EP0180907B1 - Signalling arrangement in a risk-signalling system - Google Patents

Signalling arrangement in a risk-signalling system Download PDF

Info

Publication number
EP0180907B1
EP0180907B1 EP85113784A EP85113784A EP0180907B1 EP 0180907 B1 EP0180907 B1 EP 0180907B1 EP 85113784 A EP85113784 A EP 85113784A EP 85113784 A EP85113784 A EP 85113784A EP 0180907 B1 EP0180907 B1 EP 0180907B1
Authority
EP
European Patent Office
Prior art keywords
sensor
detector
circuit
contacts
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85113784A
Other languages
German (de)
French (fr)
Other versions
EP0180907A3 (en
EP0180907A2 (en
Inventor
Peer Dr.-Ing. Thilo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT85113784T priority Critical patent/ATE67878T1/en
Publication of EP0180907A2 publication Critical patent/EP0180907A2/en
Publication of EP0180907A3 publication Critical patent/EP0180907A3/en
Application granted granted Critical
Publication of EP0180907B1 publication Critical patent/EP0180907B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a detector arrangement in a hazard alarm system, in particular a fire alarm system, according to the features of the preamble of claim 1.
  • the detection is of great importance insofar as the detection should be reliable and, on the other hand, it should be inexpensive to manufacture.
  • the number of electrical contacts and their load form an important aspect for the connection technology of the detectors in a hazard detection system.
  • Conventional limit detectors generally use two contacts between the actual detector and its associated detector detection, via which all detectors of a detector line are connected in parallel between the wires of a two-wire line. A series connection of several detectors, each with two contacts, is also common.
  • At least three contacts are required for analog detectors, i.e. detectors with sensors (sensors) that record analog measured values and transmit them to the control center.
  • the sensor is supplied with energy via two contacts, while a third contact supplies a signal which is dependent on the measured variable.
  • This signal is then processed in an electronic circuit, which can be arranged in the detector, so that the signal can be transmitted to the control center in an addressed manner via the two-wire line.
  • further contacts can be provided to enable the identification of the detector type, the connection of parallel displays or the setting of a detector address.
  • the electronic circuit is integrated in the respective detector and actuates a switch which is activated as a function of the measured value. to interrupt or switch on one wire of the two-wire line while the other wire is connected.
  • This known detector arrangement also requires at least three contacts between the actual detector and the detector detection.
  • the object of the invention is therefore to provide a detector arrangement for a hazard alarm system which has a large number of analog value-measuring detectors, which allows both conventional limit value detectors or simple sensors (for example thermistor for heat detectors) and analog value-measuring sensors (for example for smoke detectors) few circuit and contact elements in the same detector connection.
  • the detector arrangement according to the invention has a sensor circuit with a sensor, which forms the actual plug-in detector, and an electronic circuit arrangement in the detector detection, a socket circuit. These two circuits are connected to each other via only two contacts, so that an analog value measuring sensor with only two connection contacts is connected in the detector.
  • the Sensor circuit on a sensor that is connected to the two contacts with a capacitor connected in parallel to the sensor via a diode.
  • a transistor is connected to the two contacts via a measuring resistor. This transistor is driven by a measuring output of the sensor, so that the sensor voltage at the measuring point of the sensor generates a proportional measuring current.
  • the detector arrangement according to the invention only requires two contacts for analog value measuring sensors. These are fritted with the operational voltage, for example the quiescent voltage of 20 volts, and with currents of several milliamperes, which increases the contact reliability. In the measuring phase, however, the sensor causes a current to flow in the microampere range, which thus allows considerable contact resistance. In this way it is possible to make the two contacts particularly robust and inexpensive.
  • analog value measuring sensors can be implemented in the same construction and operated in the same detector recording as limit detectors. This standardization enables savings in both development and production as well as in assembly and maintenance.
  • the sensor S forms the measuring element or the sensor, for example an optical scattered light sensor.
  • the sensor S is connected to the connections (+) and (-) at a voltage of e.g. 20 volts operated via the connection contacts K1 and K2.
  • the sensor circuit SES is connected via the connection contacts K1 and K2, as shown in FIG. 2, via a current measuring device SME to the detection line ML and is operated with the line voltage UL.
  • the sensor voltage US proportional to the measured variable of the sensor is created. If necessary, the sensor S at the input T can be triggered via the resistor RT by the measuring voltage UM at the beginning of the measuring time MZ of an interrogation cycle AZ.
  • the sensor voltage US is fed to the transistor TR and generates a measuring current IM via the measuring resistor RM which is proportional to the sensor voltage US and thus to the measured variable of the sensor S.
  • the capacitor C lying parallel to the sensor S serves on the one hand as an energy store and on the other hand generates the increased current IS for frying the contacts K1 and K2 during the idle time RZ, during which the idle voltage UR is applied.
  • the sensor S and the capacitor C are connected in the sensor circuit SES via the diode D to the contacts K1 and K2. If the detector arrangement according to the invention is operated in pulse detection technology, in which the individual detectors are connected in a chain to the detection line ML, the sensor circuit SES is arranged according to FIG. 2.
  • the circuit arrangement for the socket circuit is known in principle from the German patent DE-C-25 33 382.
  • the timing element ZG which is dependent on the analog measured value and can be controlled in terms of its running time, is located on the detection line ML. After the running time of the timer ZG, the switch SCH arranged in a wire of the message line ML is actuated by it and switches the next analog detector (M2) to the message line.
  • the sensor circuit SES is connected to the signal line ML via the two contacts K1 and K2 via a current measuring device SME.
  • the current measuring device SME controls the timing element ZG.
  • the individual detectors M1 to Mi of a signaling line ML are cyclically queried from the central station Z for their respective analog detector measured value, the respective detector address being determined in the central station and the alarm or fault criteria in the central station from the individual detector measured values of the respective detector.
  • a query cycle is composed of a long rest time RZ, a short start time SZ and a measurement time MZ as shown in the voltage and current diagram in FIGS. 3 and 4.
  • the line voltage UL is, for example, 20 volts.
  • the respective capacitors C of the sensor circuit SES are charged with this open-circuit voltage UR.
  • the measuring voltage UM which is lower than the rest voltage UR, is applied from the control center to the message line ML for the measuring time MZ.
  • a new interrogation cycle AZ begins with the open circuit voltage UR.
  • the sensor S is removed from the Storage capacitor C supplied with the voltage UC (UC ⁇ UR).
  • UC UC ⁇ UR
  • a measuring current IM cannot flow due to the missing line voltage UL.
  • the diode D blocks the current flow between the sensor S or the sensor circuit SES and the signal line ML or the socket electronics FS.
  • the line voltage UL is increased to the measurement voltage UM, for example 13 volts.
  • a measuring current IM now flows to the socket circuit, while the sensor S continues to be supplied with energy from the capacitor C.
  • the capacitor C is dimensioned such that the capacitor voltage UC, even if it decreases by a few volts, always remains greater than the measuring voltage UM, so that the diode D is blocked.
  • the line voltage UL is increased again from the measuring voltage UM to the open circuit voltage UR.
  • the diode D thus becomes conductive and the sensor current IS increases by the supply current for the sensor S.
  • FIG. 4 the corresponding current diagram of the line current IL is shown.
  • the process repeats itself continuously with each polling cycle.
  • the detector arrangement according to the invention can also be used for other transmission methods in addition to the embodiment described for the pulse detector technology.
  • at least two voltage levels must be generated either in the circuit electronics of the detector, which can then be used in the manner described.
  • Another possibility is to replace the diode with a switch which is replaced by a signal superimposed on the line voltage, e.g. a sound frequency signal, is controlled in a suitable manner.

Abstract

The signalling circuit is divided into a sensor circuit (SES) comprising a sensor (S) and into a socket circuit (FS) for connecting the signalling device to the signalling line (ML) and transmitting the alarm signals. Both circuits are connected via only two contacts (K1 and K2) which are wetted with the idle voltage (UR). A capacitor (C) connected in parallel with the sensor (S) is charged up during the idle time (RZ) and supplies the sensor (S) with power during the measuring time (MZ). <IMAGE>

Description

Die Erfindung bezieht sich auf eine Melderanordnung in einer Gefahrenmeldeanlage, insbesondere Brandmeldeanlage, gemäß den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a detector arrangement in a hazard alarm system, in particular a fire alarm system, according to the features of the preamble of claim 1.

Für die Funktion eines Gefahrenmelders, insbesondere eines automatischen Brandmelders, kommt der Melderfassung insofern eine große Bedeutung zu, als die Melderfassung betriebssicher sein soll und andererseits preisgünstig gefertigt werden soll. Dabei bilden die Anzahl der elektrischen Kontakte sowie deren Belastung einen wichtigen Gesichtspunkt für die Anschlußtechnik der Melder in einer Gefahrenmeldeanlage.For the function of a danger detector, in particular an automatic fire detector, the detection is of great importance insofar as the detection should be reliable and, on the other hand, it should be inexpensive to manufacture. The number of electrical contacts and their load form an important aspect for the connection technology of the detectors in a hazard detection system.

Herkömmliche Grenzwertmelder verwenden in der Regel zwei Kontakte zwischen dem eigentlichen Melder und seiner dazugehörigen Melderfassung, über die sämtliche Melder einer Melderlinie parallel zwischen die Adern einer Zweidrahtleitung geschaltet werden. Es ist auch eine Reihenschaltung mehrerer Melder mit jeweils zwei Kontakten üblich.Conventional limit detectors generally use two contacts between the actual detector and its associated detector detection, via which all detectors of a detector line are connected in parallel between the wires of a two-wire line. A series connection of several detectors, each with two contacts, is also common.

Für Analogmelder, das sind Melder mit Sensoren (Fühlern), die analoge Meßwerte erfassen und zur Zentrale übertragen, sind dagegen mindestens drei Kontakte nötig. In bekannten Meldeanlagen wird der Sensor über zwei Kontakte mit Energie versorgt, während ein dritter Kontakt ein von der Meßgröße abhängiges Signal liefert. Dieses Signal wird dann in einer elektronischen Schaltung, die in der Melderfassung angeordnet sein kann, so aufbereitet, daß das Signal über die Zweidrahtleitung adressiert zur Zentrale übertragen werden kann. Weitere Kontakte können vorgesehen sein, um die Kennzeichnung der Melderart, die Anschaltung von Parallelanzeigen oder das Einstellen einer Melderadresse zu ermöglichen.On the other hand, at least three contacts are required for analog detectors, i.e. detectors with sensors (sensors) that record analog measured values and transmit them to the control center. In known signaling systems, the sensor is supplied with energy via two contacts, while a third contact supplies a signal which is dependent on the measured variable. This signal is then processed in an electronic circuit, which can be arranged in the detector, so that the signal can be transmitted to the control center in an addressed manner via the two-wire line. further contacts can be provided to enable the identification of the detector type, the connection of parallel displays or the setting of a detector address.

In der bekannten Pulsmeldetechnik, wie sie in den deutschen Patentschriften DE-C-25 33 330, DE-C-25 33 382 beschrieben ist, ist die elektronische Schaltung im jeweiligen Melder integriert und betätigt einen Schalter, der in Abhängigkeit vom Meßwert aktiviert wird, um eine Ader der Zweidrahtleitung zu unterbrechen bzw. einzuschalten, während die andere Ader durchverbunden ist. Auch bei dieser bekannten Melderanordnung sind mindestens drei Kontakte zwischen dem eigentlichen Melder und der Melderfassung erforderlich.In the known pulse detection technology, as described in the German patents DE-C-25 33 330, DE-C-25 33 382, the electronic circuit is integrated in the respective detector and actuates a switch which is activated as a function of the measured value. to interrupt or switch on one wire of the two-wire line while the other wire is connected. This known detector arrangement also requires at least three contacts between the actual detector and the detector detection.

Aufgabe der Erfindung ist es daher, für eine Gefahrenmeldeanlage, die eine Vielzahl analogwertmessender Melder aufweist, eine Melderanordnung anzugeben, die es gestattet, sowohl herkömmliche Grenzwertmelder bzw. einfache Sensoren (z.B. Heißleiter für Wärmemelder) als auch analogwertmesende Sensoren, (z.B. für Rauchmelder) mit wenig Schaltungs-und Kontaktelementen in der gleichen Melderfassung anzuschließen.The object of the invention is therefore to provide a detector arrangement for a hazard alarm system which has a large number of analog value-measuring detectors, which allows both conventional limit value detectors or simple sensors (for example thermistor for heat detectors) and analog value-measuring sensors (for example for smoke detectors) few circuit and contact elements in the same detector connection.

Diese Aufgabe wird bei einer eingangs beschriebenen Gefahrenmeldeanlage mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved in a hazard alarm system described in the introduction with the characterizing features of claim 1.

Die erfindungsgemäße Melderanordnung weist eine Sensorschaltung mit einem Sensor, die den eigentlichen einsteckbaren Melder bildet, und eine elektronische Schaltungsanordnung in der Melderfassung, eine Fassungsschaltung auf. Diese beiden Schaltungen sind über nur zwei Kontakte miteinander verbunden, so daß auch ein analogwertmessender Sensor mit nur zwei Anschlußkontakten in der Melderfassung angeschlossen ist. Dazu weist die Sensorschaltung einen Sensor auf, der mit einem parallel zum Sensor geschalteten Kondensator über eine Diode an den beiden Kontakten angeschlossen ist. Ferner ist ein Transistor über einen Meßwiderstand an den beiden Kontakten angeschaltet. Dieser Transistor wird mit einem Meßausgang des Sensors angesteuert, so daß die am Meßpunkt des Sensors stehende Sensorspannung einen proportionalen Meßstrom erzeugt.The detector arrangement according to the invention has a sensor circuit with a sensor, which forms the actual plug-in detector, and an electronic circuit arrangement in the detector detection, a socket circuit. These two circuits are connected to each other via only two contacts, so that an analog value measuring sensor with only two connection contacts is connected in the detector. The Sensor circuit on a sensor that is connected to the two contacts with a capacitor connected in parallel to the sensor via a diode. Furthermore, a transistor is connected to the two contacts via a measuring resistor. This transistor is driven by a measuring output of the sensor, so that the sensor voltage at the measuring point of the sensor generates a proportional measuring current.

Die erfindungsgemäße Melderanordnung benötigt auch für analogwertmessende Sensoren lediglich zwei Kontakte. Diese werden mit der betriebsmäßigen Spannung, beispielsweise der Ruhespannung von 20 Volt, und mit Strömen von mehreren Milliampere gefrittet, was die Kontaktsicherheit erhöht. In der Meßphase verursacht der Sensore dagegen einen Stromfluß im Mikroampere-Bereich, der damit einen beträchtlichen Kontaktwiderstand zuläßt. Auf diese Weise ist es möglich, die beiden Kontakte besonders robust und preiswert auszuführen. Ein weiterer Vorteil ist, daß analogwertmessende Sensoren im gleichen konstruktiven Aufbau realisiert und in der gleichen Melderfassung betrieben werden können wie Grenzwertmelder. Diese Vereinheitlichung ermöglicht Einsparungen sowohl bei der Entwicklung und Fertigung als auch bei der Montage und der Wartung.The detector arrangement according to the invention only requires two contacts for analog value measuring sensors. These are fritted with the operational voltage, for example the quiescent voltage of 20 volts, and with currents of several milliamperes, which increases the contact reliability. In the measuring phase, however, the sensor causes a current to flow in the microampere range, which thus allows considerable contact resistance. In this way it is possible to make the two contacts particularly robust and inexpensive. Another advantage is that analog value measuring sensors can be implemented in the same construction and operated in the same detector recording as limit detectors. This standardization enables savings in both development and production as well as in assembly and maintenance.

Anhand der Figuren 1 bis 4 wird die erfindungsgemäße Melderanordnung näher beschrieben. Dabei zeigt

  • Fig.1 eine Sensorschaltung,
  • Fig. 2 einen Analogwertmelder mit Sensorschaltung und Fassungsschaltung,
  • Fig. 3 ein Spannungsdiagramm der Linienspannung
  • Fig. 4 ein Stromdiagramm des Linienstromes.
The detector arrangement according to the invention is described in more detail with reference to FIGS. 1 to 4. It shows
  • 1 shows a sensor circuit,
  • 2 an analog value detector with sensor circuit and socket circuit,
  • Fig. 3 is a voltage diagram of the line voltage
  • Fig. 4 is a current diagram of the line current.

In der Fig. 1 ist die Sensorschaltung dargestellt. Der Sensor S bildet das Meßorgan bzw. den Meßfühler, beispielsweise einen optischen Streulicht-Sensor. Der Sensor S wird mit den Anschlüssen (+) und (-) an einer Spannung von z.B. 20 Volt über die Anmschlußkontakte K1 und K2 betrieben. Über die Anschlußkontakte K1 und K2 ist die Sensorschaltung SES wie in Fig. 2 gezeigt ist, über eine Strommeßeinrichtung SME an der Meldelinie ML angeschlossen und wird mit der Linienspannung UL betrieben. Zwischen dem Meßpunkt M und dem Anschlußpunkt (+) des Sensors S entsteht die der Meßgröße des Sensors proportionale Sensorspannung US. Gegebenenfalls kann der Sensor S am Eingang T über den Widerstand RT von der Meßspannung UM mit Beginn der Meßzeit MZ eines Abfragezyklus AZ getriggert werden. Die Sensorspannung US wird dem Transistor TR zugeführt und erzeugt über den Meßwiderstand RM einen Meßstrom IM, der der Sensorspannung US und damit der Meßgröße des Sensors S proportional ist. Der parallel zum Sensor S liegende Kondensator C dient einerseits als Energiespeicher und erzeugt andererseits den erhöhten Strom IS zum Fritten der Kontakte K1 und K2 während der Ruhezeit RZ, in der die Ruhespannung UR anliegt. Der Sensor S und der Kondensator C ist in der Sensorschaltung SES über die Diode D an den Kontakten K1 und K2 angeschlossen. Wird die erfindungsgemäße Melderanordnung in der Pulsmeldetechnik betrieben, bei der die einzelnen Melder kettenförmig an der Meldelinie ML angeschlossen sind, so ist die Sensorschaltung SES gemäß der Fig. 2 angeordnet.1 shows the sensor circuit. The sensor S forms the measuring element or the sensor, for example an optical scattered light sensor. The sensor S is connected to the connections (+) and (-) at a voltage of e.g. 20 volts operated via the connection contacts K1 and K2. The sensor circuit SES is connected via the connection contacts K1 and K2, as shown in FIG. 2, via a current measuring device SME to the detection line ML and is operated with the line voltage UL. Between the measuring point M and the connection point (+) of the sensor S, the sensor voltage US proportional to the measured variable of the sensor is created. If necessary, the sensor S at the input T can be triggered via the resistor RT by the measuring voltage UM at the beginning of the measuring time MZ of an interrogation cycle AZ. The sensor voltage US is fed to the transistor TR and generates a measuring current IM via the measuring resistor RM which is proportional to the sensor voltage US and thus to the measured variable of the sensor S. The capacitor C lying parallel to the sensor S serves on the one hand as an energy store and on the other hand generates the increased current IS for frying the contacts K1 and K2 during the idle time RZ, during which the idle voltage UR is applied. The sensor S and the capacitor C are connected in the sensor circuit SES via the diode D to the contacts K1 and K2. If the detector arrangement according to the invention is operated in pulse detection technology, in which the individual detectors are connected in a chain to the detection line ML, the sensor circuit SES is arranged according to FIG. 2.

In Fig. 2 ist ein Analogwertmelder M1 mit der Sensorschaltung SES und der Fassungsschaltung FS dargestellt. Die Schaltungsanordnung für die Fassungsschaltung ist im Prinzip aus der deutschen Patentschrift DE-C-25 33 382 bekannt. Das vom analogen Meßwert abhängige, in seiner Laufzeit steuerbare Zeitglied ZG, liegt an der Meldelinie ML. Nach Ablauf der Laufzeit des Zeitgliedes ZG wird von diesem der in einer Ader der Meldeleitung ML angeordnete Schalter SCH angesteuert und schaltet den nächsten Analogmelder (M2) an die Meldelinie. Die Sensorschaltung SES ist über die beiden Kontakte K1 und K2 über eine Strommeßeinrichtung SME an der Meldeleitung ML angeschlossen. Die Strommeßeinrichtung SME steuert das Zeitglied ZG. Bei dem bekannten Pulsmeldesystem werden die einzelnen Melder M1 bis Mi einer Meldeleitung ML von der Zentrale Z aus zyklisch auf ihren jeweiligen analogen Meldermeßwert abgefragt, wobei die jeweilige Melderadresse in der Zentrale ermittelt wird und die Alarm- bzw. Störkriterien in der Zentrale aus den einzelnen Meldermeßwerten der jeweiligen Melder abgeleitet werden. Ein Abfragezyklus setzt sich dabei aus einer langen Ruhezeit RZ, einer kurzen Startzeit SZ und einer Meßzeit MZ wie dies anhand des Spannungs- und Stromdiagramms in den Fig. 3 und 4 dargestellt ist, zusammen.2 shows an analog value detector M1 with the sensor circuit SES and the socket circuit FS. The circuit arrangement for the socket circuit is known in principle from the German patent DE-C-25 33 382. The timing element ZG, which is dependent on the analog measured value and can be controlled in terms of its running time, is located on the detection line ML. After the running time of the timer ZG, the switch SCH arranged in a wire of the message line ML is actuated by it and switches the next analog detector (M2) to the message line. The sensor circuit SES is connected to the signal line ML via the two contacts K1 and K2 via a current measuring device SME. The current measuring device SME controls the timing element ZG. In the known pulse signaling system, the individual detectors M1 to Mi of a signaling line ML are cyclically queried from the central station Z for their respective analog detector measured value, the respective detector address being determined in the central station and the alarm or fault criteria in the central station from the individual detector measured values of the respective detector. A query cycle is composed of a long rest time RZ, a short start time SZ and a measurement time MZ as shown in the voltage and current diagram in FIGS. 3 and 4.

In Fig. 3 ist das Spannungsdiagramm der Linienspannung UL dargetellt. Während der Ruhezeit RZ beträgt die Linienspannung UL beispielweise 20 Volt. Mit dieser Ruhespannung UR werden die jeweiligen Kondensatoren C der Sensorschaltung SES aufgeladen. Die Messung der einzelnen Analogwerte wird von der Zentrale Z aus mit der Startspannung US = 0 Volt gestartet, wobei für die kurze Zeit SZ die Meldelinie abgeschaltet wird. Dann wird von der Zentrale aus an die Meldelinie ML die Meßspannung UM, die gegenüber der Ruhespannung UR geringer ist, für die Meßzeit MZ angelegt. Mit dem Ablauf der Meßzeit MZ beginnt ein neuer Abfragezyklus AZ mit der Ruhespannung UR. Die Abfrage aller Pulsmelder M1 bis Mi einer Meldeleitung ML beginnt, wie schon gesagt, mit dem Abschalten der Linienspannung UL, d.h. für die kurze Startzeit SZ ist die Startspannung UST = 0. In dieser Phase wird der Sensor S aus dem Speicherkondensator C mit der Spannung UC (UC ≈ UR) versorgt. Während dieser Zeit SZ kann ein Meßstrom IM wegen der fehlenden Linienspannung UL nicht fließen. In dieser Zeit sperrt die Diode D den Stromfluß zwischen dem Sensor S bzw. der Sensorschaltung SES und der Meldeleitung ML bzw. der Fassungselektronik FS. In der dann folgenden Meßphase während der Meßzeit MZ wird die Linienspannung UL auf die Meßspannung UM erhöht, z.B. 13 Volt. Jetzt fließt ein Meßstrom IM zur Fassungsschaltung, während der Sensor S weiterhin mit Energie aus dem Kondensator C versorgt wird. Dabei ist der Kondensator C so dimensioniert, daß die Kondensatorspannung UC, auch wenn sie sich dabei um einige Volt verringert, immer größer als die Meßspannung UM bleibt, so daß die Diode D gesperrt ist. Nach der Abfrage aller Melder M1 bis Mi einer Meldeleitung ML in der Meßzeit MZ wird die Linienspannung UL von der Meßspannung UM wieder auf die Ruhespannung UR erhöht. Damit wird die Diode D leitend und der Sensorstrom IS wird um den Versorgungsstrom für den Sensor S größer.3 shows the voltage diagram of the line voltage UL. During the idle time RZ, the line voltage UL is, for example, 20 volts. The respective capacitors C of the sensor circuit SES are charged with this open-circuit voltage UR. The measurement of the individual analog values is started from the control center Z with the starting voltage US = 0 volt, the signaling line being switched off for the short time SZ. Then the measuring voltage UM, which is lower than the rest voltage UR, is applied from the control center to the message line ML for the measuring time MZ. When the measuring time MZ has elapsed, a new interrogation cycle AZ begins with the open circuit voltage UR. As already mentioned, the query of all pulse detectors M1 to Mi of a signal line ML begins with the switching off of the line voltage UL, ie for the short start time SZ the start voltage UST = 0. In this phase, the sensor S is removed from the Storage capacitor C supplied with the voltage UC (UC ≈ UR). During this time SZ, a measuring current IM cannot flow due to the missing line voltage UL. During this time, the diode D blocks the current flow between the sensor S or the sensor circuit SES and the signal line ML or the socket electronics FS. In the measurement phase that then follows during the measurement time MZ, the line voltage UL is increased to the measurement voltage UM, for example 13 volts. A measuring current IM now flows to the socket circuit, while the sensor S continues to be supplied with energy from the capacitor C. The capacitor C is dimensioned such that the capacitor voltage UC, even if it decreases by a few volts, always remains greater than the measuring voltage UM, so that the diode D is blocked. After polling all detectors M1 to Mi of a signal line ML in the measuring time MZ, the line voltage UL is increased again from the measuring voltage UM to the open circuit voltage UR. The diode D thus becomes conductive and the sensor current IS increases by the supply current for the sensor S.

Dies ist in Fig. 4 dargestellt, in der das entsprechende Stromdiagramm des Linienstroms IL gezeigt ist. Mit dem Anschalten der Ruhespannung UR fließt anfangs ein wesentlich höherer Strom IS, mit dem der Kondensator C wieder aufgeladen wird. Mit diesem erhöhten Stromfluß werden die Kontakte K1 und K2 während der Ruhezeit RZ gefrittet. Der Sensorstrom IS sinkt dann bis auf den Ruhewert IR ab, wenn der Kondensator C aufgeladen ist, so daß der Sensorstrom IS nur noch den Sensor mit Strom versorgt. Mit der Startspannung UST = 0 fließt für die Startzeit SZ kein Strom. In der Meßphase, also während der Meßzeit MZ, steigt der Linienstrom IL = IM treppenförmig an , wie an sich bekannt, bis ein neuer Abfragezyklus AZ beginnt, bei dem der Linienstrom IL schlagartig auf den Sensorstrom IS ansteigt. Der Vorgang wiederholt sich mit jedem Abfragezyklus fortlaufend.This is shown in FIG. 4, in which the corresponding current diagram of the line current IL is shown. When the open-circuit voltage UR is switched on, a significantly higher current IS initially flows, with which the capacitor C is recharged. With this increased current flow, the contacts K1 and K2 are fritted during the idle time RZ. The sensor current IS then drops to the rest value IR when the capacitor C is charged, so that the sensor current IS only supplies the sensor with current. With the start voltage UST = 0, no current flows for the start time SZ. In the measurement phase, that is to say during the measurement time MZ, the line current IL = IM increases in a step-like manner, as is known per se, until a new interrogation cycle AZ begins, in which the line current IL suddenly increases to the sensor current IS. The The process repeats itself continuously with each polling cycle.

Die erfindungsgemäße Melderanordnung ist außer in der beschriebenen Ausführung für die Pulsmeldertechnik auch für andere Übertragungsverfahren anwendbar. Dazu müssen entweder in der Schaltungselektronik der Melderfassung mindestens zwei Spannungsstufen erzeugt werden, die dann in der beschriebenen Weise genutzt werden können. Eine andere Möglichkeit beteht darin, die Diode durch einen Schalter zu ersetzen, der durch ein der Linienspannung überlagertes Signal, z.B. ein tonfrequentes Signal, in geeigneter Weise gesteuert wird.The detector arrangement according to the invention can also be used for other transmission methods in addition to the embodiment described for the pulse detector technology. For this purpose, at least two voltage levels must be generated either in the circuit electronics of the detector, which can then be used in the manner described. Another possibility is to replace the diode with a switch which is replaced by a signal superimposed on the line voltage, e.g. a sound frequency signal, is controlled in a suitable manner.

Claims (3)

  1. Detector arrangement in a hazard alarm installation, especially a fire alarm installation, having a control centre (Z) with a plurality of two-wire signalling lines (ML), to each of which a multiplicity (i) of detectors (M1...Mi) are connected, which are fed with a quiescent voltage (UR) from the control centre (Z) and whose analog detector measured values are interrogated cyclically with a measuring voltage (UM) differing from the quiescent voltage (UR), for the determination of alarm and/or disturbance criteria, each interrogation cycle (AZ) consisting of a quiescent period (RZ), a starting period (SZ) which by contrast is short, and a measurement period (MZ) and the actual detector with its detector circuit being arranged in a detector socket and being electrically connected via a plurality of contacts to electrical connections and, if desired, to a switching device in the detector socket, characterised in that the detector circuit is split into a sensor circuit (SES) and a socket circuit (FS), in that only two contacts (K1 and K2) are provided for connecting the sensor circuit (SES) to the socket circuit (FS), in that the sensor circuit (SES) exhibits a sensor (S), a capacitor (C) connected in parallel with it and a switching transistor (TR), the sensor (S) being connected to the two contacts (K1 and K2) via a diode (D) and the sensor output (M) being fed to the base of the switching transistor (TR), whose collector-emitter path is connected via a precision resistor (RM) to the two contacts (K1 and K2), the diode (D) being blocked during the measurement period (MZ) and in that, during this period, the sensor (S) is supplied with energy from the capacitor (C), in that the socket circuit (FS) exhibits the circuit arrangement for connection of the detector (M1...) to the signalling line (ML) and for the transmission of the detector signals to the control centre (Z) and in that the two contacts (K1 and K2) are fritted during the quiescent period (RZ) by the quiescent voltage (UR).
  2. Detector arrangement according to Claim 1, characterised in that the sensor circuit (SES) together with the sensor (S) forms a sensor unit which can be plugged-in in the detector socket, sensors which operate in accordance with various physical principles being provided.
  3. Detector arrangement according to Claim 1 or 2, characterised in that the sensor (S) exhibits an additional connector (T), to which the measuring voltage (UM) can be applied via a resistor (RT).
EP85113784A 1984-10-31 1985-10-29 Signalling arrangement in a risk-signalling system Expired - Lifetime EP0180907B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113784T ATE67878T1 (en) 1984-10-31 1985-10-29 DETECTOR ARRANGEMENT IN AN ALERT SYSTEM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3439895 1984-10-31
DE3439895 1984-10-31

Publications (3)

Publication Number Publication Date
EP0180907A2 EP0180907A2 (en) 1986-05-14
EP0180907A3 EP0180907A3 (en) 1988-07-20
EP0180907B1 true EP0180907B1 (en) 1991-09-25

Family

ID=6249209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113784A Expired - Lifetime EP0180907B1 (en) 1984-10-31 1985-10-29 Signalling arrangement in a risk-signalling system

Country Status (3)

Country Link
EP (1) EP0180907B1 (en)
AT (1) ATE67878T1 (en)
DE (1) DE3584228D1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1046761B (en) * 1955-09-02 1958-12-18 Ernst Fey Dipl Ing Method and arrangement for reducing the transition resistance of contacts in measuring arrangements
DE1254241B (en) * 1965-02-08 1967-11-16 Licentia Gmbh Device to ensure a consistently good contact with an arrangement for measuring point switching
US4361833A (en) * 1980-03-25 1982-11-30 Monitran International, Inc. Multi-sensor alarm system and method of protecting a premises
DE3225106C2 (en) * 1982-07-05 1985-04-11 Siemens AG, 1000 Berlin und 8000 München Process and device for the automatic query of the detector measured value and the detector recognition in a hazard alarm system

Also Published As

Publication number Publication date
DE3584228D1 (en) 1991-10-31
EP0180907A3 (en) 1988-07-20
ATE67878T1 (en) 1991-10-15
EP0180907A2 (en) 1986-05-14

Similar Documents

Publication Publication Date Title
DE2903041C2 (en) Reporting device for monitoring the occurrence of events to be reported
EP0067339A2 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
EP0393233A2 (en) Signal transmitting system
EP0035277A1 (en) Sequential transmission system for connecting without addressing a plurality of subscribers to an exchange
DE3623705A1 (en) ADDRESSABLE CIRCUIT
EP0180907B1 (en) Signalling arrangement in a risk-signalling system
DE3428773A1 (en) ULTRASONIC PROXIMITY INITIATOR
DE1964764A1 (en) Alarm device
EP0098554B1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
EP0098552B1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
DE3424294A1 (en) Interrogation device for identification of the position of switches
EP0013706B1 (en) System for automatically monitoring the charging state of the mains independent power supply and the humidity in the responder of a vehicle location system
EP0396695B1 (en) Universal output circuit
DE3540434A1 (en) Circuit arrangement for interrogating the state of at least one keying device and for supplying an indication to an indicating device
DE4233488C1 (en) Switch device monitoring circuit for proximity-controlled switch - uses fault and/or condition indicator detecting voltage across switch or measuring resistance to indicate fault or switch condition
DE3411129A1 (en) CIRCUIT ARRANGEMENT FOR A HAZARD ALARM SYSTEM
EP0212045A2 (en) Adaptation of a display or evaluation device to a sensor
EP0185175B1 (en) Method for the identification transmission of the detectors in a risk-signalling system
DE2713280B2 (en) Fire alarm system with at least one two-wire alarm line for ionization fire alarms supplied with DC voltage
EP0098553B1 (en) Method and device for automatically demanding signal measure values and/or signal identification in an alarm installation
DE3842053A1 (en) Circuit for monitoring DC-operated electronic alarm systems having a signal line
EP0177804B1 (en) Current supply circuit for a digital tablet
DE10131589B4 (en) Energy supply in a monitoring device
DE3804495A1 (en) Electronic detonating device for anti-tank mines
DE3225044C2 (en) Process and device for the automatic query of the detector measured value and the detector recognition in a hazard alarm system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19890109

17Q First examination report despatched

Effective date: 19901106

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910918

Year of fee payment: 7

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910925

Year of fee payment: 7

REF Corresponds to:

Ref document number: 67878

Country of ref document: AT

Date of ref document: 19911015

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911017

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911022

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911023

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911031

Year of fee payment: 7

REF Corresponds to:

Ref document number: 3584228

Country of ref document: DE

Date of ref document: 19911031

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911217

Year of fee payment: 7

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921029

Ref country code: AT

Effective date: 19921029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921031

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19921031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85113784.4

Effective date: 19930510