EP0175879B1 - Transportation of viscous crude oils - Google Patents
Transportation of viscous crude oils Download PDFInfo
- Publication number
- EP0175879B1 EP0175879B1 EP19850109481 EP85109481A EP0175879B1 EP 0175879 B1 EP0175879 B1 EP 0175879B1 EP 19850109481 EP19850109481 EP 19850109481 EP 85109481 A EP85109481 A EP 85109481A EP 0175879 B1 EP0175879 B1 EP 0175879B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oil
- water
- emulsifier
- degree
- carboxymethylated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010779 crude oil Substances 0.000 title claims description 8
- 239000003995 emulsifying agent Substances 0.000 claims description 24
- 239000003921 oil Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 239000007764 o/w emulsion Substances 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 description 20
- 235000019198 oils Nutrition 0.000 description 20
- 239000000295 fuel oil Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000004945 emulsification Methods 0.000 description 4
- 230000001804 emulsifying effect Effects 0.000 description 4
- -1 myristile Natural products 0.000 description 4
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 2
- 229940106681 chloroacetic acid Drugs 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- HMWIHOZPGQRZLR-UHFFFAOYSA-N 2-hexadecylphenol Chemical compound CCCCCCCCCCCCCCCCC1=CC=CC=C1O HMWIHOZPGQRZLR-UHFFFAOYSA-N 0.000 description 1
- ABMULKFGWTYIIK-UHFFFAOYSA-N 2-hexylphenol Chemical compound CCCCCCC1=CC=CC=C1O ABMULKFGWTYIIK-UHFFFAOYSA-N 0.000 description 1
- MEEKGULDSDXFCN-UHFFFAOYSA-N 2-pentylphenol Chemical compound CCCCCC1=CC=CC=C1O MEEKGULDSDXFCN-UHFFFAOYSA-N 0.000 description 1
- QDTDKYHPHANITQ-UHFFFAOYSA-N 7-methyloctan-1-ol Chemical compound CC(C)CCCCCCO QDTDKYHPHANITQ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004439 Isononyl alcohol Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000010795 Steam Flooding Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 208000037516 chromosome inversion disease Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- MWKFXSUHUHTGQN-UHFFFAOYSA-N n-decyl alcohol Natural products CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N n-hexadecyl alcohol Natural products CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000019476 oil-water mixture Nutrition 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940057402 undecyl alcohol Drugs 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 150000003739 xylenols Chemical class 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
- F17D1/08—Pipe-line systems for liquids or viscous products
- F17D1/16—Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/32—Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
- C10L1/328—Oil emulsions containing water or any other hydrophilic phase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0391—Affecting flow by the addition of material or energy
Definitions
- Heavy oils are difficult to transport in pipelines under conditions of usual outside temperatures due to their very high viscosity. To increase their mobility, they are therefore often mixed with low-viscosity crude oils or refinery cuts; such a procedure requires relatively high additives in order to achieve a noticeable improvement in flow. In addition, such a process is only possible where light oil fields exist at the same location or where a nearby refinery can supply low-viscosity gasoline fractions.
- Another method also used is to add heat to the heavy oil in order to lower its viscosity and accordingly improve its fluidity, which requires considerable amounts of heat. So it is z. B. necessary to heat a heavy oil of 10.3 ° API, whose viscosity at 20 ° C is 40 000 mPa - s, to a temperature of approx. 95 ° C in order to achieve a viscosity of approx. 100 mPa ⁇ one for the oil transport in pipelines frequently required threshold value (ML Chirinos et al, Rev. Tec. Intevep 3 (2), 103 (1983). This means an extreme cost for the equipment and the supply of the pipelines and a loss of 15 to 20% Crude oil, since the necessary amount of heat is usually obtained by burning crude oil.
- Another method of heavy oil transport consists in pumping the oil through the pipes in the form of a more or less easily liquid emulsion. Since the viscosity of emulsions is largely determined by that of the dispersing agent, this is an oil-in-water emulsion.
- the oil-in-water emulsion is obtained by adding water and emulsifier to the oil using shear forces and then pumping this mixture into the pipeline.
- a settling tank e.g. B. before entering the refinery, the emulsion is separated again in oil and water and the separated oil is fed to the refinery.
- the lowest possible concentration of the emulsifier should lead to a stable, slightly liquid oil-in-water emulsion with a very high oil content, which naturally places high demands on the emulsifiers to be used.
- High shear forces should also be avoided during emulsification, since there is a risk of inversion to a water-in-oil emulsion that is extremely highly viscous in heavy oils.
- the emulsions are also said to be stable both to higher salinities such as occur in many deposit systems and to higher temperatures. Despite the stability of the emulsions as they flow through the pipeline, they should be able to be separated again without any problems. Sulfur-containing emulsifiers are undesirable if they fail to be kept in the aqueous phase during the cleavage.
- carboxymethylated oxyethylates of the formula are used as emulsifiers in which R is a linear or branched aliphatic radical having 6 to 20 carbon atoms, an alkyl or dialkyl aromatic radical having 5 to 16 carbon atoms per alkyl group, n is 1 to 40 and M is an alkali metal or alkaline earth metal ion or ammonium.
- the carboxymethylated oxyethylates according to DE-PS 24 18 444 are advantageously prepared by reacting oxethylates of the formula with chloroacetic acid or a salt of chloroacetic acid in the presence of alkali hydroxide or alkaline earth hydroxide.
- R is preferably a saturated or unsaturated, straight-chain or branched alkyl radical having 8 to 18 carbon atoms or an alkylaryl radical having 5 to 16 carbon atoms in the alkyl group or a dialkyl radical having 3 to 16 carbon atoms per alkyl group.
- alcohols whose oxethylates are carboxymethylated, z. B.
- hexyl alcohol hexyl alcohol, octyl alcohol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, decyl and undecyl alcohol, lauryl, tridecyl, myristile, palmityl and stearyl alcohol, but also unsaturated, such as. B. oleyl alcohol.
- alkylphenols e.g. B. Use: pentylphenol, hexylphenol, octylphenol, nonylphenol, dodecylphenol, hexadecylphenol and the corresponding dialkylphenols. Alkyl cresols and xylenols are also suitable.
- the oxethylation can be carried out in the presence of catalytic amounts of alkali metal hydroxide, but it is known that other processes are also possible.
- the degree of oxyethylation can assume values between 1 and 40, preferably between 3 and 20.
- the cation in carboxymethylated oxethylate with the formula can be sodium, potassium, lithium, ammonium, calcium, magnesium or hydrogen.
- the emulsifiers used are predominantly anionic, so that an unproblematic cleavage of the emulsion stabilized by them can be assumed.
- the compounds are thermally stable and compatible with salt water within extremely wide limits (US Pat. No. 4,457,373). Furthermore, by varying the hydrophobic residue and the degree of oxyethylation, they allow the emulsifier to be optimally adapted to the oil to be transported and the given salinity of the water conveyed from the deposit in most cases, which advantageously forms the aqueous phase of the emulsion to be transported.
- the carboxymethylated oxethylates can contain unreacted oxethylate. Accordingly, a degree of carboxymethylation can be defined.
- the formula therefore denotes a mixture with different amounts of unreacted oxyethylate, provided that the degree of carboxymethylation is between 40 and 100%, preferably between 50 and 100%.
- Mixtures with a degree of carboxymethylation between 85 and 100% are particularly effective. Such mixtures accordingly consist of anionic and nonionic surfactant and are considered as carboxymethylated oxethylates according to the invention.
- mixtures of anionic and nonionic surfactant described or the purely anionic compounds (emulsifier) are soluble or at least easily dispersible in conventional reservoir waters.
- the emulsifier to be used can be optimally adjusted to the existing heavy oil-water system according to its chemical structure.
- the surfactants (emulsifiers) of a homologous series (cf.Table A) are dissolved in the water in question and mixed with the heavy oil in question and, after briefly stirring with a paddle stirrer without using high shear forces, they are tested for their emulsifying action and the stability of the emulsion is determined. This assessment of the emulsion is repeated about 24 hours later and then the viscosity is measured as a function of the shear rate, if necessary. Since heavy oil emulsions are somewhat structurally viscous, a range between 10 and 100 sec- 1 is selected for the shear rate, which corresponds approximately to the transport through pipelines. A surfactant is an optimal emulsifier if the amount necessary for emulsification is as small as possible.
- the amount is generally from 0.01 to 0.5, in particular from 0.03 to 0.2,% by weight, based on the amount of oil, which corresponds to 100 to 5,000, preferably 300 to 2,000 ppm.
- the emulsifier is metered in either as a melt or as an aqueous solution or as a dispersion of the oil-water mixture, or else it is added to the water, which is then mixed with the oil.
- Water here is understood to mean either a more or less saline water that is produced together with the heavy oil, or it can be a cheaply available surface water or, finally, a mixture of both waters. Since heavy oil fields are often exploited by steam flooding, the salinity of the water produced can fluctuate somewhat, which is not critical for the claimed process.
- the emulsifier can also be added to the heavy oil itself, especially since the surfactant class claimed here shows good oil solubility. It may be advantageous to use a small amount of a light hydrocarbon mixture as a solubilizer.
- the mixing of the three components to form the emulsion, namely oil, water and emulsifier, can take place either directly at the borehole or in or near a collection tank or at any other point in the piping system.
- the mixture ratio of oil to water can vary within wide limits between 10:90 and 90:10. For economic reasons, high oil contents should be aimed at, although it must be taken into account that very high oil contents usually also lead to relatively highly viscous oil-water emulsions.
- the economic optimum is between 70 and 85% oil.
- the emulsification is favored by mixing devices such as agitators, centrifugal pumps, static mixers, etc., which are used when necessary.
- the emulsion formed in this way is conveyed through the pipeline system, which can contain intermediate stations and intermediate storage containers. At the pipeline end point, the emulsion is split in a separator, and it may be advantageous to add one or more desmulsifiers.
- the crude oil dewatered in this way is drawn off and then either to the refinery or a possible further transport, e.g. B. supplied by ship.
- the viscosity is measured, as already described.
- the minimum emulsifier concentration (percent by weight, based on the amount of oil) of the surfactant in question is registered, which is necessary to produce an approximately stable emulsion. "Somewhat stable means that even slight stirring with the glass rod is sufficient to restore the original uniformity, if it has been lost at all.
- the effectiveness of the surfactant can be optimized by varying the chemical structure (changing the degree of EO).
- Carboxymethylated nonylphenoloxyethylates with an EO degree of approx. 3.3 have the highest effectiveness here.
- the viscosity is approx. 100 mPa - s at 20 ° C - 100 mPa - s at 37.7 ° C are required - very low.
- Table E shows the dependence of the emulsifying activity in the case of a carboxymethylated nonylphenol oxethylate on the degree of carboxymethylation.
- the influence of alkaline earth ions is also examined. The effectiveness increases with increasing degree of carboxymethylation. This also applies in the presence of alkaline earth metal ions, which moreover weaken the emulsifying effect more than given additional alkaline halides in the same concentration given a high basic salinity.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Colloid Chemistry (AREA)
Description
Schweröle lassen sich unter Bedingungen üblicher Außentemperaturen infolge ihrer sehr hohen Viskosität nur schwierig in Rohrleitungen transportieren. Zur Erhöhung ihrer Mobilität werden sie daher vielfach mit niedrigviskosen Rohölen oder Raffinerieschnitten vermischt ; eine solche Arbeitsweise erfordert relativ hohe Zusätze, um eine merkliche Fließverbesserung zu erreichen. Außerdem ist ein solches Verfahren nur dort möglich, wo Leichtölfelder am gleichen Ort existieren, oder eine nahegelegene Raffinerie niedrigviskose Benzinfraktionen zu liefern vermag.Heavy oils are difficult to transport in pipelines under conditions of usual outside temperatures due to their very high viscosity. To increase their mobility, they are therefore often mixed with low-viscosity crude oils or refinery cuts; such a procedure requires relatively high additives in order to achieve a noticeable improvement in flow. In addition, such a process is only possible where light oil fields exist at the same location or where a nearby refinery can supply low-viscosity gasoline fractions.
Eine andere ebenfalls angewendete Methode besteht darin, dem Schweröl Wärme zuzuführen, um seine Viskosität abzusenken und entsprechend sein Fließvermögen zu verbessern, wozu beträchtliche Wärmemengen aufgewendet werden müssen. So ist es z. B. notwendig, ein Schweröl von 10.3° API, dessen Viskosität bei 20 °C 40 000 mPa - s beträgt, auf eine Temperatur von ca. 95 °C zu erhitzen, um eine Viskosität von ca. 100 mPa · zu erreichen, einen für den Öltransport in Rohrleitungen häufig geforderten Schwellenwert (M. L. Chirinos et al, Rev. Tec. Intevep 3 (2), 103 (1983). Dies bedeutet einen extremen Kostenaufwand für die Ausstattung und die Versorgung der Rohrleitungen und einen Verlust von 15 bis 20 % an Rohöl, da üblicherweise die notwendige Wärmemenge durch Verbrennen von Rohöl gewonnen wird.Another method also used is to add heat to the heavy oil in order to lower its viscosity and accordingly improve its fluidity, which requires considerable amounts of heat. So it is z. B. necessary to heat a heavy oil of 10.3 ° API, whose viscosity at 20 ° C is 40 000 mPa - s, to a temperature of approx. 95 ° C in order to achieve a viscosity of approx. 100 mPa · one for the oil transport in pipelines frequently required threshold value (ML Chirinos et al, Rev. Tec. Intevep 3 (2), 103 (1983). This means an extreme cost for the equipment and the supply of the pipelines and a loss of 15 to 20% Crude oil, since the necessary amount of heat is usually obtained by burning crude oil.
Ein weiteres Verfahren des Schweröltransportes besteht darin, daß man das Öl in Form einer mehr oder minder leicht flüssigen Emulsion durch die Rohrleitungen pumpt. Da die Viskosität von Emulsionen ganz überwiegend von der des Dispersionsmittels bestimmt wird, handelt es sich hier um eine ÖI-in-Wasser-Emulsion. Die ÖI-in-Wasser Emulsion wird Emulsion wird erhalten, indem man dem Öl unter Anwendung von Scherkräften Wasser und Emulgator zusetzt und diese Mischung sodann in die Rohrleitung pumpt. In einem Absetztank, z. B. vor dem Eintritt in die Raffinerie, wird die Emulsion wieder in Öl und Wasser getrennt und das abgetrennte Öl der Raffinerie zugeführt. Der Emulgator soll in möglichst geringer Konzentration zu einer stabilen, leicht flüssigen ÖI-in-Wasser-Emulsion mit sehr hohem Ölanteil führen, was naturgemäß hohe Anforderungen an die einzusetzenden Emulgatoren stellt. Hohe Scherkräfte sind bei der Emulgierung ebenfalls zu vermeiden, da die Gefahr einer Inversion zu einer bei Schwerölen extrem hochviskosen Wasser-in-ÖI-Emulsion besteht. Die Emulsionen sollen außerdem stabil sein sowohl gegenüber höheren Salinitäten, wie sie bei vielen Lagerstättensystemen auftreten, als auch gegenüber höheren Temperaturen. Trotz ausreichender Stabilität der Emulsionen beim Fluß durch die Rohrleitung sollen sie sich möglichst unproblematisch wieder trennen lassen. Unerwünscht sind schwefelhaltige Emulgatoren, wenn es nicht gelingt, sie bei der Spaltung in der wäßrigen Phase zu halten.Another method of heavy oil transport consists in pumping the oil through the pipes in the form of a more or less easily liquid emulsion. Since the viscosity of emulsions is largely determined by that of the dispersing agent, this is an oil-in-water emulsion. The oil-in-water emulsion is obtained by adding water and emulsifier to the oil using shear forces and then pumping this mixture into the pipeline. In a settling tank, e.g. B. before entering the refinery, the emulsion is separated again in oil and water and the separated oil is fed to the refinery. The lowest possible concentration of the emulsifier should lead to a stable, slightly liquid oil-in-water emulsion with a very high oil content, which naturally places high demands on the emulsifiers to be used. High shear forces should also be avoided during emulsification, since there is a risk of inversion to a water-in-oil emulsion that is extremely highly viscous in heavy oils. The emulsions are also said to be stable both to higher salinities such as occur in many deposit systems and to higher temperatures. Despite the stability of the emulsions as they flow through the pipeline, they should be able to be separated again without any problems. Sulfur-containing emulsifiers are undesirable if they fail to be kept in the aqueous phase during the cleavage.
Die bisher vorgeschlagenen Emulgatoren erfüllen die genannten Bedingungen - noch nicht hinreichend. In vielen Fällen (z. B. US-Patentschriften 4 285 356, 4 265 264, 4 249 554) werden Emulsionen mit Ölgehalten von nur 50% genannt, was bedeutet, daß auf die Hälfte des Rohrleitungsvolumens verzichtet werden muß. In anderen Fällen (z. B. CA-Patentschriften 1 108 205, 1 113529. 1 117 568 sowie US-Patentschrift 4 246 919) ist die mit dem Emulgatorzusatz erreichte Viskositätserniedrigung trotz des relativ geringen Ölanteils gering. Und schließlich werden vielfach unerwünschte Emulgatoren auf Schwefelbasis eingesetzt.The previously proposed emulsifiers do not yet meet the stated conditions sufficiently. In many cases (e.g. US Pat. Nos. 4,285,356, 4,265,264, 4,249,554) emulsions with oil contents of only 50% are mentioned, which means that half of the pipeline volume has to be dispensed with. In other cases (eg CA patents 1 108 205, 1 113529, 1 117 568 and US Pat. No. 4 246 919) the viscosity reduction achieved with the emulsifier additive is small despite the relatively low oil content. Finally, undesirable sulfur-based emulsifiers are often used.
Es bestand daher die Aufgabe, für die Emulgierung von Schweröl zum Schweröltransport in Rohrleitungen Emulgatoren zu finden, die die erwähnten Nachteile nicht besitzen, sondern im wesentlichen dem oben beschriebenen Eigenschaftskatalog entsprechen.There was therefore the task of finding emulsifiers for the emulsification of heavy oil for transporting heavy oil in pipelines which do not have the disadvantages mentioned but essentially correspond to the property catalog described above.
Diese Aufgabe wird dadurch gelöst, daß man als Emulgatoren carboxymethylierte Oxyethylate der Formel
Vorteilhaft stellt man die carboxymethylierten Oxyethylate nach DE-PS 24 18 444 durch Umsetzung von Oxethylaten der Formel
Zweckmäßig können handelsübliche Gemische dieser Alkohole sein. Als Alkylphenole lassen sich z. B. einsetzen : Pentylphenol, Hexylphenol, Octylphenol, Nonylphenol, Dodecylphenol, Hexadecylphenol sowie die entsprechenden Dialkylphenole. Geeignet sind auch Alkylkresole und -Xylenole.Commercially available mixtures of these alcohols can be expedient. Can be used as alkylphenols e.g. B. Use: pentylphenol, hexylphenol, octylphenol, nonylphenol, dodecylphenol, hexadecylphenol and the corresponding dialkylphenols. Alkyl cresols and xylenols are also suitable.
Die Oxethylierung kann in Gegenwart katalytischer Mengen Alkalihydroxid durchgeführt werden, bekanntlich sind jedoch auch andere Verfahren möglich. Der Oxethylierungsgrad kann Werte zwischen 1 und 40, vorzugsweise zwischen 3 und 20, annehmen. Das Kation im carboxymethylierten Oxethylat mit der Formel
Die verwendeten Emulgatoren sind überwiegend anionisch, so daß eine unproblematische Spaltung der durch sie stabilisierten Emulsion angenommen werden kann. Die Verbindungen sind thermisch stabil und in extrem weiten Grenzen verträglich mit Salzwasser (US-PS 4457373). Weiterhin gestatten sie durch Variation des hydrophoben Restes und des Oxethylierungsgrades eine optimale Anpassung des Emulgators an das zu transportierende Öl und die gegebene Salinität des in den meisten Fällen aus der Lägerstätte mitgeförderten Wassers, das zweckmäßigerweise die wäßrige Phase der zu transportierenden Emulsion bildet.The emulsifiers used are predominantly anionic, so that an unproblematic cleavage of the emulsion stabilized by them can be assumed. The compounds are thermally stable and compatible with salt water within extremely wide limits (US Pat. No. 4,457,373). Furthermore, by varying the hydrophobic residue and the degree of oxyethylation, they allow the emulsifier to be optimally adapted to the oil to be transported and the given salinity of the water conveyed from the deposit in most cases, which advantageously forms the aqueous phase of the emulsion to be transported.
Entsprechend ihrer Herstellung können die carboxymethylierten Oxethylate nicht umgesetztes Oxethylat enthalten. Demgemäß läßt sich ein Carboxymethylierungsgrad definieren. Die Formel
Besonders wirksam sind Gemische mit einem Carboxymethylierungsgrad zwischen 85 und 100 %. Derartige Gemische bestehen demnach aus anionischem und nichtionischem Tensid und werden als carboxymethylierte Oxethylate gemäß der Erfindung betrachtet.Mixtures with a degree of carboxymethylation between 85 and 100% are particularly effective. Such mixtures accordingly consist of anionic and nonionic surfactant and are considered as carboxymethylated oxethylates according to the invention.
Die beschriebenen Gemische aus anionischem und nichtionischem Tensid oder die rein anionischen Verbindungen (Emulgator) sind in üblichen Lagerstättenwässern löslich oder zumindest problemlos dispergierbar.The mixtures of anionic and nonionic surfactant described or the purely anionic compounds (emulsifier) are soluble or at least easily dispersible in conventional reservoir waters.
In Vorversuchen kann der einzusetzende Emulgator entsprechend seiner chemischen Struktur auf das jeweils vorhandene Schweröl-Wasser-System optimal eingestellt werden.In preliminary tests, the emulsifier to be used can be optimally adjusted to the existing heavy oil-water system according to its chemical structure.
Die Tenside (Emulgatoren) einer homologen Reihe (vgl. Tabelle A) werden in dem betreffenden Wasser gelöst und mit dem betreffenden Schweröl vermischt und nach kurzzeitigem Rühren mit einem Flügelrührer ohne Anwendung hoher Scherkräfte auf ihre Emulgierwirkung geprüft und die Stabilität der Emulsion festgestellt. Diese Beurteilung der Emulsion wird ca. 24 Stunden später wiederholt und sodann gegebenenfalls die Viskosität in Abhängigkeit der Schergeschwindigkeit gemessen. Da Schwerölemulsionen etwas strukturviskos sind, wird für die Schergeschwindigkeit ein Bereich zwischen 10 und 100 sec-1 gewählt, wie er etwa dem Transport durch Rohrleitungen entspricht. Ein Tensid ist dann ein optimaler Emulgator, wenn die zur Emulgierung notwendige Menge möglichst gering ist.The surfactants (emulsifiers) of a homologous series (cf.Table A) are dissolved in the water in question and mixed with the heavy oil in question and, after briefly stirring with a paddle stirrer without using high shear forces, they are tested for their emulsifying action and the stability of the emulsion is determined. This assessment of the emulsion is repeated about 24 hours later and then the viscosity is measured as a function of the shear rate, if necessary. Since heavy oil emulsions are somewhat structurally viscous, a range between 10 and 100 sec- 1 is selected for the shear rate, which corresponds approximately to the transport through pipelines. A surfactant is an optimal emulsifier if the amount necessary for emulsification is as small as possible.
Die Menge liegt im allgemeinen bei 0,01 bis 0,5, insbesondere bei 0,03 bis 0,2 Gew.-%, bezogen auf die Ölmenge, das entspricht 100 bis 5 000, vorzugsweise 300 bis 2 000 ppm. Der Emulgator wird zur Schwerölverflüssigung entweder als Schmelze oder als wäßrige Lösung bzw. als Dispersion der ÖI-Wasser-Mischung zudosiert, oder auch dem Wasser zugegeben, das dann mit dem Öl vermischt wird. Unter Wasser wird hier entweder ein mehr oder minder salzhaltiges Wasser verstanden, das gemeinsam mit dem Schweröl produziert wird, oder es kann ein wohlfeil zur Verfügung stehendes Oberflächenwasser oder schließlich auch ein Gemisch aus beiden Wässern sein. Da Schwerölfelder häufig durch Dampffluten ausgebeutet werden, kann die Salinität des produzierten Wassers etwas schwanken, was nicht kritisch ist für das beanspruchte Verfahren.The amount is generally from 0.01 to 0.5, in particular from 0.03 to 0.2,% by weight, based on the amount of oil, which corresponds to 100 to 5,000, preferably 300 to 2,000 ppm. For heavy oil liquefaction, the emulsifier is metered in either as a melt or as an aqueous solution or as a dispersion of the oil-water mixture, or else it is added to the water, which is then mixed with the oil. Water here is understood to mean either a more or less saline water that is produced together with the heavy oil, or it can be a cheaply available surface water or, finally, a mixture of both waters. Since heavy oil fields are often exploited by steam flooding, the salinity of the water produced can fluctuate somewhat, which is not critical for the claimed process.
Statt den Emulgator in das Wasser zu dosieren, kann er auch dem Schweröl selbst zugefügt werden, zumal die hier beanspruchte Tensidklasse eine gute Öllöslichkeit zeigt. Unter Umständen kann es vorteilhaft sein, eine kleine Menge leichtflüssiges Kohlenwasserstoffgemisch als Lösevermittler zu verwenden. Die Vermischung der drei Komponenten zur Bildung der Emulsion, nämlich Öl, Wasser und Emulgator, kann entweder unmittelbar am Bohrloch oder in bzw. nahe einem Sammeltank oder an irgendeinem anderen Punkt des Rohrleitungssystems erfolgen. Das Mischungsverhältnis Öl zu Wasser kann in weiten Grenzen zwischen 10 : 90 und 90 : 10 schwanken. Aus wirtschaftlichen Gründen sind hohe Ölgehalte anzustreben, wobei zu berücksichtigen ist, daß sehr hohe Ölgehalte meist auch zu relativ hochviskosen ÖIIWasser-Emulsionen führen. Das wirtschaftliche Optimum liegt daher je nach System bei einem Ölgehalt zwischen 70 und 85 %. Die Emulgierung wird bekanntlich begünstigt durch Mischvorrichtungen wie Rührwerke, Kreiselpumpen, Statikmixer usw., die im Bedarfsfall verwendet werden. Die derart gebildete Emulsion wird durch das Rohrleitungssystem gefördert, das Zwischenstationen und zwischengeschaltete Lagerbehälter enthalten kann. Am Rohrleitungsendpunkt wird die Emulsion in einem Separator gespalten, wobei es von Vorteil sein kann, einen oder mehrere Desmulgatoren zuzusetzen. Das so entwässerte Rohöl wird abgezogen und sodann entweder der Raffinerie oder einem eventuellen Weitertransport, z. B. per Schiff, zugeführt.Instead of dosing the emulsifier into the water, it can also be added to the heavy oil itself, especially since the surfactant class claimed here shows good oil solubility. It may be advantageous to use a small amount of a light hydrocarbon mixture as a solubilizer. The mixing of the three components to form the emulsion, namely oil, water and emulsifier, can take place either directly at the borehole or in or near a collection tank or at any other point in the piping system. The mixture ratio of oil to water can vary within wide limits between 10:90 and 90:10. For economic reasons, high oil contents should be aimed at, although it must be taken into account that very high oil contents usually also lead to relatively highly viscous oil-water emulsions. Depending on the system, the economic optimum is between 70 and 85% oil. As is known, the emulsification is favored by mixing devices such as agitators, centrifugal pumps, static mixers, etc., which are used when necessary. The emulsion formed in this way is conveyed through the pipeline system, which can contain intermediate stations and intermediate storage containers. At the pipeline end point, the emulsion is split in a separator, and it may be advantageous to add one or more desmulsifiers. The crude oil dewatered in this way is drawn off and then either to the refinery or a possible further transport, e.g. B. supplied by ship.
In einem Glasgefäß oder Polyethylenbecher von ca. 200 ml Inhalt werden 75 g Boskan-Öl (ca. 10° API, Viskosität bei 20 °C ca. 180 000 mPa - s) und jeweils 25 g der genannten wäßrigen Tensidlösung, die außerdem noch Neutralelektrolyt enthält, bei Raumtemperatur mit einem einfachen Flügelrührer (ca. 100 Umdrehungen pro Minute) miteinander verrührt. Ist das hinzugefügte Tensid wirksam und seine Menge ausreichend, so ist eine einheitlich aussehende Emulsion entstanden. Sodann läßt man die Mischung ca. 24 Stunden bei Raumtemperatur stehen und untersucht erneut die Einheitlichkeit der Mischung, wobei - falls notwendig - etwas mit einem Glasstab gerührt wird. Hat sich eine leichtflüssige, einheitliche Emulsion gebildet, so wird die Viskosität - wie bereits geschildert - gemessen. Registriert wird die Mindestemulgatorkonzentration (Gewichtsprozent, bezogen auf die Ölmenge) des betreffenden Tensids, die zur Herstellung einer etwa stabilen Emulsion notwendig ist. « Etwas stabil bedeutet hierbei, daß bereits geringfügiges Rühren mit dem Glasstab dazu ausreicht, die ursprüngliche Einheitlichkeit, falls diese überhaupt eingebüßt wurde, wieder herzustellen.In a glass vessel or polyethylene beaker with a volume of approx. 200 ml, 75 g of Boskan oil (approx. 10 ° API, viscosity at 20 ° C approx. 180 000 mPa - s) and each 25 g of the aqueous surfactant solution mentioned, which also contains neutral electrolyte contains, stirred at room temperature with a simple paddle stirrer (approx. 100 revolutions per minute). If the added surfactant is effective and its amount is sufficient, a uniform-looking emulsion has been created. The mixture is then left to stand at room temperature for about 24 hours and the uniformity of the mixture is examined again, with stirring if necessary using a glass rod. If a smooth, uniform emulsion has formed, the viscosity is measured, as already described. The minimum emulsifier concentration (percent by weight, based on the amount of oil) of the surfactant in question is registered, which is necessary to produce an approximately stable emulsion. "Somewhat stable means that even slight stirring with the glass rod is sufficient to restore the original uniformity, if it has been lost at all.
Anhand der in den folgenden Tabellen zusammengefaßten Beispiele wird die allgemein hohe Wirksamkeit der carboxymethylierten Oxethylate als Schwerölemulgatoren demonstriert.The examples summarized in the following tables demonstrate the generally high effectiveness of the carboxymethylated oxethylates as heavy oil emulsifiers.
Wie in Tabelle A am Beispiel eines niedersalinaren Wassers (1 500 ppm NaCI) gezeigt, läßt sich die Wirksamkeit des Tensides mittels Variation der chemischen Struktur (Veränderung des EO-Grades) optimieren. Carboxymethylierte Nonylphenoloxyethylate mit einem EO-Grad von ca. 3,3 besitzen hier die höchste Wirksamkeit. Die Viskosität liegt mit ca. 100 mPa - s bei 20 °C - gefordert werden 100 mPa - s bei 37,7 °C - sehr niedrig.As shown in Table A using the example of lower saline water (1,500 ppm NaCl), the effectiveness of the surfactant can be optimized by varying the chemical structure (changing the degree of EO). Carboxymethylated nonylphenoloxyethylates with an EO degree of approx. 3.3 have the highest effectiveness here. The viscosity is approx. 100 mPa - s at 20 ° C - 100 mPa - s at 37.7 ° C are required - very low.
In Tabelle B wird die Wirkung der gleichen Tenside in Gegenwart eines hochsalinaren Wassers (50000 ppm NaCI) untersucht. Der EO-Grad der effektivsten Tenside liegt hier zwischen 5,5 und 6,0. Es überrascht die erheblich gesteigerte Wirksamkeit gegenüber den niedersalinaren Verhältnissen in Tabelle A.In Table B, the effect of the same surfactants in the presence of highly saline water (50,000 ppm NaCl) is examined. The EO grade of the most effective surfactants is between 5.5 and 6.0. The significantly increased effectiveness compared to the lower salinar conditions in Table A is surprising
Wie in Tabelle C im Vergleich zu Tabelle B gezeigt wird, ändert sich der EO-Grad der wirksamsten carboxymethylierten Oxethylate, wenn man den Nonylphenolrest durch Dodecylphenol ersetzt.As shown in Table C compared to Table B, the degree of EO of the most effective carboxymethylated oxethylates changes when the nonylphenol residue is replaced by dodecylphenol.
Wie Tabelle D im Vergleich zu Tabelle A demonstriert, beeinflußt auch die Substitution des Kations (Wasserstoff statt Natrium) in starkem Maße die Emulgiereigenschaften des Tensides, wobei die Strukturvariable hier wieder der EO-Grad ist. Für das optimale Tensid liegt er hier wesentlich höher, obwohl die Erniedrigung der Salinität der wäßrigen Phase eigentlich auch eine Erniedrigung des EO-Grades zur Folge haben sollte.As Table D demonstrates in comparison to Table A, the substitution of the cation (hydrogen instead of sodium) also has a strong influence on the emulsifying properties of the surfactant, the structural variable here again being the EO degree. For the optimal surfactant, it is much higher here, although the reduction in the salinity of the aqueous phase should actually also result in a reduction in the degree of EO.
In Tabelle E wird die Abhängigkeit der Emulgierwirksamkeit bei einem carboxymethylierten Nonylphenoloxethylat vom Carboxymethylierungsgrad dargestellt. Hierbei wird auch der Einfluß von Erdalkaliionen untersucht. Die Wirksamkeit nimmt mit steigendem Carboxymethylierungsgrad stark zu. Dies gilt auch in Gegenwart von Erdalkaliionen, die im übrigen die Emulgierwirkung bei gegebener hoher Basissalinität stärker abschwächen als zusätzliche Alkalihalogenide in gleicher Konzentration.Table E shows the dependence of the emulsifying activity in the case of a carboxymethylated nonylphenol oxethylate on the degree of carboxymethylation. The influence of alkaline earth ions is also examined. The effectiveness increases with increasing degree of carboxymethylation. This also applies in the presence of alkaline earth metal ions, which moreover weaken the emulsifying effect more than given additional alkaline halides in the same concentration given a high basic salinity.
Da Schweröl häufig mittels Dampf- und Heißwasserfluten gewonnen wird, muß mit variabler Salinität gerechnet werden. In Tabelle F ist eine dementsprechende Verdünnungsreihe der Salinität dargestellt. Es wird gezeigt, daß das hier getestete carboxymethylierte Oxethylat in sehr geringen Konzentrationen über einen weiten Salinitätsbereich von 10,2 bis 1,2% ein wirksamer Emulgator ist, der zu leichtflüssigen Emulsionen führt.Since heavy oil is often extracted using steam and hot water flooding, variable salinity must be expected. A corresponding series of dilutions of the salinity is shown in Table F. It is shown that the carboxymethylated oxethylate tested here, in very low concentrations, is an effective emulsifier over a wide salinity range of 10.2 to 1.2%, which leads to highly fluid emulsions.
Bekanntlich unterscheiden sich Schweröle stark in ihrer Zusammensetzung. Deshalb wurden Versuche analog zur Tabelle C mit einem weiteren Schweröl durchgeführt. Dieses besitzt eine Dichte von 12° API und enthält 30 % aromatische, 20 % napthenische sowie 50 % paraffinische Kohlenwasserstoffe. Die Viskosität bei 20 °C beträgt 70 000 mPa - s. Wie Tabelle G zeigt, lassen sich mit geringen Zugaben carboxymethylierter Oxethylate leicht-flüssige ÖI-in-Wasser-Emulsionen herstellen. Der EO-Grad der carboxymethylierten Nonylphenole, die zu einem Minimum der notwendigen Tensidkonzentration führen, liegt hier wesentlich höher als bei dem in Tabelle C untersuchten Schweröl.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3435430 | 1984-09-27 | ||
DE19843435430 DE3435430A1 (en) | 1984-09-27 | 1984-09-27 | METHOD FOR TRANSPORTING TOUGH-LIQUID RAW OILS |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0175879A2 EP0175879A2 (en) | 1986-04-02 |
EP0175879A3 EP0175879A3 (en) | 1987-02-04 |
EP0175879B1 true EP0175879B1 (en) | 1989-02-22 |
Family
ID=6246476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19850109481 Expired EP0175879B1 (en) | 1984-09-27 | 1985-07-27 | Transportation of viscous crude oils |
Country Status (4)
Country | Link |
---|---|
US (1) | US4736764A (en) |
EP (1) | EP0175879B1 (en) |
CA (1) | CA1242952A (en) |
DE (2) | DE3435430A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3607090A1 (en) * | 1986-03-05 | 1987-09-10 | Huels Chemische Werke Ag | METHOD FOR TRANSPORTING HEAVY OILS |
DE3609641A1 (en) * | 1986-03-21 | 1987-09-24 | Huels Chemische Werke Ag | METHOD FOR TRANSPORTING TOOL FLUIDS |
US4978365A (en) * | 1986-11-24 | 1990-12-18 | Canadian Occidental Petroleum Ltd. | Preparation of improved stable crude oil transport emulsions |
NO864988D0 (en) * | 1986-12-10 | 1986-12-10 | Dyno Industrier As | UPGRADING OF HEAVY GROWN OIL FRACTIONS FOR USE AS LIGHTING FUEL OILS OR DIESEL OILS AND UPGRADED OILS. |
US5354504A (en) * | 1991-08-19 | 1994-10-11 | Intevep, S.A. | Method of preparation of emulsions of viscous hydrocarbon in water which inhibits aging |
US5551956A (en) * | 1992-08-05 | 1996-09-03 | Kao Corporation | Superheavy oil emulsion fuel and method for generating deteriorated oil-in-water superheavy oil emulsion fuel |
US20060052836A1 (en) * | 2004-09-08 | 2006-03-09 | Kim Daniel H | Neurostimulation system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2183853A (en) * | 1934-12-22 | 1939-12-19 | Ig Farbenindustrie Ag | Polyoxyalkylene ether acid compounds containing a higher aliphatic group |
US3519006A (en) * | 1966-12-05 | 1970-07-07 | Ralph Simon | Pipelining oil/water mixtures |
US3491835A (en) * | 1967-12-29 | 1970-01-27 | Phillips Petroleum Co | Recovering,desalting,and transporting heavy crude oils |
US3467195A (en) * | 1968-04-25 | 1969-09-16 | Chevron Res | Pumping viscous crude |
US4249554A (en) * | 1979-01-26 | 1981-02-10 | Conoco, Inc. | Method of transporting viscous hydrocarbons |
CA1117568A (en) * | 1979-04-19 | 1982-02-02 | Thomas R. Sifferman | Method of transporting viscous hydrocarbons |
US4265264A (en) * | 1979-04-30 | 1981-05-05 | Conoco, Inc. | Method of transporting viscous hydrocarbons |
US4285356A (en) * | 1979-10-12 | 1981-08-25 | Conoco, Inc. | Method of transporting viscous hydrocarbons |
EP0047370B1 (en) * | 1980-09-10 | 1983-08-17 | Hüls Aktiengesellschaft | Process for the recovery of oil from a subterranean formation |
DE3105913C2 (en) * | 1981-02-18 | 1983-10-27 | Chemische Werke Hüls AG, 4370 Marl | Process for the extraction of oil from underground reservoirs by emulsion flooding |
ATE17772T1 (en) * | 1981-09-01 | 1986-02-15 | Huels Chemische Werke Ag | PROCESS FOR RECOVERING OIL FROM AN UNDERGROUND RESERVOIR. |
-
1984
- 1984-09-27 DE DE19843435430 patent/DE3435430A1/en not_active Withdrawn
-
1985
- 1985-07-27 EP EP19850109481 patent/EP0175879B1/en not_active Expired
- 1985-07-27 DE DE8585109481T patent/DE3568346D1/en not_active Expired
- 1985-09-25 CA CA000491508A patent/CA1242952A/en not_active Expired
- 1985-09-27 US US06/780,877 patent/US4736764A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA1242952A (en) | 1988-10-11 |
US4736764A (en) | 1988-04-12 |
EP0175879A3 (en) | 1987-02-04 |
DE3568346D1 (en) | 1989-03-30 |
EP0175879A2 (en) | 1986-04-02 |
DE3435430A1 (en) | 1986-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1644874C3 (en) | Method of conveying viscous crude oil through a pipeline | |
DE2753091C2 (en) | Process for the secondary production of petroleum | |
DE2609535A1 (en) | ANIONIC WETTING SYSTEM | |
EP0237724A2 (en) | Process for the transportation of viscous oils | |
EP0058371A1 (en) | Process for recovering oil from subterranen reservoirs by flooding, using an emulsion | |
DE2952244A1 (en) | METHOD FOR OBTAINING PETROLEUM FROM UNDERGROUND WAREHOUSES | |
DE3033927C2 (en) | Process for the extraction of largely emulsion-free oil from an underground deposit | |
EP0175879B1 (en) | Transportation of viscous crude oils | |
EP0117970A2 (en) | Process for recovering oil from rock formations | |
EP0235536B1 (en) | Process for the transportation of heavy oils | |
DE3235705C2 (en) | ||
DE1769290A1 (en) | Process for the production of emulsions | |
DE3634644C2 (en) | ||
DE3001387A1 (en) | Suspension of higher alkanol contg. emulsifier - and liq. hydrocarbon, as anti-foam in aq. system | |
DE69401273T2 (en) | AN EMULSION OF OIL IN WATER | |
DE69512812T2 (en) | Process for the transportation of highly viscous petroleum products | |
EP0272405B1 (en) | Process for an oil recovery from subterranean formations by surfactant flooding | |
EP0041626B1 (en) | Defoamer mixture of alkali salts of the dialkyl esters of sulfosuccinic acid and long-chained aliphatic alcohols and use of this mixture for skimming acid decomposition materials | |
EP0103696B1 (en) | Aqueous surfactant concentrates and process for the flow behaviour of viscous aqueous surfactant concentrates | |
Marszall | Cloud point and emulsion inversion point | |
DE69705491T2 (en) | Process for the extraction of heavy crude oils with salt-rich water | |
DE2744384C2 (en) | Process for improving oil displacement and viscosity in tertiary oil production | |
AT266014B (en) | Process for oil production | |
DE112022003437T5 (en) | Direct emulsion drilling fluid | |
DE1542875C (en) | Emulsifier for biocidal organic thiophosphoric acid esters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR IT NL |
|
17P | Request for examination filed |
Effective date: 19870115 |
|
17Q | First examination report despatched |
Effective date: 19871223 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT NL |
|
REF | Corresponds to: |
Ref document number: 3568346 Country of ref document: DE Date of ref document: 19890330 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19890731 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19900330 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19910201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920713 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940401 |