EP0182716B1 - Anneau de turbine pour une turbomachine à gaz - Google Patents

Anneau de turbine pour une turbomachine à gaz Download PDF

Info

Publication number
EP0182716B1
EP0182716B1 EP85402243A EP85402243A EP0182716B1 EP 0182716 B1 EP0182716 B1 EP 0182716B1 EP 85402243 A EP85402243 A EP 85402243A EP 85402243 A EP85402243 A EP 85402243A EP 0182716 B1 EP0182716 B1 EP 0182716B1
Authority
EP
European Patent Office
Prior art keywords
annular support
ring
turbine
annular
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402243A
Other languages
German (de)
English (en)
Other versions
EP0182716A1 (fr
Inventor
Alain Jacques Emile Guibert
Roland René Mestre
Rémy Paul Charles Ritt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0182716A1 publication Critical patent/EP0182716A1/fr
Application granted granted Critical
Publication of EP0182716B1 publication Critical patent/EP0182716B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator

Definitions

  • the present invention relates to a turbine ring for a gas turbomachine.
  • FR-A-2 540 937, FR-A-2 540 938 and FR-A-2 540 939 as well as FR-A-2 371 575 all describe turbine rings for gas turbomachines, each comprising an annular support, fixed inside the casing of the turbine, and a ring, which is made at least partially of a ceramic and abradable material, and which is fixed inside said annular support.
  • the annular support is made of a metallic material, and, owing to the great difference existing between the respective coefficients of expansion of the metallic materials and of the ceramic materials, the ring of ceramic material must be formed by segments independent of each other, and coupled by their respective ends so as to allow the radius of said ring to follow variations in the radius of the annular support, as a function of the different temperatures that the latter takes for the different operating modes of the turbine , thus avoiding that the ring of ceramic material is subjected to stresses incompatible with the mechanical resistance of the material which constitutes it.
  • FR-A-2 559 834 describes, in its preamble, the numerous drawbacks linked to the use of a ring made of ceramic material, constituted by the juxtaposition of several segments. It is further indicated that these drawbacks can be overcome by also constituting the annular support in a ceramic material, and by making the abradable ring in one piece. In a preferred embodiment of the turbine ring described in this last French patent application, the dimensioning is also such that the annular support exerts, when cold, on the abradable ring, a precompression determined so as to cancel or reverse at normal turbine operating temperature.
  • means are provided for regulating the temperature of the components of the turbine ring, these means comprising for example a circulation of cooling air coming from of the turbine compressor.
  • These cooling means are generally provided so as to act indistinctly on the two main components of the turbine ring, namely its annular support and its or its elements made of abradable ceramic material. Consequently, the temperature gradient between the inner and outer faces of the abradable ring, for example, is very large, and gives rise to stresses in the latter, which can reduce its lifespan.
  • the turbine ring according to the present invention also comprises an annular support, mounted inside the turbine casing, a one-piece ring, made of an abradable ceramic material, mounted inside said annular support, and dimensioned so that the latter applies to said ring, at least when cold, axipetal compression, as well as means for adjusting the temperature of the components of the turbine ring.
  • the turbine ring according to the present invention is characterized in that its internal diameter is adjusted by means of the temperature adjustment means only of the annular support which is metallic so that the annular support exerts an appropriate axipetal compression on the 'ring abradable at all operating speeds, taking into account the temperature of the parts, from the initial assembly in preload of said ring on the annular support.
  • the temperature gradient between the interior and exterior surfaces of the abradable ring is relatively small, which avoids the appearance therein of constraints likely to reduce its lifespan.
  • the temperature gradient in the radial direction, inside the annular support is very important, but, as this support is metallic, it easily collects the thermal stresses which result from it.
  • the means for adjusting the temperature of the annular support are easily controlled, according to the present invention, in particular when they include a circulation of cooling air, coming from the compressor of the turbomachine, for example by automatically controlling the flow rate of the cooling air of said annular support, so that, at all operating modes of the turbine, that is to say both in permanent mode and in various transient modes, the ring of material abradable ceramic is always subjected to an axipetal compression, produced by the annular support, which thus plays the role of a hoop.
  • the particular structure of the turbine ring according to the present invention also offers the following additional advantage: the internal diameter of the abradable ring is adjusted using the means for adjusting the temperature of the annular support, that is to say ie by varying the corresponding cooling air flow and the adjustment of the gap between the ring and the ends of the blades of the corresponding rotor of the turbine is the consequence.
  • the axipetal compression is transmitted by the annular support to the abradable ring, by means of elements with low thermal conduction, with reduced cross section; these elements consist of radial projections from one of the surfaces, facing one another, the annular support and the abradable ring.
  • its annular support can be fitted with gentle friction between two radial flanges, fixed to the internal wall of the turbine casing, and means, comprising pins cooperating with slides, are provided for immobilizing axially and in rotation, and for radially guiding said annular support while maintaining its centering, when the annular support expands or contracts.
  • This arrangement is particularly advantageous insofar as it makes it possible to vary the internal diameter of the abradable ring, and, consequently, its interval with the ends of the rotor blades, between wide limits, for example by varying the flow rate. cooling air, without the geometric position of the ring, relative to the corresponding rotor, ceasing to be defined with the precision necessary to keep said ring and said rotor coaxial.
  • FIG. 1 a part of the casing of a gas turbine has been designated by 1, and by 2A and 2B, two radial flanges, which are fixed to the internal wall of the casing 1 by any suitable means, for example by bolts 3A and 3B. Between the flanges 2A and 2B is mounted a turbine ring 1a. 4 designates the end of a blade of a rotor of the gas turbine under consideration, the other elements of which have not been illustrated.
  • This rotor is surrounded by a one-piece ring, 5, which is made of an abradable ceramic material, which must be chosen as follows: it must withstand temperatures at least equal to 1000 ° C and present conduction and expansion coefficients, lower than those of the materials constituting the other parts of the turbine; it must also have good resistance to erosion under the action of gases at high temperature and be abradable. Different types of abradable ceramic materials are known which meet these requirements and which can be used to form the ring 5 according to the present invention.
  • the outer cylindrical surface of the abradable ring 5 is smooth, and it is in direct contact with the inner surface of a metallic annular support 6, which can be constituted for example by two annular parts , 6a and 6b.
  • the internal part, 6b, of the annular support 6, is in contact with the cylindrical external surface, 5a, of the abradable ring 5, not by a cylindrical surface, but by kinds of pins 6c, whose sum of the cross sections - perpendicular to the axial plane of the figure - is notably less than the area of the external surface 5a of the abradable ring 5.
  • These pins 6c which form radial projections on the internal surface of the metal support 6, facing the outer surface 5a of the abradable ring 5, constitute elements with low thermal conduction, reducing heat exchanges between components 5 and 6.
  • the annular support 6 has, when cold, an inside diameter slightly less than the outside diameter of the abradable ring 5, and it must be previously heated in order to be able to be threaded over the abradable ring 5, which remains cold ; while cooling, the annular support 6 exerts an axipetal compression on the abradable ring 5, like a hoop.
  • the assembly is initially dimensioned taking into account the temperatures at which the parts 5 and 6 are brought to the different speeds, permanent and transient, of the gas turbine, so that the hooping of the ring 5 by the annular support 6, subsists at all the operating regimes of said turbine, that is to say that, both in steady state and in various transient regimes, the annular support 6 does not cease to exert an axipetal compression on the abradable ring 5.
  • an annular distribution chamber, 7, is delimited by the casing 1 of the turbine and by the walls of an annular channel 6d, arranged in the annular support 6, so as to open on its outer surface; cooling air, brought from the compressor - not shown - from the turbine by known means, also not shown, enters the distribution chamber 7 through an opening 8 of the casing 1.
  • cavities, 9a, 9b which communicate with each other by a duct 10, and which are supplied with cooling air, from the distribution chamber 7, by channels 11, closed section, arranged in the annular support 6.
  • this can be formed, as already indicated, by two annular elements, 6a and 6b, the cylindrical connection surface of which passes through the cavities 9a, 9b and through the channel 10; it is therefore in the innermost part, 6B, that the pins 6c are arranged, as well as at least one lug 6e, which engages in a notch of complementary shape of one of the edges of the ring abradable 5, to immobilize the two parts 5 and 6 in rotation relative to each other.
  • the cooling air which has passed through the cavities 9a and 9b, then escapes through exhaust ducts 12, an annular collecting chamber 13 and an opening 14 of the casing 1, to be returned to the secondary flow of the turbine. , or reused for other ventilation (for example BP distributor).
  • the annular support 6 is recessed with gentle friction between the two radial flanges 2A and 2B, which are fixed to the internal wall of the casing 1 of the turbine.
  • at least three slides 15 are arranged in the flange 2A to each radially guide a pin 16, fixed to the corresponding front surface of the annular support 6; similarly, at least three slides 17 are arranged in the left part of the annular support 6, and a pin 18, of corresponding diameter, is fixed to the corresponding surface of the flange 2B and engaged in each slide.
  • the displacements of the annular support 6, and of the abradable ring 5, relative to the flanges 2A and 2B, which are due to expansions or contractions of the parts 5 and 6, are guided radially by the cooperation of the pins such as 16 and 18, with the slides such as 15 and 17, so as to keep the rings 5 and 6 exactly coaxial with the corresponding rotor of the turbine; this is essential for the interval e between the inner, cylindrical surface of the abradable ring 5, on the one hand, and the cylindrical surface swept by the ends of the blades 4 of the turbine rotor, on the other hand, has the same width, appropriate, at all points, both in the axial direction and in the peripheral direction.
  • annular seal 19 is mounted in an annular housing of the flange 2A, to seal between it and the corresponding face of the annular support 6, despite the relative displacements of these two elements in the radial direction.
  • Another annular seal, 20, seals between the cooling air distribution chamber 7, and the collecting chamber 13; this seal 20 is housed in an annular groove of a radial projection 21, arranged on the internal face of the casing 1, opposite a radial projection, 6f, which forms one of the side walls of the channel 6d.
  • the inner surface of the abradable ring 5, facing the ends of the blades 4 of the rotor, is brought for example to a temperature of the order of 1200 ° C; as no means for cooling the abradable ring 5 is provided according to the present invention, its outer surface 5a is then at a temperature in the region of 900 ° C., so that said abradable ring 5 is only subjected to a relatively low thermal gradient, which can generate therein only thermal stresses insufficient to harm the cohesion of the ceramic material which constitutes it.
  • the present invention is not limited to the embodiment described above.
  • the means for axially guiding the radial displacements of the annular support 6, due to its expansions or to its contractions, are capable of various embodiments, different from that previously described.
  • the constitution of the annular support cooling circuit is optional.
  • the number and arrangement of cavities such as 9a and 9b may vary; they are however preferably arranged so as to constitute one or more thermal barriers in the vicinity of the inner surface of the annular support 6.
  • the pins 6c could be in contact with similar pins, arranged in the outer surface of the abradable ring 5; other means could be used to reduce the thermal conduction between parts 5 and 6, for example the interposition of thermal insulators.
  • the pins such as 6c could themselves receive external thermal protection, for example in the form of a projection of magnesium zirconate.
  • Ventilation is provided on the metal / ceramic interface if its temperature exceeds the admissible limit for the material of the hoop.
  • An embodiment of this arrangement is shown in FIG. 2 and in this case the effect of punching the ceramic by the pins is avoided, while ensuring an effective thermal barrier.
  • a conical wall 21, the seal with the ring 1a is ensured by means of a seal 22 is arranged upstream of said ring 1a and channels ventilation air.
  • the radially internal part of the internal part 6b of the annular support 6 comprises a series of circular grooves 23 constituting annular cavities arranged axially and closed on their internal diameter by a ring 24 of small thickness added for example by brazing on the annular support 6.
  • the grooves 23 communicate by axial milling 25.
  • the annular support 6 has on its upstream side face a series of holes 26 through which the ventilation air is brought into the circuit of the grooves 23.
  • a passage 27 is provided at the interface between the annular support 6 and the ring 5 on the downstream side for the evacuation of the air having circulated in the grooves 23.

Description

  • La présente invention concerne un anneau de turbine pour une turbomachine à gaz.
  • FR-A-2 540 937, FR-A-2 540 938 et FR-A-2 540 939 ainsi que FR-A-2 371 575 décrivent tous des anneaux de turbine pour des turbomachines à gaz, comportant chacun un support annulaire, fixé à l'intérieur du carter de la turbine, et un anneau, qui est constitué au moins partiellement en un matériau céramique et abradable, et qui est fixé à l'intérieur dudit support annulaire. Dans la plupart de ces réalisations, le support annulaire est constitué en un matériau métallique, et, par suite de la grande différence existant entre les coefficients respectifs de dilatation des matériaux métalliques et des matériaux céramiques, l'anneau en matériau céramique doit être formé par des segments indépendants les uns des autres, et accouplés par leurs extrémités respectives de façon à permettre au rayon dudit anneau de suivre les variations du rayon du support annulaire, en fonction des températures différentes que prend ce dernier pour les différents régimes de fonctionnement de la turbine, on évite ainsi que l'anneau en matériau céramique ne soit soumis à des contraintes incompatibles avec la résistance mécanique du matériau qui le constitue.
  • FR-A-2 559 834 décrit, dans son préambule, les nombreux inconvénients liés à l'emploi d'un anneau en matériau céramique, constitué par la juxtaposition de plusieurs segments. Il y est en outre indiqué que ces inconvénients peuvent être palliés en constituant également le support annulaire en un matériau céramique, et en réalisant l'anneau abradable d'une seule pièce. Dans une forme de réalisation préférée de l'anneau de turbine décrit dans cette dernière demande de brevet français, le dimensionnement est en outre tel que le support annulaire exerce, à froid, sur l'anneau abradable, une précompression déterminée de manière à s'annuler ou à s'inverser à la température de fonctionnement normal de la turbine. Cette technique antérieure permet donc déjà d'éviter d'avoir à établir des liaisons métallurgiques entre deux pièces constituées l'une en un matériau métallique et l'autre en un matériau céramique ; en effet, les liaisons entre l'anneau abradable et son support annulaire sont assurées, selon cette technique, par des vis radiales, vissées dans des inserts retenus dans les anneaux abra- dables. La complexité relative de cette structure est compensée par la facilité qu'elle procure, de démonter l'anneau, par exemple en vue du remplacement de sa partie abradable.
  • D'autre part, dans plusieurs des demandes de brevets antérieures, qui ont été précédemment mentionnées, des moyens sont prévus pour régler la température des composants de l'anneau de turbine, ces moyens comportant par exemple une circulation d'air de refroidissement en provenance du compresseur de la turbine. Ces moyens de refroidissement sont généralement prévus de façon à agir indistinctement sur les deux composants principaux de l'anneau de turbine, à savoir son support annulaire et son ou ses éléments en matériau céramique abradable. Par suite, le gradient de température entre les faces intérieure et extérieure de l'anneau abradable, par exemple, est très important, et donne naissance dans celui-ci à des contraintes, qui peuvent réduire sa durée de vie.
  • L'anneau de turbine selon la présente invention comporte également un support annulaire, monté à l'intérieur du carter de la turbine, un anneau d'une seule pièce, en un matériau céramique abradable, monté à l'intérieur dudit support annulaire, et dimensionné de manière que ce dernier applique audit anneau, tout au moins à froid, une compression axipète, ainsi que des moyens de réglage de la température des composants de l'anneau de turbine. L'anneau de turbine selon la présente invention est caractérisé en ce que son diamètre intérieur est ajusté à l'aide des moyens de réglage de la température uniquement du support annulaire qui est métallique de manière que le support annulaire exerce une compression axipète appropriée sur l'anneau abradable à tous les régimes de fonctionnement, compte-tenu de la température des pièces, à partir du montage initial en précontrainte dudit anneau sur le support annulaire.
  • Comme seul le support annulaire de l'anneau de turbine selon la présente invention est refroidi, le gradient de température entre les surfaces intérieure et extérieure de l'anneau abradable est relativement faible, ce qui évite l'apparition, dans celui-ci, de contraintes susceptibles de réduire sa durée de vie. Par contre, le gradient de température dans la direction radiale, à l'intérieur du support annulaire, est très important, mais, comme ce support est métallique, il encaisse facilement les contraintes thermiques qui en résultent. D'autre part, les moyens de réglage de la température du support annulaire sont aisément contrôlés, selon la présente invention, notamment lorsqu'ils comportent une circulation d'air de refroidissement, en provenance du compresseur de la turbomachine, par exemple en contrôlant automatiquement le débit de l'air de refroidissement dudit support annulaire, de manière que, à tous les régimes de fonctionnement de la turbine, c'est-à-dire aussi bien en régime permanent qu'aux différents régimes transitoires, l'anneau en matériau céramique abradable soit toujours soumis à une compression axipète, produite par le support annulaire, qui joue ainsi le rôle d'une frette. Ceci évite que, dans certaines conditions de fonctionnement de la turbine, l'anneau en matériau céramique ne soit le siège de contraintes de traction ou de tension, susceptibles de détériorer sa cohésion et, en tout cas, de réduire sa durée de vie. On sait, en effet, que la plupart des matériaux céramiques résistent mal aux contraintes de traction ou de tension. La structure particulière de l'anneau de turbine selon la présente invention offre en outre l'avantage supplémentaire suivant : le diamètre intérieur de l'anneau abradable est ajusté à l'aide des moyens de réglage de la température du support annulaire, c'est-à-dire en faisant varier le débit de l'air de refroidissement correspondant et l'ajustage de l'intervalle entre l'anneau et les extrémités des pales du rotor correspondant de la turbine en est la conséquence. Cette possibilité avantageuse, qui résulte de la structure de l'anneau de turbine selon la présente invention, est particulièrement avantageuse, dans la mesure où elle permet d'adapter l'intervalle mentionné au régime instantané de fonctionnement de la turbine ; on sait en effet que l'intervalle mentionné doit avantageusement présenter des valeurs différentes aux différents régimes, permanent ou transitoires, de la turbine.
  • La demande de brevet britannique antérieure, publiée sous le N° 2 047 354, décrit certes un anneau de turbine dont le diamètre intérieur, et par suite son intervalle avec les extrémités des pales du rotor correspondant, peuvent être ajustés par des moyens de réglage de la température de cet anneau, comportant une circulation intérieure, et éventuellement aussi extérieure, d'air de refroidissement. Cet anneau de turbine, antérieurement connu, doit présenter pour cela une structure interne très complexe. La circulation intérieure d'air y est établie grâce à des conduits radiaux, qui traversent le carter de la turbine, et sur les extrémités intérieures desquels l'ensemble de l'anneau est monté de façon à pouvoir coulisser radialement lorsque ledit anneau se dilate ou se contracte. En raison de sa complexité, cette réalisation antérieure s'écarte considérablement de l'anneau de turbine selon la présente invention.
  • Dans une forme de réalisation préférée de l'anneau de turbine selon la présente invention, la compression axipète est transmise par le support annulaire à l'anneau abradable, par l'intermédiaire d'éléments à faible conduction thermique, à section transversale réduite ; ces éléments sont constitués par des saillies radiales de l'une des surfaces, tournées l'une vers l'autre, du support annulaire et de l'anneau abradable. Ces dispositions ont évidemment pour résultat de réduire encore le gradient de température entre les surfaces intérieure et extérieure de l'anneau abradable, en réduisant considérablement les échanges thermiques entre sa surface extérieure et la surface intérieure, tournée vers elle, du support annulaire. Ceci diminue encore les contraintes d'origine thermique à l'intérieur de l'anneau abradable.
  • Selon une autre caractéristique, facultative, mais avantageuse, de l'anneau de turbine selon la présente invention, son support annulaire peut être encastré à frottement doux entre deux brides radiales, fixées à la paroi interne du carter de la turbine, et des moyens, comportant des pions coopérant avec des glissières, sont prévus pour immobiliser axialement et en rotation, et pour guider radialement ledit support annulaire en maintenant son centrage, lorsque le support annulaire se dilate ou se contracte. Cette disposition est particulièrement avantageuse dans la mesure où elle permet de faire varier le diamètre intérieur de l'anneau abradable, et, par suite, son intervalle avec les extrémités des pales du rotor, entre de larges limites, par exemple en faisant varier le débit de l'air de refroidissement, sans que la position géométrique de l'anneau, par rapport au rotor correspondant, cesse d'être définie avec la précision nécessaire pour maintenir coaxiaux ledit anneau et ledit rotor.
  • A titre d'exemple, on a décrit ci-dessous et illustré schématiquement aux dessins annexés une forme de réalisation d'un anneau de turbine selon la présente invention, pour une turbomachine à gaz ainsi qu'une variante s'appliquant à cette forme de réalisation :
    • - la figure 1 est une vue partielle, en coupe par un demi-plan axial, du carter d'une turbine, muni d'un anneau selon la présente invention,
    • - la figure 2 est une vue analogue à la figure 1 selon laquelle l'anneau comporte une variante.
  • Sur la figure 1, on a désigné par 1 une partie du carter d'une turbine à gaz, et par 2A et 2B, deux brides radiales, qui sont fixées à la paroi interne du carter 1 par tous moyens appropriés, par exemple par des boulons 3A et 3B. Entre les brides 2A et 2B est monté un anneau de turbine 1a. 4 désigne l'extrémité d'une pale d'un rotor de la turbine à gaz considérée, dont les autres éléments n'ont pas été illustrés. Ce rotor est entouré par un anneau d'une seule pièce, 5, qui est constituée en un matériau céramique, abradable, qui doit être choisi de la façon suivante : il doit résister à des températures au moins égales à 1 000 °C et présenter des coefficients de conduction et de dilatation, inférieurs à ceux des matériaux constituant les autres parties de la turbine ; il doit présenter en outre une bonne résistance à l'érosion sous l'action des gaz à température élevée et être abradable. On connaît différents types de matériaux céramiques abrada- bles qui satisfont à ces exigences, et qui peuvent être utilisés pour constituer l'anneau 5 selon la présente invention.
  • Dans cette forme de réalisation, la surface extérieure, cylindrique, de l'anneau abradable 5, est lisse, et elle est en contact direct avec la surface intérieure d'un support annulaire métallique 6, qui peut être constitué par exemple par deux pièces annulaires, 6a et 6b. Dans cette forme de réalisation, la partie intérieure, 6b, du support annulaire 6, est en contact avec la surface extérieure cylindrique, 5a, de l'anneau abradable 5, non pas par une surface cylindrique, mais par des sortes de picots 6c, dont la somme des sections transversales - perpendiculaires au plan axial de la figure - est notablement inférieure à l'aire de la surface extérieure 5a de l'anneau abradable 5. Ces picots 6c, qui forment des saillies radiales sur la surface intérieure du support métallique 6, tournée vers la surface extérieure 5a de l'anneau abradable 5, constituent des éléments à faible conduction thermique, réduisant les échanges thermiques entre les composants 5 et 6.
  • Selon la présente invention, le support annulaire 6 présente, à froid, un diamètre intérieur un peu inférieur au diamètre extérieur de l'anneau abradable 5, et il doit être préalablement chauffé pour pouvoir être enfilé par dessus l'anneau abradable 5, resté froid ; en se refroidissant, le support annulaire 6 exerce une compression axipète sur l'anneau abradable 5, à la façon d'une frette. L'ensemble est dimensionné initialement en tenant compte des températures auxquelles les pièces 5 et 6 sont portées aux différents régimes, permanent et transitoires, de la turbine à gaz, de telle sorte que le frettage de l'anneau 5 par le support annulaire 6, subsiste à tous les régimes de fonctionnement de ladite turbine, c'est-à-dire que, aussi bien en régime permanent qu'aux différents régimes transitoires, le support annulaire 6 ne cesse pas d'exercer une compression axipète sur l'anneau abradable 5. Ceci évite que le matériau céramique constituant l'anneau abradable 5 ne soit soumis, au moins dans certaines conditions de fonctionnement de la turbine, à des contraintes de traction ou de tension, susceptibles d'affecter la cohésion de ce matériau céramique, et de réduire la durée de vie de l'anneau 5.
  • Selon la présente invention, on a prévu seulement des moyens de réglage de la température du support annulaire, métallique, 6, notamment, dans la réalisation considérée, sous la forme d'un circuit d'air de refroidissement, constitué de la façon suivante : une chambre annulaire de distribution, 7, est délimitée par le carter 1 de la turbine et par les parois d'un canal annulaire 6d, aménagé dans le support annulaire 6, de façon à s'ouvrir sur sa surface extérieure ; de l'air de refroidissement, amené du compresseur - non représenté - de la turbine par des moyens connus, également non représentés, pénètre dans la chambre de distribution 7 par une ouverture 8 du carter 1. A peu près parallèlement à la surface intérieure du support annulaire 6, sont disposées, à l'intérieur de celui-ci, des cavités, 9a, 9b, qui communiquent entre elles par un conduit 10, et qui sont alimentées en air de refroidissement, à partir de la chambre de distribution 7, par des canaux 11, à section fermée, aménagés dans le support annulaire 6. Pour faciliter la fabrication de ce dernier. celui-ci peut être formé, comme on l'a déjà indiqué, par deux éléments annulaires, 6a et 6b, dont la surface cylindrique de raccordement passe par les cavités 9a, 9b et par le canal 10 ; c'est donc dans la partie la plus intérieure, 6B, que sont aménagés les picots 6c, ainsi qu'au moins un ergot 6e, qui vient s'engager dans une entaille de forme complémentaire de l'un des bords de l'anneau abradable 5, pour immobiliser les deux pièces 5 et 6 en rotation l'une par rapport à l'autre. L'air de refroidissement, qui a traversé les cavités 9a et 9b, s'échappe ensuite par des conduits d'évacuation 12, une chambre annulaire collectrice 13 et une ouverture 14 du carter 1, pour être renvoyé dans le flux secondaire de la turbine, ou réutilisé pour d'autres ventilations (par exemple distributeur BP).
  • Par ailleurs, le support annulaire 6 est encastré à frottement doux entre les deux brides radiales 2A et 2B, qui sont fixées à la paroi interne du carter 1 de la turbine. Dans la forme de réalisation illustrée, au moins trois glissières 15 sont aménagées dans la bride 2A pour guider radialement chacune un pion 16, fixé à la surface frontale correspondante du support annulaire 6 ; de même, au moins trois glissières 17 sont aménagées dans la partie gauche du support annulaire 6, et un pion 18, de diamètre correspondant, est fixé à la surface correspondante de la bride 2B et engagé dans chaque glissière. Grâce à ces dispositions, les déplacements du support annulaire 6, et de l'anneau abradable 5, par rapport aux brides 2A et 2B, qui sont dus aux dilatations ou aux contractions des pièces 5 et 6, sont guidés radialement par la coopération des pions tels que 16 et 18, avec les glissières telles que 15 et 17, de façon à maintenir les anneaux 5 et 6 exactement coaxiaux au rotor correspondant de la turbine ; ceci est indispensable pour que l'intervalle e entre la surface intérieure, cylindrique, de l'anneau abradable 5, d'une part, et la surface cylindrique balayée par les extrémités des pales 4 du rotor de la turbine, d'autre part, présente la même largeur, appropriée, en tous les points, aussi bien dans la direction axiale que dans la direction périphérique. La coopération des pions tels que 16 et 18, avec des glissières telles que 15 et 17, assure en outre l'immobilisation en rotation des anneaux 5 et 6 par rapport au carter 1, tandis. que les brides radiales 2A et 2B assurent leur immobilisation dans la direction axiale.
  • Un joint annulaire 19 est monté dans un logement annulaire de la bride 2A, pour assurer l'étanchéité entre celle-ci et la face correspondante du support annulaire 6, malgré les déplacements relatifs de ces deux éléments dans la direction radiale. Un autre joint annulaire, 20, assure l'étanchéité entre la chambre de distribution de l'air de refroidissement 7, et la chambre collectrice 13 ; ce joint 20 est logé dans une rainure annulaire d'une saillie radiale 21, aménagée sur la face interne du carter 1, en regard d'une saillie radiale, 6f, qui forme l'une des parois latérales du canal 6d.
  • Lors du fonctionnement de la turbine, la surface intérieure de l'anneau abradable 5, tournée vers les extrémités de pales 4 du rotor, est portée par exemple à une température de l'ordre de 1200°C; comme aucun moyen de refroidissement de l'anneau abradable 5 n'est prévu selon la présente invention, sa surface extérieure 5a se trouve alors à une température voisine de 900 °C, si bien que ledit anneau abradable 5 n'est soumis qu'à un gradient thermique relativement faible, qui ne peut y engendrer que des contraintes thermiques insuffisantes pour nuire à la cohésion du matériau céramique qui le constitue. Par contre, il existe un gradient thermique très important entre les picots 6c du support annulaire 6 et le carter 1, mais les contraintes thermiques auxquelles il peut donner lieu sont facilement encaissées par le matériau métallique constituant ledit support annulaire 6, d'autant mieux que la masse de ce dernier est refroidie à coeur par l'air qui traverse les canaux 10 et 11 et les cavités 9a et 9b ; ces dernières peuvent être en particulier disposées de façon à former une sorte d'écran thermique entre la partie, 6b, du support annulaire 6, qui est la plus intérieure, donc la plus chaude, et sa partie la plus extérieure, 6a. D'autre part, en faisant varier le débit de l'air de refroidissement qui est envoyé à travers l'ouverture 8 du carter 1, il est possible de régler la température du support annulaire 6 sans modifier celle de l'anneau abradable 5. On peut ainsi faire varier le diamètre intérieur du support annulaire 6 et, par suite, la compression axipète de l'anneau abradable 5, et, donc, son diamètre intérieur et la largeur de l'intervalle e, pour l'adapter aux différents régimes de fonctionnement de la turbine, comme on l'a déjà indiqué précédemment. Pour obtenir une forte amplitude des variations possibles du diamètre intérieur du support annulaire 6, et par suite de l'intervalle e, il est opportun de constituer ledit support annulaire 6 avec un matériau métallique présentant un coefficient de dilatation compris par exemple entre 10 et 20.1"OC-1. Par contre, on peut utiliser, pour constituer l'anneau abradable 5, un matériau céramique présentant un coefficient de dilatation relativement faible et/ou un temps de réponse aux transitoires thermiques, très supérieur à celui du matériau métallique constituant le support annulaire 6.
  • La présente invention n'est pas limitée à la forme de réalisation précédemment décrite.
  • Les moyens pour guider axialement les déplacements radiaux du support annulaire 6, dus à ses dilatations ou à ses contractions, sont susceptibles de diverses réalisations, différentes de celle précédemment décrite. La constitution du circuit de refroidissement du support annulaire est matière à option. Le nombre et la disposition des cavités telles que 9a et 9b peuvent varier ; elles sont cependant aménagées de préférence de façon à constituer un ou plusieurs barrages thermiques au voisinage de la surface intérieure du support annulaire 6. Les picots 6c pourraient se trouver au contact de picots analogues, aménagés dans la surface extérieure de l'anneau abradable 5 ; d'autres moyens pourraient être utilisés pour réduire la conduction thermique entre les pièces 5 et 6, par exemple l'interposition d'isolants thermiques. Les picots tels que 6c pourraient eux-mêmes recevoir une protection thermique extérieure, par exemple sous la forme d'une projection de zirconate de magnésium. Selon une autre variante, une ventilation est prévue sur l'interface métal/céramique dans le cas où sa température dépasserait la limite admissible pour le matériau de la frette. Un mode de réalisation de cet aménagement est représenté sur la figure 2 et dans ce cas on évite l'effet de poinçonnage de la céramique par les picots, tout en assurant une barrière thermique efficace. Une paroi conique 21 dont l'étanchéité avec l'anneau 1 a est assurée au moyen d'un joint 22 est disposée en amont dudit anneau 1a et canalise un air de ventilation. La partie radialement interne de la partie intérieure 6b du support annulaire 6 comporte une série de rainures circulaires 23 constituant des cavités annulaires disposées axialement et fermées sur leur diamètre interne par une couronne 24 de faible épaisseur rapportée par exemple par brasage sur le support annulaire 6. Les rainures 23 communiquent par des fraisages axiaux 25. Le support annulaire 6 comporte sur sa face latérale amont une série de perçages 26 par lesquels est amené l'air de ventilation dans le circuit des rainures 23. A l'interface entre le support annulaire 6 et l'anneau 5 un passage 27 est ménagé du côté aval pour l'évacuation de l'air ayant circulé dans les rainures 23.
  • Les moyens de réglage de la température du support annulaire métallique 6, au lieu de comporter un circuit d'air de refroidissement, pourraient par exemple comporter un circuit de liquide de refroidissement, ce liquide subissant ou non un changement d'état dans la zone à refroidir.

Claims (6)

1. Anneau de turbine pour une turbomachine à gaz, comportant un support annulaire (6) monté à l'intérieur du carter (1) de la turbine, un anneau d'une seule pièce (5), en un matériau céramique abradable, monté à l'intérieur dudit support annulaire (6), et dimensionné de manière que ce dernier (6) applique audit anneau (5), tout au moins à froid, une compression axipète, ainsi que des moyens de réglage de la température des composants de l'anneau de turbine, caractérisé en ce que le diamètre intérieur dudit anneau de turbine (1a) est ajusté à l'aide des moyens de réglage de la température uniquement du support annulaire (6) qui est métallique de manière que ledit support annulaire (6) exerce une compression axipète appropriée sur l'anneau abradable (5) à tous les régimes de fonctionnement, compte tenu de la température des pièces, à partir du montage initial en précontrainte dudit anneau (5) sur le support annulaire (6).
2. Anneau de turbine selon la revendication 1 dans lequel lesdits moyens de réglage de la température comportent une circulation d'air de refroidissement, en provenance du compresseur de la turbomachine.
3. Anneau de turbine selon l'une des revendications 1 ou 2, caractérisé en ce que la compression axipète est transmise par le support annulaire (6) à l'anneau abradable (5) par l'intermédiaire d'éléments à faible conduction thermique, à section transversale réduite, ces éléments étant constitués par des saillies radiales (6c) de l'une des surfaces, tournées l'une vers l'autre, du support annulaire (6) et de l'anneau abradable (5).
4. Anneau de turbine selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'un circuit pour l'air de refroidissement est prévu seulement dans le support annulaire (6), ce circuit comprenant une chambre annulaire de distribution (7), délimitée par le carter (1) de la turbine et par un canal annulaire (6d), formé dans le support annulaire (6) et s'ouvrant dans sa surface extérieure, des cavités (9a, 9b) aménagées dans le support annulaire (6) près de sa surface intérieure, des perçages (11) faisant communiquer lesdites cavités (9a, 9b) avec ladite chambre de distribution (7), et au moins un conduit (12) adapté pour évacuer l'air desdites cavités (9a, 9b).
5. Anneau de turbine selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le support annulaire (6) est encastré à frottement doux entre deux brides radiales (2A, 2B), fixées à la paroi interne du carter (1) de la turbine, et que des moyens, comportant des pions (16,18) coopérant avec des glissières (15, 17), sont prévus pour immobiliser axialement et en rotation, et/ou guider radialement ledit support annulaire (6) en maintenant son centrage, lorsque le support annulaire (6) se dilate ou se contracte.
6. Anneau de turbine selon l'une des revendications 1 ou 2 caractérisé en ce que le support annulaire (6) comporte le long de son interface avec l'anneau abradable (5) des cavités annulaires axialement réparties, constituées par des rainures circulaires (23) communiquant par des fraisages axiaux (25) et fermées sur leur diamètre interne par une couronne rapportée (24) de faible épaisseur, des perçages (26) pratiqués dans la partie amont du support annulaire (6) et débouchant latéralement amenant l'air de ventilation dans les rainures (23) et un passage (27) étant aménagé en aval pour son évacuation.
EP85402243A 1984-11-22 1985-11-20 Anneau de turbine pour une turbomachine à gaz Expired EP0182716B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8417775 1984-11-22
FR8417775A FR2574473B1 (fr) 1984-11-22 1984-11-22 Anneau de turbine pour une turbomachine a gaz

Publications (2)

Publication Number Publication Date
EP0182716A1 EP0182716A1 (fr) 1986-05-28
EP0182716B1 true EP0182716B1 (fr) 1988-07-27

Family

ID=9309828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402243A Expired EP0182716B1 (fr) 1984-11-22 1985-11-20 Anneau de turbine pour une turbomachine à gaz

Country Status (5)

Country Link
US (1) US4679981A (fr)
EP (1) EP0182716B1 (fr)
JP (1) JPS61135905A (fr)
DE (1) DE3564006D1 (fr)
FR (1) FR2574473B1 (fr)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601402A (en) * 1986-06-06 1997-02-11 The United States Of America As Represented By The Secretary Of The Air Force Turbo machine shroud-to-rotor blade dynamic clearance control
US4826397A (en) * 1988-06-29 1989-05-02 United Technologies Corporation Stator assembly for a gas turbine engine
DE3830762C2 (de) * 1988-09-09 1994-08-18 Mtu Muenchen Gmbh Einrichtung zur Halterung eines Mantelringes in Gasturbinen
GB8921003D0 (en) * 1989-09-15 1989-11-01 Rolls Royce Plc Improvements in or relating to shroud rings
US5080557A (en) * 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly
US5607284A (en) * 1994-12-29 1997-03-04 United Technologies Corporation Baffled passage casing treatment for compressor blades
US5474417A (en) * 1994-12-29 1995-12-12 United Technologies Corporation Cast casing treatment for compressor blades
US5639210A (en) * 1995-10-23 1997-06-17 United Technologies Corporation Rotor blade outer tip seal apparatus
US6368054B1 (en) 1999-12-14 2002-04-09 Pratt & Whitney Canada Corp. Split ring for tip clearance control
US6365222B1 (en) 2000-10-27 2002-04-02 Siemens Westinghouse Power Corporation Abradable coating applied with cold spray technique
US6435824B1 (en) * 2000-11-08 2002-08-20 General Electric Co. Gas turbine stationary shroud made of a ceramic foam material, and its preparation
GB0029337D0 (en) * 2000-12-01 2001-01-17 Rolls Royce Plc A seal segment for a turbine
US6877952B2 (en) * 2002-09-09 2005-04-12 Florida Turbine Technologies, Inc Passive clearance control
US6758653B2 (en) 2002-09-09 2004-07-06 Siemens Westinghouse Power Corporation Ceramic matrix composite component for a gas turbine engine
US6925814B2 (en) * 2003-04-30 2005-08-09 Pratt & Whitney Canada Corp. Hybrid turbine tip clearance control system
FR2857406B1 (fr) * 2003-07-10 2005-09-30 Snecma Moteurs Refroidissement des anneaux de turbine
US6905302B2 (en) * 2003-09-17 2005-06-14 General Electric Company Network cooled coated wall
US7025565B2 (en) 2004-01-14 2006-04-11 General Electric Company Gas turbine engine component having bypass circuit
DE102005013797A1 (de) * 2005-03-24 2006-09-28 Alstom Technology Ltd. Wärmestausegment
DE102005013796A1 (de) * 2005-03-24 2006-09-28 Alstom Technology Ltd. Wärmestausegment
US7513040B2 (en) * 2005-08-31 2009-04-07 United Technologies Corporation Manufacturable and inspectable cooling microcircuits for blade-outer-air-seals
US20070249823A1 (en) * 2006-04-20 2007-10-25 Chemagis Ltd. Process for preparing gemcitabine and associated intermediates
US7722314B2 (en) * 2006-06-22 2010-05-25 General Electric Company Methods and systems for assembling a turbine
US20080025838A1 (en) * 2006-07-25 2008-01-31 Siemens Power Generation, Inc. Ring seal for a turbine engine
US7665960B2 (en) * 2006-08-10 2010-02-23 United Technologies Corporation Turbine shroud thermal distortion control
US7771160B2 (en) * 2006-08-10 2010-08-10 United Technologies Corporation Ceramic shroud assembly
US7670108B2 (en) * 2006-11-21 2010-03-02 Siemens Energy, Inc. Air seal unit adapted to be positioned adjacent blade structure in a gas turbine
US7597533B1 (en) 2007-01-26 2009-10-06 Florida Turbine Technologies, Inc. BOAS with multi-metering diffusion cooling
US7665962B1 (en) 2007-01-26 2010-02-23 Florida Turbine Technologies, Inc. Segmented ring for an industrial gas turbine
GB0703827D0 (en) * 2007-02-28 2007-04-11 Rolls Royce Plc Rotor seal segment
US7704039B1 (en) 2007-03-21 2010-04-27 Florida Turbine Technologies, Inc. BOAS with multiple trenched film cooling slots
US8167546B2 (en) * 2009-09-01 2012-05-01 United Technologies Corporation Ceramic turbine shroud support
US8684662B2 (en) 2010-09-03 2014-04-01 Siemens Energy, Inc. Ring segment with impingement and convective cooling
US8727704B2 (en) 2010-09-07 2014-05-20 Siemens Energy, Inc. Ring segment with serpentine cooling passages
US9151179B2 (en) * 2011-04-13 2015-10-06 General Electric Company Turbine shroud segment cooling system and method
US20130004306A1 (en) * 2011-06-30 2013-01-03 General Electric Company Chordal mounting arrangement for low-ductility turbine shroud
US20130028704A1 (en) * 2011-07-26 2013-01-31 Thibodeau Anne-Marie B Blade outer air seal with passage joined cavities
US9080458B2 (en) 2011-08-23 2015-07-14 United Technologies Corporation Blade outer air seal with multi impingement plate assembly
US9017012B2 (en) 2011-10-26 2015-04-28 Siemens Energy, Inc. Ring segment with cooling fluid supply trench
US9169739B2 (en) 2012-01-04 2015-10-27 United Technologies Corporation Hybrid blade outer air seal for gas turbine engine
US9011078B2 (en) * 2012-01-09 2015-04-21 General Electric Company Turbine vane seal carrier with slots for cooling and assembly
RU2615292C2 (ru) * 2012-01-26 2017-04-04 АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД Деталь статора с сегментированным внутренним кольцом для турбомашины
US9587504B2 (en) 2012-11-13 2017-03-07 United Technologies Corporation Carrier interlock
WO2014120334A1 (fr) * 2013-01-29 2014-08-07 Sippel Aaron D Enveloppe de turbine
US9828872B2 (en) * 2013-02-07 2017-11-28 General Electric Company Cooling structure for turbomachine
WO2014163673A2 (fr) 2013-03-11 2014-10-09 Bronwyn Power Géométrie de voie d'écoulement de turbine à gaz
WO2014143230A1 (fr) 2013-03-13 2014-09-18 Landwehr Sean E Enveloppe de turbine
WO2014189557A2 (fr) * 2013-04-12 2014-11-27 United Technologies Corporation Joint annulaire pour système de réduction des jeux à réponse rapide de moteur à turbine à gaz à joint étanche à l'air extérieur
US8814507B1 (en) 2013-05-28 2014-08-26 Siemens Energy, Inc. Cooling system for three hook ring segment
GB201309580D0 (en) * 2013-05-29 2013-07-10 Siemens Ag Rotor tip clearance
WO2015038906A1 (fr) 2013-09-12 2015-03-19 United Technologies Corporation Système de réglage de garde en extrémité des aubes comprenant un support de joint d'aube externe étanche à l'air (boas)
ITFI20130237A1 (it) * 2013-10-14 2015-04-15 Nuovo Pignone Srl "sealing clearance control in turbomachines"
US10190434B2 (en) 2014-10-29 2019-01-29 Rolls-Royce North American Technologies Inc. Turbine shroud with locating inserts
CA2915370A1 (fr) 2014-12-23 2016-06-23 Rolls-Royce Corporation Chemin de pale circulaire comportant des elements clavetes axialement
CA2915246A1 (fr) 2014-12-23 2016-06-23 Rolls-Royce Corporation Enveloppe de turbine
EP3045674B1 (fr) 2015-01-15 2018-11-21 Rolls-Royce Corporation Enveloppe de turbine avec inserts tubulaires de localisation de patins
US9718735B2 (en) 2015-02-03 2017-08-01 General Electric Company CMC turbine components and methods of forming CMC turbine components
US10221715B2 (en) * 2015-03-03 2019-03-05 Rolls-Royce North American Technologies Inc. Turbine shroud with axially separated pressure compartments
CA2925588A1 (fr) 2015-04-29 2016-10-29 Rolls-Royce Corporation Sillage de pale brase destine a une turbine a gaz
CA2924866A1 (fr) 2015-04-29 2016-10-29 Daniel K. Vetters Sillage de pale a distorsion trapezoidale en composite
EP3121387B1 (fr) * 2015-07-24 2018-12-26 Rolls-Royce Corporation Moteur à turbine à gaz avec un segment de joint
US10107128B2 (en) 2015-08-20 2018-10-23 United Technologies Corporation Cooling channels for gas turbine engine component
US10197069B2 (en) * 2015-11-20 2019-02-05 United Technologies Corporation Outer airseal for gas turbine engine
US10443426B2 (en) * 2015-12-17 2019-10-15 United Technologies Corporation Blade outer air seal with integrated air shield
US10100667B2 (en) * 2016-01-15 2018-10-16 United Technologies Corporation Axial flowing cooling passages for gas turbine engine components
US10240476B2 (en) 2016-01-19 2019-03-26 Rolls-Royce North American Technologies Inc. Full hoop blade track with interstage cooling air
PL416036A1 (pl) 2016-02-04 2017-08-16 General Electric Company Zespół złącza kołnierzowego do użycia w silniku turbospalinowym
US10415415B2 (en) 2016-07-22 2019-09-17 Rolls-Royce North American Technologies Inc. Turbine shroud with forward case and full hoop blade track
US10287906B2 (en) 2016-05-24 2019-05-14 Rolls-Royce North American Technologies Inc. Turbine shroud with full hoop ceramic matrix composite blade track and seal system
EP3351735B1 (fr) * 2017-01-23 2023-10-18 MTU Aero Engines AG Élément de carter de turbomachine
US20180223681A1 (en) * 2017-02-09 2018-08-09 General Electric Company Turbine engine shroud with near wall cooling
US10648362B2 (en) * 2017-02-24 2020-05-12 General Electric Company Spline for a turbine engine
US20180340437A1 (en) * 2017-02-24 2018-11-29 General Electric Company Spline for a turbine engine
EP3470631A1 (fr) * 2017-10-13 2019-04-17 Siemens Aktiengesellschaft Appareil d'écran thermique
US10968772B2 (en) * 2018-07-23 2021-04-06 Raytheon Technologies Corporation Attachment block for blade outer air seal providing convection cooling
US10961866B2 (en) 2018-07-23 2021-03-30 Raytheon Technologies Corporation Attachment block for blade outer air seal providing impingement cooling
US10982559B2 (en) * 2018-08-24 2021-04-20 General Electric Company Spline seal with cooling features for turbine engines
CN110145373B (zh) * 2019-05-10 2022-04-15 沈阳航空航天大学 一种非均匀的横纵槽涡轮外环结构
FR3096723B1 (fr) * 2019-05-29 2022-03-25 Safran Helicopter Engines Anneau d’etancheite pour une roue de turbine de turbomachine
FR3115315A1 (fr) * 2020-10-15 2022-04-22 Safran Aircraft Engines Fixation d’un abradable sur une virole externe de turbomachine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE756582A (fr) * 1969-10-02 1971-03-01 Gen Electric Ecran circulaire et support d'ecran avec dispositif de reglage de la temperature pour turbomachine
US3901622A (en) * 1973-05-31 1975-08-26 Gen Motors Corp Yieldable shroud support
GB1484288A (en) * 1975-12-03 1977-09-01 Rolls Royce Gas turbine engines
US4087199A (en) * 1976-11-22 1978-05-02 General Electric Company Ceramic turbine shroud assembly
US4177004A (en) * 1977-10-31 1979-12-04 General Electric Company Combined turbine shroud and vane support structure
FR2416345A1 (fr) * 1978-01-31 1979-08-31 Snecma Dispositif de refroidissement par impact des segments d'etancheite de turbine d'un turboreacteur
FR2438165A1 (fr) * 1978-10-06 1980-04-30 Snecma Dispositif de regulation de temperature pour turbines a gaz
US4280792A (en) * 1979-02-09 1981-07-28 Avco Corporation Air-cooled turbine rotor shroud with restraints
FR2467292A1 (fr) * 1979-10-09 1981-04-17 Snecma Dispositif de reglage du jeu entre les aubes mobiles et l'anneau de turbine
WO1982003657A1 (fr) * 1981-04-10 1982-10-28 Davis Warren W Anneau de commande d'expansion flottant
US4398866A (en) * 1981-06-24 1983-08-16 Avco Corporation Composite ceramic/metal cylinder for gas turbine engine
US4551064A (en) * 1982-03-05 1985-11-05 Rolls-Royce Limited Turbine shroud and turbine shroud assembly
GB2125111B (en) * 1982-03-23 1985-06-05 Rolls Royce Shroud assembly for a gas turbine engine
DE3302323A1 (de) * 1983-01-25 1984-01-12 Daimler-Benz Ag, 7000 Stuttgart Keramisches leitgitter einer gasturbine
FR2540939A1 (fr) * 1983-02-10 1984-08-17 Snecma Anneau d'etancheite pour un rotor de turbine d'une turbomachine et installation de turbomachine munie de tels anneaux

Also Published As

Publication number Publication date
US4679981A (en) 1987-07-14
JPS61135905A (ja) 1986-06-23
FR2574473A1 (fr) 1986-06-13
JPH0373723B2 (fr) 1991-11-22
DE3564006D1 (en) 1988-09-01
FR2574473B1 (fr) 1987-03-20
EP0182716A1 (fr) 1986-05-28

Similar Documents

Publication Publication Date Title
EP0182716B1 (fr) Anneau de turbine pour une turbomachine à gaz
EP3737837B1 (fr) Ensemble d'anneau de turbine
EP0192516B1 (fr) Anneau de turbine à gaz
CA3018664C (fr) Ensemble d'anneau de turbine sans jeu de montage a froid
EP0063993B1 (fr) Dispositif de palier, en particulier pour turbomachines
FR3056637A1 (fr) Ensemble d'anneau de turbine avec calage a froid
FR2560287A1 (fr) Tuyere de stator et moteur a turbine
FR2654372A1 (fr) Cylindre pour un dispositif de coulee continue sur un ou entre deux cylindres.
EP3274565B1 (fr) Ensemble d'anneau de turbine avec dispositif de maintien spécifique de secteurs d'anneau en materiau composite a matrice ceramique
EP3899208A2 (fr) Ensemble d'anneau de turbine
EP2071141B1 (fr) Étanchéité de fixation de support de palier dans une turbomachine
FR3109402A1 (fr) Turbine pour une turbomachine
FR3095668A1 (fr) Ensemble d’anneau de turbine monté sur entretoise
FR3073581B1 (fr) Dispositif de maintien d'un organe de prelevement d'air radial centripete
EP1621751A1 (fr) Tuyère convergente de turboréacteur
WO2019077265A1 (fr) Element de repartition d'un fluide de refroidissement et ensemble d'anneau de turbine associe
EP3535479A1 (fr) Dispositif de refroidissement pour une turbine d'une turbomachine
FR2559834A1 (fr) Anneau de turbine
WO2023099853A1 (fr) Bras de servitude pour un carter d'échappement d'une turbomachine
FR3104045A1 (fr) Molette de soudage.
WO2023131759A1 (fr) Turbine pour turbomachine
EP3853445A1 (fr) Etancheite d'une turbine
FR3131597A1 (fr) Turbine pour turbomachine
WO2006117454A1 (fr) Collecteur d'echappement
FR3106152A1 (fr) Ensemble d’anneau de turbine avec flasques indexés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19851219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19870715

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3564006

Country of ref document: DE

Date of ref document: 19880901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031020

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040130

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST