EP0178053B1 - Pouring tubes - Google Patents
Pouring tubes Download PDFInfo
- Publication number
- EP0178053B1 EP0178053B1 EP85305872A EP85305872A EP0178053B1 EP 0178053 B1 EP0178053 B1 EP 0178053B1 EP 85305872 A EP85305872 A EP 85305872A EP 85305872 A EP85305872 A EP 85305872A EP 0178053 B1 EP0178053 B1 EP 0178053B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sleeve
- pouring tube
- protective sleeve
- tube according
- metal casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
- B22D41/505—Rings, inserts or other means preventing external nozzle erosion by the slag
Definitions
- This invention relates to pouring tubes for use in the casting of molten metal.
- the invention is particularly suited to the continuous casting of metals, particularly in the case of tubes for use between a ladle and a tundish, for which the invention is now more specifically described below.
- the invention is not confined to use in continuous casting as it may be used in other enclosed molten metal pouring systems.
- molten metal e.g. steel is passed from a ladle into a tundish which serves to maintain a constant head of molten metal.
- the metal flows out from the base of the tundish through one or more nozzles into one or more continuous casting moulds.
- the quality of the cast metal, withdrawn from the base of the mould as a strand for subsequent use as billets, blooms or slabs, can be adversely affected by oxide and other non-metallic inclusions which may be entrained if the molten metal stream is not protected adequately as it flows between the ladle and the mould or moulds.
- inert gas e.g. argon can be passed through the tube around the molten metal stream thereby enhancing the minimisation of access by atmospheric oxygen and nitrogen to the stream.
- Pouring tubes may be formed from highly refractory materials such as graphitised alumina, fused silica, or zirconia but these are very costly to produce and consequently for economic reasons there use cannot always be justified.
- pouring tubes have been proposed which comprise a tubular structure formed of refractory, heat-insulating material in the form of a tube encased by thin sheet metal e.g. steel.
- These pouring tubes albeit expendable i.e. they have a limited useful service life expectancy, still possess several advantages not least their initial low cost, ease of manufacture and low-density which contributes to easier handling during installation and removal after casting.
- the outer casing may be provided with a close fitting protective sleeve of heat-insulating material located over that portion of the tube which in use is contacted by the molten metal and/or slag held in a tundish.
- the outer protective sleeve is generally located at the lower end of a pouring tube and extends upwards for a sufficient length so as to project at least 50 mm above the anticipated level of the upper surface of the molten metal held in a tundish.
- This sleeve protects the pouring tube from slag attack and the metal casing from premature melting. Without the protective sleeve the metal casing will melt not only below the surface of the molten metal in the tundish but also for a distance of say about 15 to 30 mm above the slag/metal surface. Furthermore the metal casing may melt before sufficient sintering of the refractory, heat-insulating material of the pouring tube has occurred to strengthen it, with the result that the tube will be weak and exhibit a tendency to fracture.
- the protective sleeve may fail in service due to premature cracking.
- the cracking generally extends substantially along the length of the sleeve and tends to occur within 30 to 40 minutes of commencement of casting e.g. during the time taken to cast one ladle of molten steel. Once the sleeve has cracked the molten metal/slag attacks the metal casing and may cause the entire pouring tube to fail.
- a pouring tube assembly for use in the casting of molten metal which comprises a refractory, heat-insulating tube portion encased by a sheet metal casing, the casing having over at least part of its length a protective heat-insulating sleeve thereon, the protective sleeve and the metal casing being spaced apart over at least a part of the length of the sleeve.
- the space between the sleeve and the metal casing is preferably upto 2 mm, and is preferably within that part of the sleeve which is uppermost in use.
- the protective sleeve may be in contact with the metal casing for at least a part of the length of the casing.
- the protective sleeve may be formed by the well-known slurry methods from a mixture of refractory filler material, fibrous material and binders.
- the preferred refractory filler material may be selected from one or more of alumina, calcined magnesite, silica, chamotte, olivine, zircon, chromite, calcined bauxite or other oxides and silicates.
- the fibrous material is preferably one or more of calcium silicate fibre, aluminosilicate fibre, rockwool or slag wool.
- the binder is preferably an organic binder e.g.
- the sleeve may be formed such that it is more refractory at the zone where it is contacted by molten slag in use in a tundish.
- the protective sleeve may have a dressing of refractory paint or like coating to resist the erosive and/or chemical attack from the molten metal and accompanying slag held in the tundish.
- the space between the protective sleeve and the metal casing may be filled with a preformed compressible gasket or sleeve formed of e.g. a highly fibrous very low density material such as calcium silicate fibre, aluminosilicate fibre, rockwool, slag wool or glass fibre.
- a low density fillers such as expanded perlite, expanded vermiculite, or calcined rice husks may be used with or without a binding agent.
- the protective sleeve may be formed at least in part as a duplex structure so as to include the compressible gasket or sleeve as the innermost layer of the structure.
- Other variants include wrapping at least part of the metal casing with heat-insulating tape or blanket prior to the addition of the sleeve or loosely tamping a fibre filler into the space between the sleeve and the casing after the protective sleeve has been located on the pouring tube.
- a pouring tube comprises a refractory, heat-insulating material tube 1 encased over its length by a mild steel casing 2.
- the pouring tube has a flared upper end 3, to mate with the outlet from a metallurgical vessel (not shown).
- a heat-insulating protective sleeve 4 is located around the metal casing in a spaced apart relationship over part 5 of the length of the sleeve.
- a pouring tube according to the present invention was used to continuously cast a low-carbon fully aluminium-killed steel at a temperature of 1550°C for a duration of 4 hours. At the end of the casting sequence no significant deterioration of the pouring tube was evident and the outside surface of the immersed portion of the tube exhibited minimum erosion indicating that the tube of the present invention would have been capable of withstanding an even longer duration continuous casting sequence.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Endoscopes (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermal Insulation (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85305872T ATE31493T1 (de) | 1984-09-06 | 1985-08-19 | Giessrohre. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8422486 | 1984-09-06 | ||
GB848422486A GB8422486D0 (en) | 1984-09-06 | 1984-09-06 | Pouring tubes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0178053A1 EP0178053A1 (en) | 1986-04-16 |
EP0178053B1 true EP0178053B1 (en) | 1987-12-23 |
Family
ID=10566328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85305872A Expired EP0178053B1 (en) | 1984-09-06 | 1985-08-19 | Pouring tubes |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0178053B1 (enrdf_load_stackoverflow) |
AT (1) | ATE31493T1 (enrdf_load_stackoverflow) |
DE (1) | DE3561230D1 (enrdf_load_stackoverflow) |
GB (1) | GB8422486D0 (enrdf_load_stackoverflow) |
IN (1) | IN163869B (enrdf_load_stackoverflow) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4966201A (en) * | 1989-06-16 | 1990-10-30 | General Electric Company | Transfer tube |
WO2001072454A1 (de) * | 2000-03-29 | 2001-10-04 | Sms Demag Aktiengesellschaft | VERFAHREN UND VORRICHTUNG ZUM STRANGGIESSEN VON Al-BERUHIGTEN STÄHLEN MIT EINER WASSERGEKÜHLTEN KOKILLE |
FR2830473B1 (fr) * | 2001-10-10 | 2005-01-14 | Andre Daussan | Procede pour realiser un tube de coulee |
FR2830472A1 (fr) * | 2001-10-10 | 2003-04-11 | Andre Daussan | Procede pour realiser un tube de coulee |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES324973A1 (es) * | 1965-04-08 | 1966-12-16 | United States Steel Corp | Metodo y aparato de fundiciën continua |
FR1493389A (fr) * | 1966-09-22 | 1967-08-25 | United States Steel Corp | Appareil pour la coulée continue de métaux |
DE2446165B2 (de) * | 1974-09-27 | 1977-03-10 | Didier-Werke Ag, 6200 Wiesbaden | Feuerfeste huelse fuer einen tauchausguss bei stahlstranggiessanlagen |
MX157119A (es) * | 1980-11-26 | 1988-10-28 | Daussant Et Compagnie | Tubo mejorado termicamente aislado para la colada de metales |
CH650176A5 (fr) * | 1982-08-23 | 1985-07-15 | Daussan & Co | Dispositif pour la coulee du metal fondu. |
-
1984
- 1984-09-06 GB GB848422486A patent/GB8422486D0/en active Pending
-
1985
- 1985-08-19 EP EP85305872A patent/EP0178053B1/en not_active Expired
- 1985-08-19 DE DE8585305872T patent/DE3561230D1/de not_active Expired
- 1985-08-19 AT AT85305872T patent/ATE31493T1/de active
- 1985-09-06 IN IN240/BOM/85A patent/IN163869B/en unknown
Also Published As
Publication number | Publication date |
---|---|
ATE31493T1 (de) | 1988-01-15 |
IN163869B (enrdf_load_stackoverflow) | 1988-12-03 |
DE3561230D1 (en) | 1988-02-04 |
GB8422486D0 (en) | 1984-10-10 |
EP0178053A1 (en) | 1986-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05178661A (ja) | 侵食、熱衝撃及び酸化抵抗性組成物 | |
US4640447A (en) | Molten metal immersion pouring spout | |
US4468012A (en) | Device for the removal of inclusions contained in molten metals | |
US4993692A (en) | Unitary tundish linings with flow-control devices | |
EP0202004A2 (en) | Pouring tubes | |
US3962492A (en) | Method of protecting refractory lining in containers for molten metal | |
EP0178053B1 (en) | Pouring tubes | |
US4076224A (en) | Tundishes | |
US4657226A (en) | Apparatus for introducing gas to molten metal within a vessel | |
US4792070A (en) | Tubes for casting molten metal | |
CA1239522A (en) | Refractory immersion nozzles | |
US4660808A (en) | Heat-insulating casting tube for a metallurgical vessel | |
GB2104633A (en) | Tundish | |
GB2081702A (en) | Immersion Nozzle for Continuous Casting of Molten Steel | |
JP3128515B2 (ja) | 鋼の連続鋳造用ノズル | |
JPH0699254A (ja) | 連続鋳造用ノズル | |
CA1064675A (en) | Continuous casting of molten metal | |
CA1066479A (en) | Casting of molten metals | |
US4709748A (en) | Protective sleeve for the shroud of a hot metal ladle | |
GB2083896A (en) | Refractory blocks for metal pouring vessels | |
AU673065B2 (en) | Lining of molten metal handling vessels | |
EP0737535B1 (en) | Metallurgical immersion pouring nozzles | |
JP3328803B2 (ja) | 鋼の連続鋳造用ノズル | |
KR800000990B1 (ko) | 용융금속의 연속주조법 | |
JP2959971B2 (ja) | 連続鋳造用ノズル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19860313 |
|
17Q | First examination report despatched |
Effective date: 19861016 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 31493 Country of ref document: AT Date of ref document: 19880115 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3561230 Country of ref document: DE Date of ref document: 19880204 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
ITTA | It: last paid annual fee | ||
BECN | Be: change of holder's name |
Effective date: 19931022 |
|
ITPR | It: changes in ownership of a european patent |
Owner name: FUSIONI;FOSECO HOLDING AG |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940711 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940714 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940715 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940720 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940728 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940831 Year of fee payment: 10 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 85305872.5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950819 Ref country code: AT Effective date: 19950819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19950831 |
|
BERE | Be: lapsed |
Owner name: FOSECO TRADING A.G. Effective date: 19950831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960501 |
|
EUG | Se: european patent has lapsed |
Ref document number: 85305872.5 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |