EP0181248B1 - Procédé de chauffage d'un liquide par combustion submergée et dispositif pour la mise en oeuvre du procédé - Google Patents

Procédé de chauffage d'un liquide par combustion submergée et dispositif pour la mise en oeuvre du procédé Download PDF

Info

Publication number
EP0181248B1
EP0181248B1 EP85401997A EP85401997A EP0181248B1 EP 0181248 B1 EP0181248 B1 EP 0181248B1 EP 85401997 A EP85401997 A EP 85401997A EP 85401997 A EP85401997 A EP 85401997A EP 0181248 B1 EP0181248 B1 EP 0181248B1
Authority
EP
European Patent Office
Prior art keywords
combustion
liquid
products
chamber
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401997A
Other languages
German (de)
English (en)
Other versions
EP0181248A1 (fr
Inventor
Bernard Lévèque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Priority to AT85401997T priority Critical patent/ATE47479T1/de
Publication of EP0181248A1 publication Critical patent/EP0181248A1/fr
Application granted granted Critical
Publication of EP0181248B1 publication Critical patent/EP0181248B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/107Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using fluid fuel

Definitions

  • the invention relates to a method for heating a liquid by submerged combustion, as well as a device for carrying out this method.
  • the heating of liquids by submerged combustion is generally limited in its applications to a bath temperature close to 60 ° C. Above this temperature, the thermal efficiency decreases rapidly and vanishes around 90 ° C. Indeed, towards this temperature, and assuming that the bath is at atmospheric pressure, we reach the dew point temperature of the combustion products, and all the heat produced by the combustion only serves to produce water vapor at this temperature. dew.
  • the object of the invention is to solve the problem of heating with a yield as good as desired of a fluid to be heated, using essentially and possibly exclusively equipment intended for submerged combustion, and in such a way that it is possible to achieve a temperature as high as desired of the fluid to be heated, for example, close to boiling in a non-pressurized bath.
  • the invention applies to the submerged combustion of any combustible, gaseous, pulverized, liquid or fluidized product, using in particular natural gas, liquefied petroleum gases, synthesis gases, petroleum oils, etc.
  • thermal and mass equilibrium i.e. the moment when the temperature of the products of combustion leaving the installation becomes substantially equal to the temperature of the bath and when the condensation of water from the fumes compensates the production of water vapor from the bath driven by the fumes
  • thermal and mass equilibrium i.e. the moment when the temperature of the products of combustion leaving the installation becomes substantially equal to the temperature of the bath and when the condensation of water from the fumes compensates the production of water vapor from the bath driven by the fumes
  • the submerged combustion burner is immersed in this chamber to a depth less than the minimum depth required to obtain the thermal equilibrium between the liquid to be heated and the products of combustion.
  • the invention is perfectly usable whatever the nature of the liquid to be heated and whatever the pressure prevailing in said first submerged combustion chamber, which can for example be substantially at atmospheric pressure.
  • the invention also relates to a device for implementing the above-mentioned method, of the type comprising, on the one hand, at least one first chamber containing a volume of liquid in which is placed a submerged combustion burner and other share, at least one heat exchanger-recuperator placed on the outlet circuit of the combustion products which leave this first chamber.
  • this document provides for using as a heat exchanger-recuperator, a tray that would be placed above the bath and under a washing tower, this tray being shaped so as to provide above it a volume of water collection falling from the tower and, beneath it, a volume of containment of fumes rising from the bath.
  • this exchanger-recuperator is essentially, as has been said, to recover the latent heat and the sensible heat of the fumes after they have circulated in the first chamber, the forecast such a tray did not appear to be suitable.
  • the device of the invention is therefore characterized in that, inside the first chamber, the immersion height of the burner in the liquid is lower to that required to substantially reach the thermal equilibrium of said liquid with the products of combustion and in that said heat exchanger comprises at least one chamber, called second chamber, containing a liquid in which the products of combustion bubble up before leaving the device.
  • FIGS. 1 to 4 schematically show four embodiments of an installation operating in accordance with 'invention.
  • the installation essentially comprises two tanks 1, 2, each containing a volume of a liquid respectively 3, 4, (for example water) to be heated.
  • a burner 5 of a type known per se In the volume of liquid 3 of the tank 1 is immersed a burner 5, of a type known per se, with submerged combustion, which is supplied for example with combustible gas at 6 and combustion air at 7 under suitable supply pressure.
  • the products of combustion leaving the burner escape through the volume of liquid 3 in the lower part of the tank 1 forming a submerged combustion chamber.
  • the height h1 of the path of the combustion products escaping from the burner 5 and passing through the liquid bath 3 is reduced, compared to that required to substantially reach the thermal equilibrium of said liquid with the products of the combustion.
  • This height can be for example from 200 to 300 mm.
  • the products of combustion escape in gaseous form as illustrated by small bubbles above the free surface 8 of the bath. They are then channeled through an upper wall 9 of the tank 1 and pass through a conduit 10 inside the tank 2 in the direction of a gas diffuser 11 placed towards the base of the tank 2, allowing the bubbling of the products combustion in the bath 4 of liquid contained in the tank 2 and the heat exchange between these combustion products and the liquid bath.
  • the height h 2 of diffusion of the products of combustion in the liquid bath 4 is this time preferably sufficient to allow thermal equilibrium to be reached between the products of combustion and the liquid bath 4. This height can be by example of the order of 500 to 800 mm.
  • the installation is advantageously completed, as illustrated, by a washing tower, known per se, 13 through which the products of the countercurrent combustion with a cold water circuit sprayed into the tower and supplied by a supply 14.
  • the hot water produced in the bath 3 can be drawn off at 15.
  • the liquid bath 3 can be supplied directly by the cold water circuit 14 by means of an adjustment valve 16 and / or by lukewarm water supplied by line 17 and the flow rate of which is regulated by a valve 18, lukewarm water withdrawn from the bath 4 of the tank 2. It is also possible to draw lukewarm water from the bath 4 as indicated in 19 by means of a valve adjustment 20.
  • the submerged combustion which is conducted in the chamber of the tank 1 containing the liquid bath 3 to be heated, is, as explained above, not carried out until the equilibrium conditions between the temperature of this bath and the products of combustion. It follows that in the channel 10 are admitted as a mixture of the combustion products at a still high temperature and the steam entrainments of the bath 3. By operating in this way, and provided that the combustion rate of the burner and the water withdrawal rate in bath 3, it is possible to raise the temperature of bath 3 to any desired temperature up to its boiling point.
  • the pressure prevailing above the surface 8 of the bath 3 is in the example envisaged, substantially equal to the atmospheric pressure increased by the gauge pressure of the column h2 necessary to allow the correct functioning of the diffuser 11 , near pressure losses in the installation, and in particular in the pipe 10 and in the washing tower 13 assumed to be open to the atmosphere.
  • the tank 2 functions normally as a preheating tank for supplying the tank 1.
  • the operation of the tanks 1 and 2 can be independent, and in this case the tank 1 operates as a source of production of a hot liquid and the tank 2 as a source of production of a warm liquid. In this way, it is not necessary for the nature of the liquids contained in the tanks 1 and 2 to be the same.
  • an installation comprising a tank 1 containing a bath 3 of liquid to be heated in which is immersed a submerged combustion burner 5 immersed of a reduced height h1 under the free surface 8 of the bath.
  • the installation also comprises at its outlet a tank 2 containing a bath 4 into which are admitted by a diffuser 11 the products of combustion escaping from the installation, the diffuser being placed at a sufficient depth below the surface 12 of this bath so that the thermal equilibrium between the products of combustion and the liquid of the bath 4 is substantially reached.
  • the products of combustion escape through a washing tower 13 through which cold water 14 is fed. of the installation.
  • the installation of FIG. 2 further comprises an intermediate tank 21 containing a bath of liquid 23 in which the products of combustion escaping through a bubbler 22 are bubbled.
  • the tank 1 above the surface 8 of the first bath.
  • the diffuser 22 is placed in the bath 23 at a height h3 below the surface 24 of this bath, which height h3 is reduced compared to that which would allow thermal equilibrium between the products of combustion and the liquid contained in it. bath.
  • the two successive chambers necessary for submerged combustion and for recovering heat from the products of combustion up to equilibrium temperature are placed in a single tank 31. from the second bedroom.
  • the tank 1 is separated by a wall 32, essentially in two compartments, respectively to the left and to the right of this partition in the drawing.
  • the compartment on the left 33 forms the submerged combustion chamber, and the compartment 34 on the right forms the compartment in which the bubbling of the products of combustion takes place until thermal equilibrium within the bath to be heated.
  • the combustion products released in the compartment 33 forming a submerged combustion chamber are channeled under an upper wall 35, forming a sort of bell 36 partially covering the compartment 33.
  • the gases channeled under this bell are brought to the diffuser 11 by a conduit 10 similarly to what has been illustrated in FIG. 1.
  • the hot water is drawn off as indicated in 15 in the bath 33 and the cold water is brought in 14 in the bath 4.
  • the supply of preheated water from bath 4 to bath 3 is advantageously made by a small passage forming a water seal 37 at the base of the partition 32.
  • a level difference H is established between the free surface 8 of the hot bath 3 and the free surface 12 of the warm bath.
  • the immersion height h of the diffuser 11 must be adjusted so as to provide the desired heat exchange between the products of combustion and the bath 4.
  • the installation may also include a washing tower on the outlet of the combustion products.
  • FIG. 4 differs from that of FIG. 3 only in that the compartments 33 and 34 are not formed in a single tank, but in two separate tanks. For the rest, the operation of the installation is identical and will not be described further. Note however that in this embodiment, there is independence of the baths 3 and 4 which may be of a different nature, and one can provide a direct supply of cold liquid 38 for the hot bath 3. In this case, the bath 4 used to produce a warm liquid drawn off in 38 '. Alternatively, a junction 39 can be provided between the baths 4 and 3, the bath 4 serving as a preheating bath.
  • the invention allows in a way to stratify, without mixing together, layers of liquid progressively traversed by the products of submerged combustion.
  • stratification and the material separation in several tanks or in chambers communicating by a narrow passage between them one is no longer limited to the equilibrium temperature between that of the bath and the dew temperature of the products of combustion to obtain a suitable yield; on the contrary, it is possible to greatly exceed this temperature while obtaining an overall improved operating efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Gas Separation By Absorption (AREA)
  • Details Of Fluid Heaters (AREA)

Description

  • L'invention concerne un procédé pour le chauffage d'un liquide par combustion submergée, ainsi qu'un dispositif pour la mise en oeuvre de ce procédé.
  • Le chauffage des liquides par combustion submergée est généralement limité dans ses applications à une température de bain voisine de 60°C. Au-delà de cette température, le rendement thermique diminue rapidement pour s'annuler vers 90°C. En effet, vers cette température, et en supposant que le bain est à pression atmosphérique, on atteint la température de rosée des produits de la combustion, et toute la chaleur produite par la combustion ne sert plus qu'à produire de la vapeur d'eau à cette température de rosée.
  • Pour éviter ces difficultés et produire avec des rendements acceptables des températures d'eau supérieures à 60°C en utilisant, cependant, des dispositifs de chauffage à combustion submergée, on a proposé déjà dans la technique divers artifices.
  • Ainsi, selon le Brevet Français 6941279 du 28 Novembre 1969 (n° de publication 2068173), le Demandeur a décrit une installation dans laquelle la combustion submergée s'effectue dans un bain maintenu sous une pression supérieure à la pression atmosphérique par exemple de l'ordre de 4 bars. Avec une telle mise sous pression de la chambre principale de l'installation, on peut effectivement obtenir des températures d'eau chaude voisines de 100°C avec un rendement tout à fait satisfaisant. Cependant le maintien sous pression du bain dans lequel s'effectue la combustion submergée pose divers problèmes de fabrication, de sécurité et de maintenance.
  • Dans le brevet d'invention 6941280 du 28 Novembre 1969 (n° de publication 2068174), le Demandeur a préconisé également une autre solution dans laquelle on associe au brûleur submergé un échangeur de chaleur formant corps de chaudière dans lequel circule l'eau à chauffer, la combustion submergée servant à chauffer un bain sous pression atmosphérique par exemple vers 60°C, un échangeur de chaleur par exemple du type à serpentin plongeant dans ce bain assurant le préchauffage de l'eau à chauffer avant son entrée dans le corps de chaudière. Là encore, les résultats sont satisfaisants, mais à l'évidence l'installation se complique, toutes choses égales par ailleurs, l'appareillage permettant la combustion submergée ne formant finalement qu'un appareil accessoire de l'installation.
  • L'invention a pour objet de résoudre le problème du chauffage avec un rendement aussi bon que désiré d'un fluide à chauffer, utilisant essentiellement et éventuellement exclusivement des appareillages destinés à la combustion submergée, et celà de telle façon que l'on peut atteindre une température aussi élevée que désiré du fluide à chauffer, par exemple, proche de l'ébulition en bain non pressurisé.
  • L'invention s'applique à la combustion submergée de tout produit combustible, gazeux, pulvérisé, liquide ou fluidisé, utilisant notamment du gaz naturel, des gaz de pétrole liquéfié, des gaz de synthèse, des huiles de pétrole, etc...
  • La mise en oeuvre de l'invention part des considérations suivantes.
  • Un liquide, dans les conditions de la combustion submergée, est chauffé par :
    • - le contact avec les parois mouillées du brûleur,
    • - les produits de la combustion (essentiellement des gaz) lors de leur montée jusqu'à la surface libre du liquide,
    • - la condensation de la vapeur d'eau des produits de la combustion (chaleur latente de vaporisation des fumées) si la température du bain est inférieure à la température de rosée des produits dé la combustion sous la pression considérée du bain.
  • En pratique, l'équilibre thermique et massique (c'est-à-dire le moment où la température des produits de la combustion quittant l'installation devient sensiblement égale à la température du bain et où la condensation d'eau provenant des fumées compense la production de vapeur d'eau du bain entraînée par les fumées) est sensiblement obtenu après une montée de 500 à 800 mm des produits de la combustion au sein du liquide.
  • Si l'on analyse le processus plus finement, on s'aperçoit que les produits de la combustion, qui sortent aux environs de 1000°C du brûleur chauffent d'abord le liquide, en même temps qu'ils évaporent une quantité d'eau importante. Dans cette première phase, l'énergie transmise à l'eau est pour une faible part convertie en chaleur sensible (autrement dit la température de l'eau ne s'élève que faiblement) et le complément en chaleur latente de vaporisation (on crée donc un maximum de vapeur d'eau). Dans cette phase, le rendement de chauffage du liquide est médiocre.
  • A partir du moment où les produits de combustion deviennent saturés en vapeur d'eau, ils commencent à chauffer le liquide par condensation (en abandonnant au sein du bain la chaleur latente de vaporisation de l'eau qui se condense) jusqu'à ce que l'équilibre thermique soit atteint (température de rosée) si la hauteur de liquide (correspondant au temps de mise en contact) est suffisante.
  • Conformément à l'invention, on prend bien soin d'éviter d'atteindre cet équilibre, au moins dans une première chambre de l'installation dans laquelle s'effectue la combustion submergée. En particulier, on plonge le brûleur à combustion submergée dans cette chambre sur une profondeur inférieure à la profondeur minimum requise pour obtenir l'équilibre thermique entre le liquide à chauffer et les produits de la combustion.
  • En d'autres termes, le procédé de chauffage d'un liquide par combustion submergée conforme à l'invention se caractérise en ce que:
    • - au sein d'un volume dudit liquide contenu dans une première chambre qui constitue une chambre de combustion subergée dans laquelle plonge le brûleur on réalise un échange thermique entre le liquide à chauffer et les produits de combustion tel que ledit liquide atteigne une température proche de sa température d'ébulltion, les produits de combustion quittant ce volume de liquide à une température encore nettement supérieure à leur température de rosée,
    • - puis on fait passer les produits de la combustion sortant de la première chambre de combustion submergée précitée, au sein d'au moins un second volume de liquide contenue dans une seconde chambre où on réalise alors un second échange thermique entre ces mêmes produits de combustion et ce second volume de liquide tel que les produits de combustion quittent ce volume à une température sensiblement égale à leur température de rosée. De cette façon, le bain de liquide maintenu dans la première chambre est chauffé par les parois du brûleur avec lequel il est en contact et par les produits gazeux de la combustion qui n'ont pas eu le temps de se refroidir jusqu'à la température de rosée. En conséquence, on peut atteindre dans cette chambre une température aussi élevée que désirée, et en particulier la température d'ébullition du bain.
  • Il y a lieu de noter à ce niveau de la description, que l'invention est parfaitement utilisable quelle que soit la nature du liquide à chauffer et quelle que soit la pression régnant dans ladite première chambre de combustion submergée, qui peut être par exemple sensiblement à la pression atmosphérique.
  • Bien entendu, dans de telles conditions, le rendement du chauffage ne serait pas très bons. C'est pourquoi, on fait passer ensuite les produits de la combustion sortant de la première chambre de combustion submergée précitée dans au moins le second volume de liquide contenu dans ladite seconde chambre. Ainsi on va pouvoir, dans cette seconde chambre, "épuiser" la chaleur sensible et la chaleur latente des produits gazeux (produits de la combustion et vapeur du liquide formé) par un simple barbotage de ces produits gazeux dans ladite seconde chambre qui pourra servir de chambre de préchauffage du liquide à chauffer et qui sera donc généralement à une température suffisamment basse, par exemple inférieure à 60°C, pour permettre d'obtenir un excellent rendement thermique global de l'installation.
  • L'invention concerne également un dispositif pour la mise en oeuvre du procédé sus-mentionné, du type comprenant, d'une part, au moins une première chambre contenant un volume de liquide dans lequel est placé un brûleur à combustion submergée et d'autre part, au moins un échangeur-récupérateur de chaleur placé sur le circuit de sortie des produits de la combustion qui quittent cette première chambre.
  • Un dispositif de ce type est décrit au document EP-A 0 118 363. Mais la disposition du brûleur au sein du volume de liquide y est telle que la plus grande partie de la vapeur d'eau contenue dans les fumées issues de ce brûleur se condense dans l'eau du bain auquel est cédé la chaleur latente de vaporisation des fumées, ce qui est contraire au procédé de l'invention où, dans la première chambre, on cherche justement à éviter, "d'épuiser" les fumées.
  • De plus, ce document prévoit d'utiliser en tant qu'échangeur-récupérateur de chaleur, un plateau que l'on disposerait au dessus du bain et sous une tour de lavage, ce plateau étant conformé de sorte à ménager au dessus de lui un volume de recueillement des eaux tombant de la tour et, sous lui, un volume de confinement des fumées s'élevant du bain.
  • Dans la mesure où, conformément à l'invention, le rôle de cet échangeur-récupérateur est essentiellement comme on l'a dit de récupérer la chaleur latente et la chaleur sensible des fumées après qu'elles aient circulé dans la première chambre, la prévision d'un tel plateau n'est pas apparu comme pouvant convenir.
  • A la différence de l'enseignement du document EP-A 0 118 363, le dispositif de l'invention se caractérise donc en ce que, à l'intérieur de la première chambre, la hauteur d'immersion du brûleur dans le liquide est inférieure à celle requise pour atteindre sensiblement l'équilibre thermique dudit liquide avec les produits de la combustion et en ce que ledit échangeur de chaleur comprend au moins une chambre, dite seconde chambre, contenant un liquide dans lequel barbotent les produits de la combustion avant de quitter le dispositif.
  • L'invention et s a mise en oeuvre appraîtront plus clairement à l'aide de la description qui va suivre faite en référence aux dessins annexés dans lesquels les figures 1 à 4 montrent de façon schématique quatre modes de réalisation d'une installation fonctionnant conformément à l'invention.
  • En se référant au mode de réalisation. illustré à la figure 1, l'installation comprend essentiellement deux cuves 1, 2, contenant chacune un volume d'un liquide respectivement 3, 4, (par exemple de l'eau) à chauffer.
  • Dans le volume de liquide 3 de la cuve 1 est plongé un brûleur 5, de type en soi connu, à combustion submergée, lequel est alimenté par exemple en gaz combustible en 6 et en air de combustion en 7 sous pression d'alimentation convenable. Les produits de la combustion sortant du brûleur s'échappent à travers le volume de liquide 3 dans la partie basse de la cuve 1 formant chambre de combustion submergée.
  • Conformément à l'invention, la hauteur h1 de parcours des produits de combustion s'échappant du brûleur 5 et traversant le bain de liquide 3 est réduite, par rapport à celle requise pour atteindre sensiblement l'équilibre thermique dudit liquide avec les produits de la combustion. Cette hauteur peut être par exemple de 200 à 300 mm.
  • Dans ces conditions, les produits de la combustion s'échappent sous forme gazeuse comme illustré par des petites bulles au-dessus de la surface libre 8 du bain. Ils sont alors canalisés par une paroi supérieure 9 de la cuve 1 et passent par un conduit 10 à l'intérieur de la cuve 2 en direction d'un diffuseur 11 de gaz placé vers la base de la cuve 2, permettant le barbotage des produits de la combustion dans le bain 4 de liquide contenu dans la cuve 2 et l'échange thermique entre ces produits de la combustion et le bain liquide. La hauteur h2 de diffusion des produits de la combustion dans le bain de liquide 4 est cette fois de préférence suffisante pour permettre d'atteindre l'équilibre thermique entre les produits de la combustion et le bain de liquide 4. Cette hauteur peut être par exemple de l'ordre de 500 à 800 mm.
  • L'installation est avantageusement complétée, comme illustré, par une tour de lavage,en soi connue, 13 par laquelle s'échappent les produits de la combustion à contre-courant avec un circuit d'eau froide pulvérisée dans la tour et amenée par une alimentation 14.
  • L'eau chaude produite dans le bain 3 peut être soutirèe en 15. Le bain liquide 3 peut être alimenté directement par le circuit d'eau froide 14 au moyen d'une vanne de réglage 16 et/ou par de l'eau tiède amenée par la canalisation 17 et dont le débit est réglé par une vanne 18, eau tiède soutirée dans le bain 4 de la cuve 2. On peut également soutirer de l'eau tiède dans le bain 4 comme indiqué en 19 au moyen d'une vanne de réglage 20.
  • L'installation fonctionne de la façon suivante.
  • Le combustion submergée qui est conduite dans la chambre de la cuve 1 contenant le bain de liquide 3 à chauffer, n'est, comme il a été expliqué précédemment, pas menée jusqu'aux conditions d'équilibre entre la température de ce bain et les produits de la combustion. Il en résulte que dans le canal 10 sont admis en mélange des produits de la combustion à température encore élevée et des entraînements de vapeur du bain 3. En opérant de cette façon, et à condition de régler convenablement le débit de combustion du brûleur et le débit de soutirage d'eau dans le bain 3, il est possible d'élever la température du bain 3 à n'importe quelle température désirée jusqu'à son point d'ébullition. A ce niveau on note que la pression régnant au-dessus de la surface 8 du bain 3 est dans l'exemple envisagé, sensiblement égale à la pression atmosphérique augmentée de la pression manométrique de la colonne h2 nécessaire à permettre le fonctionnement correct du diffuseur 11, aux pertes de charge près dans l'installation, et notamment dans la canalisation 10 et dans la tour de lavage 13 supposée ouverte à l'atmosphère.
  • La présence sur le circuit des produits gazeux s'échappant de la cuve 1 de l'installation à barbotage constituée par le diffuseur 11 plongé dans le bain 4, et de surcroît de la tour de lavage 13 à l'entrée de l'installation permet d'obtenir un très bon rendement global de l'installation, et notamment de récupérer sensiblement toute la chaleur sensible et la chaleur latente de condensation des fumées, si l'eau froide 14 est introduite dans l'installation à température suffisamment basse. Dans ces conditions, la cuve 2 fonctionne normalement comme cuve de préchauffage pour l'alimentation de la cuve 1.
  • Il y a cependant lieu de noter que le fonctionnement des cuves 1 et 2 peut être indépendant, et dans ce cas la cuve 1 fonctionne comme source de production d'un liquide chaud et la cuve 2 comme source de production d'un liquide tiède. De la sorte, il n'est pas nécessaire que la nature des liquides contenus dans les cuves 1 et 2 soit la même.
  • Selon la variante de réalisation illustrée à la figure 2, on retrouve une installation comportant une cuve 1 contenant un bain 3 de liquide à chauffer dans lequel est plongé un brûleur 5 à combustion submergée plongé d'une hauteur réduite h1 sous la surface libre 8 du bain. L'installation comprend également à sa sortie une cuve 2 contenant un bain 4 dans lequel sont admis par un diffuseur 11 les produits de la combustion s'échappant de l'installation, le diffuseur étant placé à une profondeur suffisante sous la surface 12 de ce bain de façon que soit atteint sensiblement l'équilibre thermique entre les produits de la combustion et le liquide du bain 4. Les produits de la combustion s'échappent par une tour de lavage 13 par laquelle est admise l'eau froide 14 d'alimentation de l'installation.
  • Par rapport à l'installation de la figure 1, l'installation de la figure 2 comprend, en outre, une cuve intermédiaire 21 contenant un bain de liquide 23 dans lequel viennent barboter par un diffuseur 22 les produits de la combustion s'échappant dans la cuve 1 au-dessus de la surface 8 du premier bain. Le diffuseur 22 est placé dans le bain 23 à une hauteur h3 en dessous de la surface 24 de ce bain, laquelle hauteur h3 est réduite par rapport à celle qui permettrait l'équilibre thermique entre les produits de la combustion et le liquide contenu dans ce bain.
  • De cette façon, il est possible d'atteindre dans le cuve 23 une température de chauffage de l'eau plus élevée que celle qui serait atteinte si le trajet d'échange h3 était plus important et permettait notamment d'atteindre l'équilibre entre le liquide du bain et les produits de la combustion s'échappant du bain.
  • Dans l'exemple illustré où les trois cuves 1, 21 et 2 sont montées en série, ou en cascade, il suffit de réunir les chambres successives par des canalisations 25, 26 et de prévoir des circulateurs 27, 28 pour assurer le maintien au niveau voulu dans les diverses chambres des surfaces des bains. En 29, 30 on peut en outre opérer des soutirages d'eau tiède à températures croissantes t1, t2.
  • Selon le mode de réalisation illustré à la figure 3, on place dans une seule et même cuve 31 les deux chambres successives nécessaires à la combustion submergée et à la récupération de la chaleur sur les produits de la combustion jusqu'à la température d'équilibre de la deuxième chambre.
  • De façon plus précise, la cuve 1 est séparée par une paroi 32, essentiellement en deux compartiments, respectivement à gauche et à droite de cette cloison sur le dessin. Le compartiment à gauche 33 forme la chambre de combustion submergée, et le compartiment 34 à droite forme le compartiment dans lequel s'effectue le barbotage des produits de la combustion jusqu'à équilibre thermique au sein du bain à chauffer.
  • Les produits de la combustion libérés dans le compartiment 33 formant chambre de combustion submergée sont canalisés sous une paroi supérieure 35, formant une sorte de cloche 36 coiffant en partie le compartiment 33. Les gaz canalisés sous cette cloche sont amenés au diffuseur 11 par un conduit 10 de façon semblable à ce qui a été illustré à la figure 1.
  • L'eau chaude est soutirée comme indiqué en 15 dans le bain 33 et l'eau froide est amenée en 14 dans le bain 4.
  • L'alimentation en eau préchauffée du bain 4 au bain 3 se fait avantageusement par un petit passage formant joint d'eau 37 à la base de la cloison 32.
  • En fonctionnement, il s'établit une différence de niveau H entre la surface libre 8 du bain 3 chaud et la surface libre 12 du bain tiède. La hauteur h d'immersion du diffuseur 11 doit être réglée de façon à permettre d'obtenir l'échange thermique désiré entre les produits de la combustion et le bain 4.
  • L'installation peut comporter en outre une tour de lavage sur la sortie des produits de la combustion.
  • Le mode de réalisation de la figure 4 ne diffère de celui de la figure 3 qu'en ce que les compartiments 33 et 34 ne sont pas formés dans une seule et même cuve, mais dans deux cuves séparées. Pour le reste, le fonctionnement de l'installation est identique et ne sera pas davantage décrit. On note cependant que dans cette réalisation, il y a indépendance des bains 3 et 4 qui peuvent être de nature différente, et l'on peut prévoir une alimentation directe de liquide froid 38 pour le bain chaud 3. Dans ce cas, le bain 4 sert à produire un liquide tiède soutiré en 38'. En variante, on peut prévoir une jonction 39 entre les bains 4 et 3, le bain 4 servant de bain de préchauffage.
  • De la description qui précède, il apparaît que l'invention et sa mise en oeuvre sont très souples d'emploi, permettant de préparer, à partir d'une seule opération de combustion submergée et de simples opérations de barbotage , divers bains liquides à des températures allant en décroissant, la température du premier bain pouvant atteindre celle de l'ébullition dans les conditions de pression de ce bain. En outre, bien qu'il semble qu'en pratique il sera avantageux d'utiliser à la suite de la chambre à combustion submergée une chambre à barbotage , et une tour de lavage, d'autres moyens d'échanges peuvent éventuellement être utilisés pour récupérer la chaleur sensible et la chaleur latente des produits de combustion s'échappant de la première chambre de combustion submergée dans laquelle on a réduit les échanges de façon que l'équilibre thermique entre le liquide présent dans cette chambre et les produits de la combustion ne soit pas atteint. En bref, l'invention permet en quelque sorte de stratifier, sans brassage entre-elles,des couches de liquide progressivement traversées par les produits d'une combustion submergée. Par cette stratification et la séparation matérielle en plusieurs cuves ou en chambres communiquant par un étroit passage entre- elles, on n'est plus limité à la température d'équilibre entre celle du bain et la température de rosée des produits de la combustion pour obtenir un rendement convenable ; au contraire, on peut très largement dépasser cette température tout en obtenant un rendement global de fonctionnement amélioré.
  • En outre, il est possible de chauffer des bains de nature différente ne communiquant pas obligatoirement entre-eux.

Claims (7)

1. Procédé de chauffage d'un liquide par un brûleur du type à combustion submergée, caractérisé en ce que:
- au sein d'un volume dudit liquide contenu dans une première chambre qui constitue une chambre de combustion submergée (1, 33) dans laquelle plonge le brûleur on réalise un échange thermique entre le liquide à chauffer et les produits de combustion tel que ledit liquide atteigne une température proche de sa température d'ébullition, les produits de combustion quittant ce volume de liquide à une température encore nettement supérieur à leur température de rosée,
- puis on fait passer les produits de la combustion sortant de la première chambre de combustion submergée précitée (1, 33) au sein d'au moins un second volume de liquide (4) contenu dans une seconde chambre (2, 34) où on réalise alors un second échange thermique entre ces mêmes produits de combustion et ce second volume de liquide tel que les produits de combustion quittent ce volume à une température sensiblement égale à leur températrue de rosée.
2. Procédé selon la revendication 2, caractérisé en ce qu'on utilise plusieurs chambres successives précitées (1, 2; 1, 21, 2; 33, 34) montées en cascades dans lesquelles les températures des bains vont en décroissant.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on alimente au moins certaines desdites chambres précitées (1, 2; 1, 21, 2; 33, 34) placées en cascade avec le même liquide circulant à contre courant des produits de la combustion.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on place sur le circuit d'échappement des produits de la combustion, une tour de lavage (13) alimentée par une entrée froide du liquide à chauffer.
5. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, du type comprenant:
- au moins une première chambre (1, 33) contenant un volume (3) de liquide dans lequel est placé un brûleur (5) à combustion submergée,
- et au moins un échangeur récupérateur de chaleur placé sur le circuit de sortie des produits de la combustion quittant ladite première chambre (1, 33), caractérisé en ce qu'à l'intérieur de ladite première chambre, la hauteur d'immersion du brûleur (5) dans le liquide est inférieure à celle requise pour atteindre sensiblement l'équilibre thermique dudit liquide avec les produits de la combustion et en ce que ledit échangeur de chaleur comprend au moins une chambre (2, 21, 34), contenant un liquide (4, 23) dans lequel barbotent les produits de la combustion avant de quitter le dispositif.
6. Dispositif selon la revendication 5, caractérisé en ce qu'il comprend:
- au moins une cuve (31) dans laquelle sont ménagées les première et seconde chambres (33, 34), la seconde chambre communiquant avec la première (33) par un passage (37) de section réduite formé vers la base de la première chambre (33),
- et au moins une paroi supérieure (35) coiffant ladite première chambre et formant une cloche (36) canalisant les produits de la combustion s'échappant au dessus dudit premier volume de liquide (3) vers un diffuseur (11) débouchant à hauteur convenable dans le volume de liquide (4) contenu dans la seconde chambre (34).
7. Dispositif selon la revendication 5 ou la revendication 6, caractérisé en ce qu'il comprend au moins deux cuves dans chacune desquelles est ménagée l'une desdites première et seconde chambres (33, 34), ces chambres recevant l'une après l'autre les produits de la combustion issus du brûleur (5) qui est immergé dans la première chambre.
EP85401997A 1984-10-16 1985-10-15 Procédé de chauffage d'un liquide par combustion submergée et dispositif pour la mise en oeuvre du procédé Expired EP0181248B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85401997T ATE47479T1 (de) 1984-10-16 1985-10-15 Verfahren zum erhitzen einer fluessigkeit mittels tauchverbrennung und anlage zum durchfuehren dieses verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8415855 1984-10-16
FR8415855A FR2571836B1 (fr) 1984-10-16 1984-10-16 Procede de chauffage d'un liquide par combustion submergee et dispositif pour la mise en oeuvre du procede

Publications (2)

Publication Number Publication Date
EP0181248A1 EP0181248A1 (fr) 1986-05-14
EP0181248B1 true EP0181248B1 (fr) 1989-10-18

Family

ID=9308704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401997A Expired EP0181248B1 (fr) 1984-10-16 1985-10-15 Procédé de chauffage d'un liquide par combustion submergée et dispositif pour la mise en oeuvre du procédé

Country Status (4)

Country Link
EP (1) EP0181248B1 (fr)
AT (1) ATE47479T1 (fr)
DE (1) DE3573831D1 (fr)
FR (1) FR2571836B1 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9492831B2 (en) 2010-06-17 2016-11-15 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
US9676644B2 (en) 2012-11-29 2017-06-13 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US9731990B2 (en) 2013-05-30 2017-08-15 Johns Manville Submerged combustion glass melting systems and methods of use
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9926219B2 (en) 2012-07-03 2018-03-27 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
USRE46896E1 (en) 2010-09-23 2018-06-19 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting
US11248787B2 (en) 2016-08-25 2022-02-15 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US11623887B2 (en) 2013-05-22 2023-04-11 Johns Manville Submerged combustion burners, melters, and methods of use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264907A3 (fr) * 1986-10-21 1989-09-20 Josef Geisler Chaudière de chauffage à combustibles liquides
US5765546A (en) * 1996-05-30 1998-06-16 Sofame Direct contact water heater with dual water heating chambers
US6293277B1 (en) * 1999-09-30 2001-09-25 Inproheat Industries Ltd. Sludge treatment system using two-stage heat recovery submerged combustion
US6338337B1 (en) * 1999-09-30 2002-01-15 Inproheat Industries Ltd. Two-stage heat recovery for submerged combustion heating system
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976445A (en) * 1974-05-23 1976-08-24 Ozark-Mahoning Company Recarbonation process and apparatus
FR2542070B1 (fr) * 1983-03-02 1989-05-19 Laurent Francois Installation et procede de chauffage du type a combustion submergee

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533906B2 (en) 2010-06-17 2017-01-03 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9481593B2 (en) 2010-06-17 2016-11-01 Johns Manville Methods of using a submerged combustion melter to produce glass products
US9481592B2 (en) 2010-06-17 2016-11-01 Johns Manville Submerged combustion glass manufacturing system and method
US9492831B2 (en) 2010-06-17 2016-11-15 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US10472268B2 (en) 2010-06-17 2019-11-12 Johns Manville Systems and methods for glass manufacturing
US10081565B2 (en) 2010-06-17 2018-09-25 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9573831B2 (en) 2010-06-17 2017-02-21 Johns Manville Systems and methods for glass manufacturing
US9840430B2 (en) 2010-06-17 2017-12-12 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US9676652B2 (en) 2010-06-17 2017-06-13 Johns Manville Systems and methods for making foamed glass using submerged combustion
USRE46896E1 (en) 2010-09-23 2018-06-19 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US9580344B2 (en) 2011-10-07 2017-02-28 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US9957184B2 (en) 2011-10-07 2018-05-01 Johns Manville Submerged combustion glass manufacturing system and method
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US9776901B2 (en) 2011-10-07 2017-10-03 Johns Manville Submerged combustion glass manufacturing system and method
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US9650277B2 (en) 2012-04-27 2017-05-16 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9926219B2 (en) 2012-07-03 2018-03-27 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US11233484B2 (en) 2012-07-03 2022-01-25 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
US9676644B2 (en) 2012-11-29 2017-06-13 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
US11623887B2 (en) 2013-05-22 2023-04-11 Johns Manville Submerged combustion burners, melters, and methods of use
US11142476B2 (en) 2013-05-22 2021-10-12 Johns Manville Burner for submerged combustion melting
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US11186510B2 (en) 2013-05-30 2021-11-30 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US9731990B2 (en) 2013-05-30 2017-08-15 Johns Manville Submerged combustion glass melting systems and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10618830B2 (en) 2013-05-30 2020-04-14 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10955132B2 (en) 2015-08-27 2021-03-23 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10793459B2 (en) 2016-06-22 2020-10-06 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US11248787B2 (en) 2016-08-25 2022-02-15 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US11396470B2 (en) 2016-08-25 2022-07-26 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters

Also Published As

Publication number Publication date
ATE47479T1 (de) 1989-11-15
FR2571836A1 (fr) 1986-04-18
DE3573831D1 (en) 1989-11-23
EP0181248A1 (fr) 1986-05-14
FR2571836B1 (fr) 1987-01-16

Similar Documents

Publication Publication Date Title
EP0181248B1 (fr) Procédé de chauffage d'un liquide par combustion submergée et dispositif pour la mise en oeuvre du procédé
US2890166A (en) Process and apparatus for utilizing submerged combustion
EP0129854B1 (fr) Procédé et appareil pour la production de produits gazeux par décomposition de liquides
FR2902416A1 (fr) Un reacteur avec gradient thermique controle pour la production d'hydrogene pur
CN109573945A (zh) 一种甲烷重整制氢燃烧器中烟气的水蒸气分离及回用装置和方法
FR2664746A1 (fr) Installation de production d'energie electrique.
US4017277A (en) Direct contact water heating system and process
EP3207802A1 (fr) Dispositif de génération de vapeur, four comprenant un tel dispositif, méthode de génération de vapeur et méthode de cuisson utilisant ladite méthode
FR2657897A1 (fr) Procede et reacteur de recuperation d'energie et de produits chimiques a partir d'une liqueur usee.
CH516344A (fr) Cellule d'électrolyse de solutions salines, notamment des chlorures alcalins
CN206751450U (zh) 一种基于水和大气自然温差的海水淡化自动循环系统
EP0030483B1 (fr) Echangeur de chaleur
EP0209463B1 (fr) Installation de chauffage de liquides à des niveaux de température différents
BE1015568A3 (fr) Installation de production d'eau chaude.
EP0286486B1 (fr) Perfectionnement apporté aux procédés d'évaporation mettant en oeuvre des évaporateurs du type tubulaire
EP0018912B2 (fr) Dispositif de refroidissement et purification des gaz de sortie d'une installation d'électrolyse de l'eau
CA3113341A1 (fr) Procede et systeme pour produire un gaz comprenant de l'azote (n2) et del'hydrogene (h2) par combustion d'hydrogene en presence d'air
CH521148A (fr) Procédé et installation de distillation de solutions salines
RU2272959C2 (ru) Способ термической деаэрации воды в деаэраторе котельной установки и устройство для его осуществления
EP0069025A1 (fr) Procédé d'élaboration d'un gaz inerte ou d'un gaz neutre et installation pour son obtention
US370703A (en) johnson
WO2010089478A1 (fr) Dispositif de distillation avec récupération de chaleur au moyen de tubes concentriques
BE435195A (fr)
FR2636129A1 (fr) Generateur de chaleur pour chauffage de fluide a haute temperature procedant par contact direct
US1445303A (en) Method of and means for producing pure liquid hydrocyanic acid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19861009

17Q First examination report despatched

Effective date: 19870403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 47479

Country of ref document: AT

Date of ref document: 19891115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3573831

Country of ref document: DE

Date of ref document: 19891123

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85401997.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980921

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980928

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19981001

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981009

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19981020

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981026

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981030

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981124

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991015

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991015

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

BERE Be: lapsed

Owner name: GAZ DE FRANCE

Effective date: 19991031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991015

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 85401997.3

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801