the output area of an analyzer.

Fig. 1 zeigt eine Ellipsenschar 1 mit gemeinsamen Brennpunkten F₁ und F₂. Die Kurvenscharen sind charakterisiert durch die Gleichungen:

Figure imgb0003
Darin bedeuten:
Figure imgb0004
Der Zusammenhang zwischen diesen Koordinaten ist:
Figure imgb0005
Für den Fall x = const ergeben sich die ausgezogen dargestellten elliptischen Kurven. Für den Fall ζ = const ergeben sich die gestrichelt dargestellten hyperbolischen Kurven.Fig. 1 shows an ellipse family 1 with common foci F₁ and F₂. The family of curves is characterized by the equations:
Figure imgb0003
Where:
Figure imgb0004
The relationship between these coordinates is:
Figure imgb0005
For the case x = const, the elliptic curves shown in solid lines result. For the case ζ = const the dashed hyperbolic curves result.

Ein erfindungsgemäß gestalteter Analysator entsteht, wenn man den zwei Elektroden in einem zum Sollkreis senkrechten Schnitt die Form von zwei zueinander korrespondierenden Ellipsenabschnitten gibt, die sich im Bereich der Hauptachse und symmetrisch dazu erstrecken, und diese um die x₃-Achse rotieren läßt. Zwei solche Ellipsenabschnitte sind im linken Teil der Fig. 1 durch verstärkte Linien angedeutet und mit 2 und 3 bezeichnet. Zwischen den Elektroden 2 und 3 (mittig) liegt der Sollkreis des Analysators, der dem eingezeichneten Punkt xo entspricht. Wenn der Sollkreisradius ρo = 1 ist, gilt für xo:

Figure imgb0006
wobei c die Exzentrizität derjenigen Ellipse ist, die dem Sollkreis entspricht. Die von Elektroden dieser Art erzeugten Äquipotentialflächen haben dann ebenfalls in einem zum Sollkreis senkrechten Schnitt ellipsenabschnittförmige Gestalt. Die Richtung des elektrischen Feldes ist gegeben durch die jeweils gestrichelt dargestellten hyperbolischen Kurvenabschnitte.An analyzer designed according to the invention is produced when the two electrodes are cut in a section perpendicular to the target circle in the shape of two corresponding to one another Ellipse sections are there, which extend in the region of the main axis and symmetrically thereto, and can rotate them about the x₃ axis. Two such ellipse sections are indicated in the left part of FIG. 1 by reinforced lines and are designated by 2 and 3. Between the electrodes 2 and 3 (center) is the target circle of the analyzer, which corresponds to the drawn point x o . If the nominal circle radius ρ o = 1, the following applies to x o :
Figure imgb0006
where c is the eccentricity of the ellipse that corresponds to the target circle. The equipotential surfaces generated by electrodes of this type then also have an elliptical section shape in a section perpendicular to the nominal circle. The direction of the electric field is given by the hyperbolic curve sections shown in dashed lines.

Läßt man die Ellipsenabschnitte 2 und 3 nach Fig. 1 um die x₃-Achse rotieren, dann entstehen Elektroden, die exakt die Form von Sphäroid-Flächenabschnitten haben. Um jedoch Äquipotentialflächen zu erzeugen, die die in Anspruch 6 angegebene Gleichung erfüllen, dann ist es erforderlich, die Rotationsachse etwas zu verschieben, und zwar derart, daß der Abstand zwischen der Rotationsachse und den Ellipsenabschnitten 2 und 3 etwas größer wird (um ca. 1 bis 3 %). Diese Rotationsachse ist gestrichelt dargestellt und mit 4 bezeichnet. Mit einem Analysator dieser Art läßt sich bei einer Teilchenenergie von 1 keV eine Auflösung von wenigen Zehntel Volt erzielen, und zwar bei einer Passenergie von 100 eV. Gegenüber dem Kugelkondensator stellt das eine Intensitätsverbesserung um den Faktor 5 dar.If you rotate the ellipse sections 2 and 3 according to Fig. 1 about the x₃ axis, electrodes are formed which have the exact shape of spheroidal surface sections. However, in order to generate equipotential surfaces which satisfy the equation specified in claim 6, it is necessary to shift the axis of rotation somewhat, in such a way that the distance between the axis of rotation and the ellipse sections 2 and 3 becomes somewhat larger (by approx. 1 to 3 %). This axis of rotation is shown in dashed lines and designated 4. With an analyzer of this type, a resolution of a few tenths of a volt can be achieved with a particle energy of 1 keV, namely with a pass energy of 100 eV. Compared to the spherical capacitor, this represents an improvement in intensity by a factor of 5.

Fig. 2 zeigt im linken Bereich die Ellipsenschar 1 nach Fig. 1. Diese Schar ist dadurch gekennzeichnet, daß alle Ellipsen identische Brennpunkte F₁ und F₂ besitzen. Vergleichbare Ellipsenscharen, die ebenfalls für die Formgebung der Elektroden des erfindungsgemäßen Analysators herangezogen werden können, sind z. B. durch gleiche Exzentrizität gekennzeichnet. Der Abstand der Brennpunkte bei einer derartigen Ellipsenschar würde mit steigenden Radien zunehmen.Fig. 2 shows in the left area the ellipse family 1 according to Fig. 1. This family is characterized in that all Ellipses have identical foci F₁ and F₂. Comparable sets of ellipses, which can also be used for the shaping of the electrodes of the analyzer according to the invention, are, for. B. characterized by the same eccentricity. The distance between the focal points in such an ellipse family would increase with increasing radii.

Der rechte Teil der Fig. 2 zeigt eine Ellipsenschar 5, die dadurch gekennzeichnet ist, daß bei allen Ellipsen der Brennpunktabstand gleich ist, der Ort der Brennpunkte aber mit steigenden Radien nach rechts verschoben wird. Eine ähnliche Ellipsenschar entsteht, wenn alle Ellipsen einen Brennpunkt gemeinsam besitzen, gleiche Exzentrizität haben und der zweite Brennpunkt mit steigenden Radien nach außen wandert. Alle diese Ellipsenscharen können für die Formgebung der Elektroden des erfindungsgemäßen Analysators herangezogen werden. In der Ellipsenschar 5 sind zwei einander korrespondierende Ellipsenabschnitte verstärkt dargestellt und mit 6 und 7 bezeichnet. Läßt man diese in der zur Fig. 1 beschriebenen Weise um die x₃-Achse oder eine andere dazu parallele Achse rotieren, dann entstehen Flächen, die die gewünschte Elektrodenform bilden können.The right part of FIG. 2 shows an array of ellipses 5, which is characterized in that the focal point distance is the same for all ellipses, but the location of the focal points is shifted to the right with increasing radii. A similar set of ellipses occurs when all ellipses have a focal point in common, have the same eccentricity and the second focal point moves outwards with increasing radii. All of these sets of ellipses can be used to shape the electrodes of the analyzer according to the invention. In the ellipse array 5, two mutually corresponding ellipse sections are shown reinforced and designated 6 and 7. If this is rotated in the manner described in FIG. 1 about the x₃ axis or another axis parallel to it, surfaces are formed which can form the desired electrode shape.

Fig. 3 zeigt ein Ausführungsbeispiel für einen Analysator nach der Erfindung, und zwar in der Ebene des Sollkreises 10 geschnitten. Der Analysator umfaßt die Hauptelektroden 8 und 9, die zwischen sich den Sollkreis 10 mit dem Radius xoeinschließen. Die Innenflächen der Elektroden 8 und 9 haben in einem zur Sollkreisebene senkrechten Schnitt die Form von Ellipsenabschnitten. Die Elektroden 8 und 9 und damit das von ihnen erzeugte elektrische Feld erstreckt sich über einen Azimuthwinkel φ von 230°.Fig. 3 shows an embodiment of an analyzer according to the invention, namely cut in the plane of the target circle 10. The analyzer comprises the main electrodes 8 and 9, which enclose between them the desired circle 10 with the radius x o . The inner surfaces of the electrodes 8 and 9 have the shape of elliptical sections in a section perpendicular to the desired circular plane. The electrodes 8 and 9 and thus the electric field generated by them extends over an azimuth angle φ of 230 °.

Im Eingangsbereich des dargestellten Analysators ist eine Blende 11 mit einem im Bereich des Sollkreises 10 vorgesehenen Eingangsschlitz 12 angeordnet.A diaphragm 11 with an input slot 12 provided in the area of the desired circuit 10 is arranged in the input area of the analyzer shown.

Diese Platte hat zweckmäßigerweise das Potential der den Sollkreis durchsetzenden Äquipotentialfläche. Der Eingangsschlitz 12 erstreckt sich parallel zu dieser Äquipotentialfläche und hat deshalb ebenfalls ellipsenförmige Gestalt (vgl. Fig. 4).This plate expediently has the potential of the equipotential surface passing through the target circle. The input slot 12 extends parallel to this equipotential surface and therefore also has an elliptical shape (cf. FIG. 4).

Im Bereich des Ausganges des Analysators ist eine entsprechende Blende 13 mit dem Austrittsschlitz 14 angeordnet. Unmittelbar dahinter befindet sich der Auffänger 15 des, nachgeordneten, im einzelnen nicht dargestellten Detektors für die austretenden geladenen Teilchen.A corresponding aperture 13 with the outlet slot 14 is arranged in the region of the outlet of the analyzer. Immediately behind it is the catcher 15 of the downstream detector, not shown in detail for the discharged charged particles.

Dem Eintrittsschlitz 12 vorgelagert ist ein Linsensystem 17, das aus vier Elektroden 18 bis 21 besteht. Der Eintrittsöffnung 22 des Linensystems 17 vorgelagert ist die zu untersuchende Probe 23. Von der Probe 23 ausgehende Teilchen werden mit Hilfe des Linsensystems auf den Eintrittsschlitz 12 fokussiert und auf die gewünschte Passenergie gebracht. Teilchen, deren Energie dem eingestellten Analysator-Potential entspricht, durchsetzen den Analysator und werden auf dem Austrittsschlitz 14 abgebildet. Zwei Teilchenbahnen 24 und 25 sind beispielsweise dargestellt.A lens system 17, which consists of four electrodes 18 to 21, is arranged in front of the entry slot 12. In front of the inlet opening 22 of the lens system 17 is the sample 23 to be examined. Particles originating from the sample 23 are focused on the inlet slot 12 with the aid of the lens system and brought to the desired pass energy. Particles whose energy corresponds to the set analyzer potential penetrate the analyzer and are imaged on the exit slot 14. Two particle tracks 24 and 25 are shown, for example.

Fig. 3 zeigt weiterhin sowohl im Einlaß als auch im Auslaßbereich des dargestellten Analysators angeordnete Korrekturelektroden 26, 27 bzw. 28, 29. Diese Elektroden entsprechen sowohl in ihrer Form als auch in ihrem Potential den Äquipotentialflächen an dem jeweiligen Ort. Sie stellen praktisch einen Ersatz der zugehörigen Äquipotentialflächen dar und bewirken damit eine weitere Beseitigung von Feldstörungen im Ein- und Auslaßbereich des Analysators. Ihr Abstand zum Eintrittsschlitz 12 bzw. Austrittsschlitz 14 soll einerseits möglichst nah sein, andererseits soll aber die Transmission nicht beeinträchtigt sein. Zweckmäßigerweise beträgt ihr jeweiliger Abstand vom Sollkreis 10 etwa die Hälfte des Abstandes Sollkreis - Hauptelektrode, wobei sie sich um jeweils 10° in den Analysator hinein erstrecken.FIG. 3 also shows correction electrodes 26, 27 and 28, 29 arranged both in the inlet and in the outlet area of the analyzer shown. These electrodes correspond both in their shape and in their potential to the equipotential surfaces at the respective location. They are practically a substitute for the associated equipotential surfaces, thus further eliminating field disturbances in the inlet and outlet areas of the analyzer. Their distance from the entry slot 12 or exit slot 14 should on the one hand be as close as possible, but on the other hand the transmission should not be impaired. Conveniently it is The respective distance from the target circle 10 is approximately half of the distance from the target circle to the main electrode, each extending by 10 ° into the analyzer.

Fig. 4 zeigt Ansichten des Eintrittsbereichs und des Austrittsbereichs des in Fig. 3 dargestellten Analysators. Die diesen Bereichen jeweils vorgelagerten Herzog-Platten 11 und 13 sind gestrichelt dargestellt. Die Form des Eintritts- bzw. Austrittsschlitzes 12, 14 ist ersichtlich. Ihre langen Seiten erstrecken sich parallel zu den Äquipotentialflächen. Ihre kurzen Seiten stimmen mit der Richtung des elektrischen Feldes überein.FIG. 4 shows views of the entry area and the exit area of the analyzer shown in FIG. 3. The Herzog plates 11 and 13 upstream of these areas are shown in dashed lines. The shape of the entry or exit slot 12, 14 can be seen. Their long sides extend parallel to the equipotential surfaces. Their short sides coincide with the direction of the electric field.

Die beiden Elektroden 8 und 9 sind jeweils aus vollem Material hergestellt. Ein einfacheres Verfahren der Herstellung der Elektroden besteht darin, daß in vorgedrückte und spannungsfrei geglühte Teile die gewünschte Elektrodenform eingedreht wird.The two electrodes 8 and 9 are each made of solid material. A simpler method of producing the electrodes is that the desired electrode shape is screwed into pre-pressed and stress-free annealed parts.

Fig. 5 zeigt nochmals den Ausgangsbereich des Analysators gemäß Fig. 3. An Stelle der Herzog-Platte 13 und des Auffängers 15 ist dem Analysator ein Vielkanaldetektor 31 nachgeordnet. Dadurch besteht die Möglichkeit, gleichzeitig größere Energiebereiche verarbeiten zu können.FIG. 5 again shows the output area of the analyzer according to FIG. 3. Instead of the Herzog plate 13 and the collector 15, a multichannel detector 31 is arranged downstream of the analyzer. This makes it possible to process larger energy areas at the same time.

Im folgenden ist noch eine Tabelle wiedergegeben, die zweckmäßige Werte für ein Ausführungsbeispiel enthält.

Figure imgb0007
In the following a table is shown which contains useful values for an exemplary embodiment.
Figure imgb0007

Darin bedeuten x die Polarkoordinate, c die Exzentrizität der den Sollkreis xo durchsetzenden Äquipotentialfläche, V das Potential der jeweiligen Elektrode in Einheiten der Passenergie Eo.In it x means the polar coordinate, c the eccentricity of the equipotential surface passing through the target circle x o , V the potential of the respective electrode in units of the pass energy E o .

Gibt man zur Verwirklichung eines Analysators der erfindungsgemäßen Art den Sollbahnradius xo mit z. B. 100 mm, 150 mm oder Zwischenwerten vor, dann lassen sich die übrigen Daten aus der Tabelle berechnen.If one gives the target orbit radius x o with z. B. 100 mm, 150 mm or intermediate values, then the remaining data can be calculated from the table.

Die Innenwandungen der Elektroden 8, 9 sind zweckmäßigerweise in einem sich über 30° bis 60° erstreckenden mittleren Bereich zur Vermeidung von störenden Reflektionen aufgerauht. Vorzugsweise sind sägezahnartige, sich senkrecht zur Sollkreisebene erstreckende Riefen vorgesehen. Aus Rev.Sci.Instrum.,Vol.46,No.10, October 1975, sind solche Maßnahmen an sich bekannt.The inner walls of the electrodes 8, 9 are expediently roughened in a central region extending over 30 ° to 60 ° to avoid disturbing reflections. Sawtooth-like grooves that extend perpendicular to the desired circle plane are preferably provided. Such measures are known per se from Rev.Sci.Instrum., Vol.46, No.10, October 1975.

Claims (10)

  1. Analyser for charged particles with two electrodes serving to generate an axially symmetrical electric field and which extend, together with the paths of the particles to be analysed, along a reference circle between the electrodes, characterized in that the electrodes (8, 9) have a shape such that the axially symmetrical electric field generated by them has equipotential surfaces which have at least approximately the form of an ellipse section in a cross-section perpendicular to the plane of the reference circle (10).
  2. Analyser according to claim 1, characterized in that the electric field generated has equipotential surfaces of an elliptical torus shape.
  3. Analyser according to claim 2, characterized in that the electrodes (8, 9) themselves have an elliptical torus shape.
  4. Analyser according to claim 1, characterized in that the equipotential surfaces of the electric field are spheroidal in shape.
  5. Analyser according to claim 1 or 4, characterized in that the electrodes (8, 9) themselves are spheroidal in shape.
  6. Analyser according to claim 1, 4 or 5, characterized in that the electrodes (8, 9) generate a field given by the following equation:
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
  7. Analyser according to one of the above claims, characterized in that it stretches over an azimuth angle of approximately 230 degrees.
  8. Analyser according to one of the above claims, characterized in that on the input and preferably also the output side there are slot apertures (11, 13) with central slots (12, 14), that the slots (12, 14) run parallel to the equipotential surfaces and that the potential of the apertures (12, 13) corresponds to the potential of the equipotential surface passing through the reference circle.
  9. Analyser according to one of the above claims, characterized in that on the input side and preferably also on the output side there are correction electrodes (26, 27 or 28, 29 respectively) which in their form and potential correspond to the equipotential surfaces at their location.
  10. Analyser according to one of the above claims, characterized in that the electrodes (8, 9) are preferably roughened in a central area extending over 30 to 60 degrees or are provided with sawtooth shaped grooves which run approximately perpendicular to the plane of the reference circle.
EP19840116209 1984-12-22 1984-12-22 Charged-particles analyser Expired - Lifetime EP0185789B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19840116209 EP0185789B1 (en) 1984-12-22 1984-12-22 Charged-particles analyser
DE8484116209T DE3484246D1 (en) 1984-12-22 1984-12-22 CHARGED PARTICLE ANALYZER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19840116209 EP0185789B1 (en) 1984-12-22 1984-12-22 Charged-particles analyser

Publications (2)

Publication Number Publication Date
EP0185789A1 EP0185789A1 (en) 1986-07-02
EP0185789B1 true EP0185789B1 (en) 1991-03-06

Family

ID=8192384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840116209 Expired - Lifetime EP0185789B1 (en) 1984-12-22 1984-12-22 Charged-particles analyser

Country Status (2)

Country Link
EP (1) EP0185789B1 (en)
DE (1) DE3484246D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126148A (en) * 1986-11-14 1988-05-30 Hiroshi Daimon Charged particle analyzer
DE4228190A1 (en) * 1992-08-25 1994-03-03 Specs Ges Fuer Oberflaechenana Charged particle analyzer
PL368785A1 (en) * 2004-06-28 2006-01-09 Krzysztof Grzelakowski Imaging energy filter for electrons and other electrically charged particles and method for filtering electron energy in electro-optical equipment using imaging filter

Also Published As

Publication number Publication date
DE3484246D1 (en) 1991-04-11
EP0185789A1 (en) 1986-07-02

Similar Documents

Publication Publication Date Title
EP0218920B1 (en) Omega-type electron energy filter
DE69118492T2 (en) Mass spectrometer with electrostatic energy filter
DE3913965A1 (en) DIRECTLY IMAGING SECOND EDITION MASS SPECTROMETER WITH RUNTIME MASS SPECTROMETRIC MODE
DE4134905A1 (en) TANDEM MASS SPECTROMETER BASED ON FLIGHT TIME ANALYSIS
DE1539659B2 (en) STIGMATIC IMAGING SYSTEM FOR A DOUBLE FOCUSING MASS SPECTROMETER
DE69936800T2 (en) mass spectrometry
EP1995758B1 (en) Monochromator and charged particle beam source with monochromator
DE1937482B2 (en) Microbeam probe
DE2538123A1 (en) ARRANGEMENT FOR MASS SPECTROMETRIC DETECTION OF IONS
DE3231036C2 (en)
DE1498646B2 (en) ION MICROANALYSIS DEVICE
DE19635645C2 (en) Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer
DE60126048T2 (en) Mass spectrometer and mass spectrometric method
DE2646394C2 (en) Device for determining the degree of spin polarization of an electron beam
DE2458025A1 (en) DEVICE FOR MASS ANALYSIS AND STRUCTURAL ANALYSIS OF A SURFACE LAYER BY ION SCATTERING
DE2540505A1 (en) FLIGHT TIME MASS SPECTROMETERS FOR IONS WITH DIFFERENT ENERGIES
DE102013015046A1 (en) Imaging mass spectrometer for analyzing position and intensity distributions of track links, has voltage control part controlling voltage applied to electrode such that lens effect of lens system increases with time over time period
DE69121463T2 (en) Ion beam device
DE2705430C3 (en) Electrostatic analyzer for charged particles
EP0185789B1 (en) Charged-particles analyser
DE2031811B2 (en) Double focusing stigmatic imaging mass spectrometer
DE1034884B (en) Device for separating ions of different charge-mass ratios
EP0633601B1 (en) Large aperture, low flight-time distortion detector for a time-of-flight mass spectrometer
DE102019113776A1 (en) Correction of the slope of the ion front in a time of flight (TOF) mass spectrometer
DE2347946A1 (en) QUADRUPOLE FIELD MASS ANALYZER HIGH ENTRANCE APERTURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19861229

17Q First examination report despatched

Effective date: 19880802

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KRIZEK, HANA, DR.

Owner name: KRIZEK, GEORG, DR.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRIZEK, GEORG, DR.

Inventor name: KRIZEK, HANA, DR.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VG INSTRUMENTS GROUP LIMITED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19910306

REF Corresponds to:

Ref document number: 3484246

Country of ref document: DE

Date of ref document: 19910411

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 777B

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921211

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921218

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961129

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971222