EP0175596B1 - Adaptive method for regulating the injection in an injection motor - Google Patents

Adaptive method for regulating the injection in an injection motor Download PDF

Info

Publication number
EP0175596B1
EP0175596B1 EP85401363A EP85401363A EP0175596B1 EP 0175596 B1 EP0175596 B1 EP 0175596B1 EP 85401363 A EP85401363 A EP 85401363A EP 85401363 A EP85401363 A EP 85401363A EP 0175596 B1 EP0175596 B1 EP 0175596B1
Authority
EP
European Patent Office
Prior art keywords
straight line
injection
regulating
dependence
richness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401363A
Other languages
German (de)
French (fr)
Other versions
EP0175596A1 (en
Inventor
Rémi Lefevre
Jean-Pierre Lagrue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regie Nationale des Usines Renault
Original Assignee
Regie Nationale des Usines Renault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regie Nationale des Usines Renault filed Critical Regie Nationale des Usines Renault
Publication of EP0175596A1 publication Critical patent/EP0175596A1/en
Application granted granted Critical
Publication of EP0175596B1 publication Critical patent/EP0175596B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2412One-parameter addressing technique
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to an adaptive method of regulating the injection of an injection engine, according to which the injection time (Ti) is permanently determined by conventional regulation as a function of the intake pressure (P) or of the air flow at the intake from a control line (D) defined by its slope (f) and its ordinate at the origin (b), apart from other possible corrections (c, c ' 7), and we periodically readjust, by successive adaptation cycles according to a determined period, the values of the slope (f) and the ordinate at the origin (b) of the regulation line as a function differences in possible wealth observed by an exhaust gas analysis probe, the pressure space being divided into a certain number (n) of zones to each of which corresponds a central value (P j ) of the pressure.
  • the parameters on the control line are corrected as follows: if the inlet pressure P is less than a determined threshold, a correction is applied only to the ordinate at the origin of the line , while if the pressure value is greater than this threshold, a correction is applied only to the slope of the line.
  • This process is therefore approximate. Indeed, if the current conditions are maintained, the recalculated line always ends up passing through the current operating point, but a local anomaly can distort the calculation of all the other points. In addition, this process only works with unit richness, while the problems of energy saving and pollution lead more and more to use wealth less than unity.
  • the object of the invention is to eliminate the above drawbacks by carrying out an adaptive method of regulating injection, the adaptation of which is more precise in all its points and less sensitive to local anomalies, while accommodating n ' no matter what periodicity.
  • FIG. 1 is a diagram of the control lines in the pressure / time space
  • FIG. 2 represents the flow diagram of the process.
  • the injection time T is permanently determined ; by a conventional regulation as a function of the intake pressure P, or even in certain cases, of the air flow at the intake measured by a flow meter, and from a regulation line which can be expressed by the equation: c, c '... being corrections according to measured parameters, such as water temperature, air temperature, etc. and f being the scale coefficient.
  • the denominators 256 are arbitrary values preferably corresponding to the storage capacity of a byte so that the low correction values are reduced to integer values.
  • the values f and b can be considered as representing respectively the slope and the ordinate at the origin of the control line, without taking into account the other corrections.
  • the values of f and b are readjusted periodically as a function of the differences in richness observed by an exhaust gas analysis probe. It can be a Lambda zirconium oxide probe sensitive to an excess of oxygen, or any other probe or analysis method.
  • the signal from the probe immediately indicates whether the richness should be increased or reduced , i.e. the injection time.
  • the engine operates with a constant or variable richness depending on the circumstances but less than unity, for example 0.8, as it is. more and more frequently the use according to European standards in order to reduce consumption and pollution, the value of the correction is a little more complex to establish.
  • overinjection process described in the aforementioned French patent, which consists, with each adaptation cycle, of gradually increasing the injection time until the analysis probe switches, then to quickly return to the previous wealth. If for example the richness is fixed at 0.8, it suffices, from the current injection time, to increase it by 25% to theoretically obtain this changeover. If this changeover takes place sooner or later, a simple rule of three gives the value of the correction to be made.
  • the theoretical operating point M is thus determined from point A with the same abscissa on the current operating line D by a corrective term a such that the ordinate of N is equal to the ordinate of A multiplied by (1 + ⁇ ).
  • the known method of over-injection also includes measures to prevent the incursion into higher wealth, although brief, from introducing a jerk into the operation of the vehicle, and this by temporarily altering the ignition advance of proportionately.
  • Each adaptation cycle therefore determines a theoretical operating point M at the abscissa P corresponding to the current inlet pressure. If this point M is on the regulation line D, of course there is no correction to be made. If, on the contrary, the point is outside the line, it may be necessary to correct it.
  • a medium pressure threshold is determined, and if the current pressure P is less than this threshold, only the ordinate is corrected at l origin b of the line D without modifying the slope f of this line so that it progressively passes through the theoretical point M, whereas on the contrary, if this pressure is greater than the threshold, only the slope f is corrected without modifying the ordinate at the origin b so that this straight line progressively passes through the new point M.
  • This process is therefore simple but not very precise and is very sensitive to possible local anomalies.
  • the space of pressures P is divided into a certain number n of zones, for example four in the example of FIG. 1, and for each zone of rank j the average pressure P j is defined corresponding to the abscissa of the center of the zone.
  • the ideal initial regulation line D o is determined , the parameters f o and b o of which are loaded into read-only memories.
  • the parameters f and b of the current regulation line D are loaded into random access memories and contain the values resulting from the previous use. Failing this, that is to say in the event of erasing the RAMs, they are loaded with the values f o and b o .
  • the adaptation cycles follow one another, which can be relatively short (a fraction of a second) if unit richness is used, and which have an interest in being more spaced apart, for example 10 minutes, if one uses a richness lower than the unit and the method of overinjection for the reason indicated above.
  • the current intake pressure P is measured and the number j of the zone in which this pressure P is found is determined. For this, we usually operates digitally and just perform a full division or rounding.
  • ⁇ j For the value of j calculated at the start of the cycle, the value indicated in FIG. 2 is calculated and assigned to the memory ⁇ j , value which results from a purely linear expression as a function of ⁇ , since 1 / f o and 1 / f o Pj are constants, as well as b o , while f and b are the current values in RAM of the parameters of the regulation line D.
  • This purely linear calculation is therefore quick and easy. Of course, it affects only the ⁇ j, while the other ⁇ i , for i different from j remain at their former value.
  • the regulation of the injection time continues with the new values of the parameters f and b of the regulation line, while independently the adaptation cycle continues with a waiting loop for the fixed period before starting again at the beginning of the cycle.
  • the calculator uses only a few variables: P, j, a, f, b, ⁇ i (n values) and few constants: 1 / f o , 1 / f o P j , b o , k i (n values), k '(n values), richness, periodicity.
  • the calculations are extremely simple, since they are all linear and with a small number of terms, and nevertheless precise enough to ensure rapid convergence possibly accommodating a high cycle period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

L'invention concerne un procédé adaptatif de régulation de l'injection d'un moteur à injection, selon lequel on détermine en permanence le temps d'injection (Ti) par une régulation classique en fonction de la pression d'admission (P) ou du débit d'air à l'admission à partir d'une droite de régulation (D) définie par sa pente (f) et son ordonnée à l'origine (b), abstraction faite d'autres corrections éventuelles (c, c'...), et l'on réajuste périodiquement, par cycles d'adaptation successifs selon une période déterminée, les valeurs de la pente (f) et de l'ordonnée à l'origine (b) de la droite de régulation en fonction des écarts de richesses éventuels constatés par une sonde d'analyse des gaz d'échappement, l'espace des pressions étant divisé en un certain nombre (n) de zones à chacune desquelles correspond une valeur centrale (Pj) de la pression.The invention relates to an adaptive method of regulating the injection of an injection engine, according to which the injection time (Ti) is permanently determined by conventional regulation as a function of the intake pressure (P) or of the air flow at the intake from a control line (D) defined by its slope (f) and its ordinate at the origin (b), apart from other possible corrections (c, c ' ...), and we periodically readjust, by successive adaptation cycles according to a determined period, the values of the slope (f) and the ordinate at the origin (b) of the regulation line as a function differences in possible wealth observed by an exhaust gas analysis probe, the pressure space being divided into a certain number (n) of zones to each of which corresponds a central value (P j ) of the pressure.

Il est connu de déterminer en permanence le temps d'injection par une régulation classique en fonction de la pression dans le collecteur d'admission, ou encore du débit d'air à l'admission, à partir d'une droite de régulation définie par sa pente et son ordonnée à l'origine dans le diagramme des temps d'injection en fonction des pressions. Ces valeurs sont calculées au plus juste pendant la période de mise au point du moteur ; mais il est connu qu'elles varient aléatoirement au cours du temps en fonction de paramètres divers, par exemple le colmatage du filtre à air qui réduit le débit d'air pour une même pression. Il est donc nécessaire pour une régulation précise de réajuster périodiquement les paramètres de cette droite de régulation.It is known to permanently determine the injection time by conventional regulation as a function of the pressure in the intake manifold, or also of the air flow at the intake, from a regulation line defined by its slope and its ordinate at the origin in the diagram of the injection times as a function of the pressures. These values are calculated as accurately as possible during the engine development period; but it is known that they vary randomly over time as a function of various parameters, for example the clogging of the air filter which reduces the air flow for the same pressure. It is therefore necessary for precise regulation to periodically readjust the parameters of this regulation line.

Pour cela, il existe un procédé, dit « procédé américain », décrit notamment dans l'article « A Closed-Loop A/F Control Model for Internai Combustion Engines » de Douglas R. HAMBOURG et Michael A. SHULMAN, publié en 1980 par la « Society of Automotive Engineers, Inc. » Ce procédé consiste à utiliser une sonde dite « sonde Lambda d'analyse des gaz d'échappement qui donne un signal qui varie lorsque fon a un défaut d'oxygène dans les gaz d'échappement, ce qui témoigne d'une richesse franchissant la valeur 1 correspondant au mélange stoechiométrique. Lorsque cela se produit, on corrige les paramètres à la droite de régulation de la manière suivante : si la pression P à l'admission est inférieure à un seuil déterminé, on applique une correction seulement sur l'ordonnée à l'origine de la droite, tandis que si la valeur de la pression est supérieure à ce seuil, on applique une correction uniquement sur la pente de la droite. Ce procédé est donc approximatif. En effet, si les conditions actuelles se maintiennent, la droite recalculée finit toujours par passer par le point de fonctionnement actuel, mais une anomalie locale peut fausser la calcul de tous les autres points. En outre, ce procédé ne fonctionne qu'avec une richesse unité, alors que les problèmes d'économie d'énergie et de pollution conduisent de plus en plus à utiliser des richesses inférieures à l'unité.For this, there is a process, called "American process", described in particular in the article "A Closed-Loop A / F Control Model for Internai Combustion Engines" by Douglas R. HAMBOURG and Michael A. SHULMAN, published in 1980 by the "Society of Automotive Engineers, Inc." This process consists in using a probe known as "Lambda probe of analysis of exhaust gases which gives a signal which varies when fon has a lack of oxygen in the exhaust gases, which testifies to a richness crossing the value 1 corresponding to the stoichiometric mixture. When this occurs, the parameters on the control line are corrected as follows: if the inlet pressure P is less than a determined threshold, a correction is applied only to the ordinate at the origin of the line , while if the pressure value is greater than this threshold, a correction is applied only to the slope of the line. This process is therefore approximate. Indeed, if the current conditions are maintained, the recalculated line always ends up passing through the current operating point, but a local anomaly can distort the calculation of all the other points. In addition, this process only works with unit richness, while the problems of energy saving and pollution lead more and more to use wealth less than unity.

On connaît par ailleurs le procédé dit « de surinjection », décrit dans la demande de brevet français 8317538 au nom de la demanderesse, et qui consiste, lorsque l'injection est régulée à une richesse inférieure à l'unité, à effectuer périodiquement une augmentation progressive de la richesse jusqu'à ce que l'on obtienne le déclenchement de la sonde d'analyse des gaz, puis à revenir à la richesse initiale en conservant la valeur de l'augmentation relative du temps d'injection qui a été ainsi nécessaire, laquelle, comparée à l'augmentation théorique résultant de la richesse voulue, donne la correction nécessaire. La demande de brevet susvisée indique comment on peut éviter les à-coups résultants de cette incursion momentanée en richesse par action sur l'avance à l'allumage. Toutefois, ces surinjections doivent être suffisamment espacées dans le temps, avec une période par exemple de 10 minutes.We also know the process called "overinjection", described in French patent application 8317538 in the name of the applicant, and which consists, when the injection is regulated at a richness less than unity, to periodically increase progressive richness until the gas analysis probe is triggered, then return to the initial richness while retaining the value of the relative increase in injection time which was thus necessary , which, compared to the theoretical increase resulting from the desired wealth, gives the necessary correction. The aforementioned patent application indicates how the jolts resulting from this momentary foray into wealth can be avoided by action on the ignition advance. However, these over-injections must be sufficiently spaced in time, with a period for example of 10 minutes.

On pourrait naturellement en fonction de cet état de la technique envisager d'utiliser le procédé américain, même avec une richesse inférieure à 1, en le combinant avec le procédé de surinjection. Cependant, dans ce cas, le manque de précision de ce procédé américain serait encore accrû par l'augmentation importante de la période de réajustement due au procédé de surinjection.One could naturally depending on this state of the art consider using the American process, even with a richness less than 1, by combining it with the over-injection process. However, in this case, the lack of precision of this American process would be further increased by the significant increase in the readjustment period due to the over-injection process.

Le but de l'invention est d'éliminer les inconvénients précédents en réalisant un procédé adaptatif de régulation de l'injection dont l'adaptation soit plus précise en tous ses points et moins sensibles aux anomalies locales, tout en s'accommodant de n'importe quelle périodicité.The object of the invention is to eliminate the above drawbacks by carrying out an adaptive method of regulating injection, the adaptation of which is more precise in all its points and less sensitive to local anomalies, while accommodating n ' no matter what periodicity.

L'invention est caractérisée par le fait qu'à chaque cycle d'adaptation d'une période fixée, après avoir déterminé un point théorique (M) de fonctionnement du moteur, d'abscisse (P) correspondant à la pression d'admission actuelle mesurée, ainsi que le numéro de zone correspondant (j), on effectue successivement les opérations suivantes :

  • - en fonction des indications de la sonde et de la richesse désirée, on détermine le facteur correctif (1 + a) par rapport à la droite de régulation actuelle (D) ; en confondant la valeur mesurée (P) de la pression d'admission avec la valeur la plus voisine (Pj) du centre de la zone dans laquelle se trouve (P).
  • - on calcule et on attribue individuellement pour chaque zone un facteur correctif (βj), par rapport à une droite initiale (Do, fo, bo) définie en mémoire morte, par un calcul purement linéaire en fonction du facteur correctif (1 + α) défini précédemment, et en fonction des paramètres (f, b) de la droite actuelle, tel que
Figure imgb0001
  • - en fonction des diverses valeurs (βi) en mémoire vive de ce dernier paramètre correctif, on calcule et on attribue de nouvelles valeurs des paramètres (f, b) de la droite de régulation (D) par des formules purement linéaires telles que :
    Figure imgb0002
    Figure imgb0003
    bo, k; et k'; étant des coefficients de pondération constants en mémoire morte,
  • - les coefficients de pondération (ki, k';), utilisés pour le calcul des paramètres (f, b) de la droite de régulation au cours de chaque cycle d'adaptation, étant déterminés de manière que cette droite passe le plus près possible de tous les points théoriques (M) de fonctionnement définis à chaque cycle d'adaptation.
The invention is characterized in that at each adaptation cycle of a fixed period, after having determined a theoretical point (M) of engine operation, of abscissa (P) corresponding to the current intake pressure measured, as well as the corresponding zone number (j), the following operations are carried out successively:
  • - according to the indications of the probe and the desired richness, the corrective factor (1 + a) is determined relative to the current regulation line (D); by confusing the measured value (P) of the intake pressure with the closest value (P j ) from the center of the zone in which is located (P).
  • - a corrective factor (β j ), relative to an initial straight line (D o , f o , b o ) defined in read-only memory, is calculated and individually assigned for each zone, by a purely linear calculation as a function of the corrective factor ( 1 + α) defined previously, and according to the parameters (f, b) of the current line, such that
Figure imgb0001
  • - as a function of the various values (β i ) in random access memory of this last corrective parameter, new values of the parameters (f, b) of the control line (D) are calculated and assigned by purely linear formulas such as:
    Figure imgb0002
    Figure imgb0003
    b o , k ; and k '; being constant weighting coefficients in read-only memory,
  • - the weighting coefficients (k i , k '; ), used for the calculation of the parameters (f, b) of the control line during each adaptation cycle, being determined so that this line passes closest possible for all theoretical operating points (M) defined in each adaptation cycle.

D'autres particularités apparaîtront dans la description qui va suivre d'un mode de mise en oeuvre pris comme exemple et représenté sur le dessin annexé, sur lequel :Other particularities will appear in the description which follows of an embodiment taken as an example and represented in the appended drawing, in which:

la figure 1 est un diagramme des droites de régulation dans l'espace pression/temps, etFIG. 1 is a diagram of the control lines in the pressure / time space, and

la figure 2 représente l'organigramme du procédé.FIG. 2 represents the flow diagram of the process.

Tant que le moteur fonctionne, et a un régime supérieur à celui du ralenti, on détermine en permanence le temps d'injection T; par une régulation classique en fonction de la pression d'admission P, ou encore dans certains cas, du débit d'air à l'admission mesuré par un débitmètre, et à partir d'une droite de régulation que l'on peut exprimer par l'équation :

Figure imgb0004
Figure imgb0005
c, c'... étant des corrections en fonction de paramètres mesurés, tels que température de l'eau, température de l'air, etc. et f étant le coefficient d'échelle. Les dénominateurs 256 sont des valeurs arbitraires correspondant de préférence à la capacité de stockage d'un octet pour que les faibles valeurs de correction soient ramenées à des valeurs entières. Les valeurs f et b peuvent être considérées comme représentant respectivement la pente et l'ordonnée à l'origine de la droite de régulation, compte non tenu des autres corrections.As long as the engine is running, and at a higher speed than that of the idle, the injection time T is permanently determined ; by a conventional regulation as a function of the intake pressure P, or even in certain cases, of the air flow at the intake measured by a flow meter, and from a regulation line which can be expressed by the equation:
Figure imgb0004
Figure imgb0005
c, c '... being corrections according to measured parameters, such as water temperature, air temperature, etc. and f being the scale coefficient. The denominators 256 are arbitrary values preferably corresponding to the storage capacity of a byte so that the low correction values are reduced to integer values. The values f and b can be considered as representing respectively the slope and the ordinate at the origin of the control line, without taking into account the other corrections.

En outre, et c'est en cela que le procédé de régulation est adaptatif, on réajuste périodiquement les valeurs de f et b en fonction des écarts de richesse constatés par une sonde d'analyse des gaz d'échappement. Il peut s'agir d'une sonde dite Lambda à l'oxyde de zirconium sensible à un excès d'oxygène, ou de toute autre sonde ou procédé d'analyse.In addition, and this is why the regulation process is adaptive, the values of f and b are readjusted periodically as a function of the differences in richness observed by an exhaust gas analysis probe. It can be a Lambda zirconium oxide probe sensitive to an excess of oxygen, or any other probe or analysis method.

Si le moteur fonctionne avec une richesse unité, c'est-à-dire en mélange stoechiométrique, selon les normes les plus fréquentes en usage aux Etats-Unis, le signal de la sonde indique immédiatement si l'on doit augmenter ou réduire la richesse, c'est-à-dire le temps d'injection.If the engine operates with a unit richness, that is to say in stoichiometric mixture, according to the most frequent standards in use in the United States, the signal from the probe immediately indicates whether the richness should be increased or reduced , i.e. the injection time.

Si au contraire, le moteur fonctionne avec une richesse constante ou variable selon les circonstances mais inférieure à l'unité, par exemple de 0.8, comme c'est de. plus en plùs fréquemment l'usage selon les normes européennes afin de réduire la consommation et la pollution, la valeur de la correction est un peu plus complexe à établir. On peut en particulier utiliser le procédé dit de surinjection, décrit dans le brevet français susvisé, et qui consiste, à chaque cycle d'adaptation, à accroître progressivement le temps d'injection jusqu'à ce que la sonde d'analyse bascule, puis à revenir rapidement à la richesse précédente. Si par exemple la richesse est fixée à 0.8, il suffit, à partir du temps d'injection actuel, de l'augmenter de 25 % pour obtenir théoriquement ce basculement. Si ce basculement a lieu plus tôt ou plus tard, une simple règle de trois donne la valeur de la correction à apporter.If on the contrary, the engine operates with a constant or variable richness depending on the circumstances but less than unity, for example 0.8, as it is. more and more frequently the use according to European standards in order to reduce consumption and pollution, the value of the correction is a little more complex to establish. We can in particular use the so-called overinjection process, described in the aforementioned French patent, which consists, with each adaptation cycle, of gradually increasing the injection time until the analysis probe switches, then to quickly return to the previous wealth. If for example the richness is fixed at 0.8, it suffices, from the current injection time, to increase it by 25% to theoretically obtain this changeover. If this changeover takes place sooner or later, a simple rule of three gives the value of the correction to be made.

Sur le diagramme de la figure 1, le point théorique de fonctionnement M est ainsi déterminé à partir du point A de même abscisse sur la droite de fonctionnement actuelle D par un terme correctif a tel que l'ordonnée de N soit égale à l'ordonnée de A multipliée par (1 + α). Le procédé connu de surinjection comprend en outre des mesures pour éviter que l'incursion en richesses supérieures, bien que brève, n'introduise un à-coup dans le fonctionnement du véhicule, et ce en altérant momentanément l'avance à l'allumage de façon proportionnée.On the diagram of FIG. 1, the theoretical operating point M is thus determined from point A with the same abscissa on the current operating line D by a corrective term a such that the ordinate of N is equal to the ordinate of A multiplied by (1 + α). The known method of over-injection also includes measures to prevent the incursion into higher wealth, although brief, from introducing a jerk into the operation of the vehicle, and this by temporarily altering the ignition advance of proportionately.

Chaque cycle d'adaptation détermine donc un point théorique M de fonctionnement à l'abscisse P correspondant à la pression actuelle de l'admission. Si ce point M est sur la droite de régulation D, naturellement il n'y a aucune correction à apporter. Si au contraire le point est en dehors de la droite, il peut être nécessaire de corriger celle-ci.Each adaptation cycle therefore determines a theoretical operating point M at the abscissa P corresponding to the current inlet pressure. If this point M is on the regulation line D, of course there is no correction to be made. If, on the contrary, the point is outside the line, it may be necessary to correct it.

Pour cela, selon l'état de la technique, et en particulier selon le procédé américain indiqué plus haut, on détermine un seuil de pression moyenne, et si la pression actuelle P est inférieure à ce seuil, on corrige uniquement l'ordonnée à l'origine b de la droite D sans modifier la pente f de cette droite de manière qu'elle passe progressivement par le point théorique M, alors qu'au contraire, si cette pression est supérieure au seuil, on corrige uniquement la pente f sans modifier l'ordonnée à l'origine b de manière que cette droite passe progressivement par le nouveau point M. Ce procédé est donc simple mais peu précis et est très sensible aux anomalies locales possibles.For this, according to the state of the art, and in particular according to the American method indicated above, a medium pressure threshold is determined, and if the current pressure P is less than this threshold, only the ordinate is corrected at l origin b of the line D without modifying the slope f of this line so that it progressively passes through the theoretical point M, whereas on the contrary, if this pressure is greater than the threshold, only the slope f is corrected without modifying the ordinate at the origin b so that this straight line progressively passes through the new point M. This process is therefore simple but not very precise and is very sensitive to possible local anomalies.

Au contraire, selon l'invention, on divise l'espace des pressions P en un certain nombre n de zones, par exemple quatre dans l'exemple de la figure 1, et pour chaque zone de rang j on définit la pression moyenne Pj correspondant à l'abscisse du centre de la zone.On the contrary, according to the invention, the space of pressures P is divided into a certain number n of zones, for example four in the example of FIG. 1, and for each zone of rank j the average pressure P j is defined corresponding to the abscissa of the center of the zone.

Lors de la mise au point du moteur, on détermine la droite de régulation initiale idéale Do, dont les paramètres fo et bo sont chargés en mémoires mortes. Au contraire, les paramètres f et b de la droite de régulation actuelle D sont chargés en mémoires vives et contiennent les valeurs résultant de l'utilisation antérieure. A défaut, c'est-à-dire en cas d'effacement des mémoires vives, celles-ci sont chargées avec les valeurs fo et bo.During the development of the engine, the ideal initial regulation line D o is determined , the parameters f o and b o of which are loaded into read-only memories. On the contrary, the parameters f and b of the current regulation line D are loaded into random access memories and contain the values resulting from the previous use. Failing this, that is to say in the event of erasing the RAMs, they are loaded with the values f o and b o .

Les cycles d'adaptation se succèdent à une période qui peut être relativement courte (une fraction de secondes) si l'on utilise la richesse unité, et qui ont intérêt à être plus espacés, par exemple de 10 minutes, si l'on utilise une richesse inférieure à l'unité et le procédé de surinjection pour la raison indiquée plus haut.The adaptation cycles follow one another, which can be relatively short (a fraction of a second) if unit richness is used, and which have an interest in being more spaced apart, for example 10 minutes, if one uses a richness lower than the unit and the method of overinjection for the reason indicated above.

A chaque nouveau cycle d'adaptation, illustré par l'organigramme de la figure 2, on mesure la pression d'admission actuelle P et l'on détermine le numéro j de la zone dans laquelle se trouve cette pression P. Pour cela, on opère habituellement par voie numérique et il suffit d'effectuer une division entière ou un arrondi.At each new adaptation cycle, illustrated by the flow diagram of FIG. 2, the current intake pressure P is measured and the number j of the zone in which this pressure P is found is determined. For this, we usually operates digitally and just perform a full division or rounding.

Ayant déterminé j, on procède à l'analyse du signal de la sonde et au calcul du terme correctif 1 + α par rapport à la droite de régulation actuelle D. Ceci implique en particulier, dans le cas d'utilisation d'une richesse inférieure à l'unité, l'application du procédé de surinjection dans son ensemble. C'est en effet à partir du point A que l'on opère l'incursion en richesses jusqu'au point M et retour au point A, le rapport des ordonnées de M et de A, comparé à la richesse fixée, permettant de déterminer directement 1 + a. Ces calculs sont effectués en confondant la valeur P de la pression avec la valeur la plus voisine, par exemple P2 dans l'exemple de la figure 1 si j = 2.Having determined j, we proceed to the analysis of the signal from the probe and to the calculation of the corrective term 1 + α with respect to the current regulation line D. This implies in particular, in the case of using a lower richness individually, the application of the over-injection process as a whole. It is indeed from point A that the wealth incursion is carried out up to point M and return to point A, the ratio of the ordinates of M and A, compared to the fixed wealth, making it possible to determine directly 1 + a. These calculations are carried out by confusing the value P of the pressure with the closest value, for example P2 in the example of FIG. 1 if j = 2.

On dispose par ailleurs de n mémoires vives contenant diverses valeurs de βj, j variant de 1 à n, les coefficients β étant définis comme les coefficients a mais à partir de la droite de régulation initiale Do. En d'autres termes, on passe du point B sur cette droite au point M en multipliant les ordonnées par le facteur 1 + β.There are also n random access memories containing various values of β j, j varying from 1 to n, the coefficients β being defined as the coefficients a but from the initial regulation line D o . In other words, we pass from point B on this straight line to point M by multiplying the ordinates by the factor 1 + β.

Pour la valeur de j calculée en début de cycle, on calcule et on attribue à la mémoire βj la valeur indiquée sur la figure 2,

Figure imgb0006
valeur qui résulte d'une expression purement linéaire en fonction de α, puisque 1/fo et 1/foPj sont des constantes, ainsi que bo, tandis que f et b sont les valeurs actuelles en mémoires vives des paramètres de la droite de régulation D. Ce calcul purement linéaire est donc facile et rapide. Bien entendu, il n'affecte que le βj, tandis que les autres βi, pour i différent de j demeurent à leur ancienne valeur.For the value of j calculated at the start of the cycle, the value indicated in FIG. 2 is calculated and assigned to the memory β j ,
Figure imgb0006
value which results from a purely linear expression as a function of α, since 1 / f o and 1 / f o Pj are constants, as well as b o , while f and b are the current values in RAM of the parameters of the regulation line D. This purely linear calculation is therefore quick and easy. Of course, it affects only the β j, while the other β i , for i different from j remain at their former value.

En poursuivant le cycle d'adaptation, on calcule alors et on attribue aux mémoires f et b des valeurs également purement linéaires s'exprimant en fonction des βi, pour toutes les valeurs de i de 1 à n, avec des coefficients de pondération kj et k'i :

Figure imgb0007
Figure imgb0008
Continuing the adaptation cycle, we then calculate and assign to the memories f and b also purely linear values expressing themselves as a function of β i, for all the values of i from 1 to n, with weighting coefficients k j and k ' i :
Figure imgb0007
Figure imgb0008

Ces 2n constantes kj et k' sont naturellement contenues en mémoires mortes et sont déterminées, expérimentalement ou par le calcul, de telle manière que la nouvelle droite D ainsi déterminée passe le plus près possible de tous les points tels que M précédemment calculés.These 2n constants k j and k 'are naturally contained in read-only memories and are determined, experimentally or by calculation, in such a way that the new line D thus determined passes as close as possible to all the points such as M previously calculated.

La régulation du temps d'injection se poursuit avec les nouvelles valeurs des paramètres f et b de la droite de régulation, tandis qu'indépendamment le cycle d'adaptation se poursuit par une boucle d'attente de la période fixée avant de recommencer au début du cycle.The regulation of the injection time continues with the new values of the parameters f and b of the regulation line, while independently the adaptation cycle continues with a waiting loop for the fixed period before starting again at the beginning of the cycle.

Au cours du fonctionnement du moteur, la pression d'admission P varie naturellement et passe plus ou moins fréquemment par toutes les valeurs de l'espace prévu, ce qui permet d'actualiser successive- . ment et périodiquement les divers points correspondant aux diverses zones. Mais il est clair que chaque cycle d'adaptation tient compte non seulement du point de fonctionnement M de la zone j considérée, mais également de tous les autres points calculés précédemment, c'est-à-dire de l'historique qui précède. En particulier, chaque nouvelle droite D ne passe en général pas par tous les points mais atténue par conséquent l'influence des anomalies locales éventuelles.During the operation of the engine, the intake pressure P naturally varies and passes more or less frequently through all the values of the space provided, which makes it possible to update successively. periodically the various points corresponding to the various zones. But it is clear that each adaptation cycle takes into account not only the operating point M of the zone j considered, but also all of the other points calculated previously, that is to say the history which precedes. In particular, each new straight line D does not generally pass through all the points but consequently attenuates the influence of any local anomalies.

Le calculateur n'utilise que peu de variables : P, j, a, f, b, βi (n valeurs) et peu de constantes : 1/fo, 1/foPj, bo, ki (n valeurs), k' (n valeurs), richesse, périodicité. De plus, les calculs sont extrêmement simples, puisque tous linéaires et à petit nombre de termes, et néanmoins assez précis pour assurer une convergence rapide s'accommodant éventuellement d'une période de cycle élevée.The calculator uses only a few variables: P, j, a, f, b, β i (n values) and few constants: 1 / f o , 1 / f o P j , b o , k i (n values), k '(n values), richness, periodicity. In addition, the calculations are extremely simple, since they are all linear and with a small number of terms, and nevertheless precise enough to ensure rapid convergence possibly accommodating a high cycle period.

Naturellement, le procédé s'applique indifféremment au mélange stoechiométrique ou aux richesses différentes de l'unité, même variables comme on l'a vu, et il est toujours possible de lui adjoindre une pondération supplémentaire en n'effectuant chaque fois qu'une fraction des corrections calculées, ou encore en augmentant les coefficients que d'une unité à la fois dans le sens calculé, et ceci d'une manière connue. Ainsi, entre deux cycles d'adaptation au cours desquels on a déterminé les numéros (n et n + 1) respectivement des zones où se trouve la pression d'admission P mesurée, on peut faire varier les paramètres f et b de la droite de régulation D suivant une courbe de type passe-bas :

Figure imgb0009
Figure imgb0010
Figure imgb0011
Naturally, the process applies equally to the stoichiometric mixture or to the different riches of the unit, even variables as we have seen, and it is always possible to add a additional weighting by performing only a fraction of the calculated corrections each time, or by increasing the coefficients only by one unit at a time in the calculated direction, and this in a known manner. Thus, between two adaptation cycles during which the numbers (n and n + 1) of the zones where the measured intake pressure P is measured are determined respectively, the parameters f and b of the line of regulation D according to a low-pass type curve:
Figure imgb0009
Figure imgb0010
Figure imgb0011

Claims (4)

1. An adaptive process for regulating the injection of an injection engine comprising permanently determining the injection time (Ti) by conventional regulation in dependence on the intake pressure (P) or the intake air flow rate from a regulating straight line (D) defined by its slope (f) and its ordinate at the origin (b), disregarding other possible corrections (c, c'...), and re-adjusting periodically by successive adaptation cycles in accordance with a predetermined period, the values of the slope (f) and the ordinate at the origin (b) of the regulating straight line in dependence on any differences in richness detected by an exhaust gas analysing probe, the space of the pressures being divided into a certain number (n) of zones, to each of which corresponds a central value (Pj) of the pressure, the process being characterised in that in each adaptation cycle of a fixed period, after having determined a theoretical point (M) of operation of the engine, of an abscissa (P) corresponding to the current intake pressure measured, as well as the corresponding zone number (j), the following operations are successively performed :
- in dependence on the indications from the probe and the desired richness, determining the corrective factor (1 + a) with respect to the current regulating straight line (D) ; by merging the measured value (P) of the intake pressure with the closest value (Pj) of the centre of the zone in which (P) occurs,
- calculating and individually attributing for each zone a corrective factor (pj), with respect to an initial straight line (Do, fo, bo) which is defined in a read only memory, by a purely linear calculation in dependence on the previously defined corrective factor (1 + a) and in dependence on the parameters (f, b) of the current straight line, such that :
Figure imgb0017
- in dependence on the various values (β;) in a random access memory in respect of said last corrective parameter, calculating and attributing fresh values of the parameters (f, b) of the regulating straight line (D) by purely linear formulae such that :
Figure imgb0018
bo, ki and k'; being constant weighting coefficients in the read only memory,
- the weighting coefficients (ki, k';) used for calculation of the parameters (f, b) of the regulating straight line in the course of each adaptation cycle being so determined that said straight line passes as closely as possible to all the theoretical points (M) of operation defined in each adaptation cycle.
2. A process according to claim 1 characterised in that the engine operates with a degree of.richness equal to unity (stoichiometric mixture) and a short period for the adaptation cycle.
3. A process according to claim 1 characterised in that the engine operates with a degree of richness of less than unity, which is constant or variable, and a relatively high period, which are compatible with the use of the known over-injection process for evaluation of the corrective term (1 + a) with respect to the current straight line.
4. A process according to one of the preceding claims characterised in that between two adaptation cycles in the course of which the numbers (n and n + 1) respectively of the zones in which the measured intake pressure (P) occurs were determined, the parameters (f and b) of the regulating straight line (D) vary in accordance with a curve of the low pass filter type :
Figure imgb0019
Figure imgb0020
with x and x' being between 0 and 1.
EP85401363A 1984-07-23 1985-07-05 Adaptive method for regulating the injection in an injection motor Expired EP0175596B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8411668 1984-07-23
FR8411668A FR2567962B1 (en) 1984-07-23 1984-07-23 ADAPTIVE METHOD FOR REGULATING THE INJECTION OF AN INJECTION ENGINE

Publications (2)

Publication Number Publication Date
EP0175596A1 EP0175596A1 (en) 1986-03-26
EP0175596B1 true EP0175596B1 (en) 1988-05-25

Family

ID=9306395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401363A Expired EP0175596B1 (en) 1984-07-23 1985-07-05 Adaptive method for regulating the injection in an injection motor

Country Status (6)

Country Link
US (1) US4593666A (en)
EP (1) EP0175596B1 (en)
JP (1) JPS61182437A (en)
CA (1) CA1229900A (en)
DE (1) DE3562942D1 (en)
FR (1) FR2567962B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2594889B1 (en) * 1986-02-26 1990-03-09 Renault METHOD FOR COMPENSATING FOR THE REDUCTION IN FLOW OF AN INTERNAL COMBUSTION ENGINE INJECTOR
DE3639946C2 (en) * 1986-11-22 1997-01-09 Bosch Gmbh Robert Method and device for compensating for the tank ventilation error in an adaptively learning fuel supply system
DE3800176A1 (en) * 1988-01-07 1989-07-20 Bosch Gmbh Robert CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR SETTING PARAMETERS OF THE DEVICE
JPH0264251A (en) * 1988-07-01 1990-03-05 Robert Bosch Gmbh Controller for internal combustion engine
DE3835852A1 (en) * 1988-10-21 1990-04-26 Bosch Gmbh Robert METHOD AND DEVICE FOR DETERMINING THE TEMPERATURE WITH THE AID OF THE INTERNAL RESISTANCE OF A LAMB SENSOR
EP0501531B1 (en) * 1989-06-14 1993-11-10 FIAT AUTO S.p.A. A method and system for monitoring the operating characteristics of an internal combustion engine, particularly an internal combustion engine with electronic injection
IT1238363B (en) * 1989-06-14 1993-07-16 Fiat Auto Spa PROCEDURE AND SYSTEM FOR DETECTING THE OPERATING CHARACTERISTICS OF A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE, PARTICULARLY INTERNAL COMBUSTION ENGINE PROVIDED WITH ELECTRONIC INJECTION
DE4029537A1 (en) * 1990-09-18 1992-03-19 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING AND / OR REGULATING AN OPERATING SIZE OF AN INTERNAL COMBUSTION ENGINE
IT1250986B (en) * 1991-07-26 1995-04-27 Weber Srl SYSTEM WITH ADAPTIVE CONTROL OF THE QUANTITY OF INJECTED PETROL FOR AN ELECTRONIC INJECTION SYSTEM
FR2708049B1 (en) * 1993-07-20 1995-09-22 Solex Method and device for estimating the fuel content of a purge circuit in a canister, for an injection engine.
ES2111874T3 (en) * 1993-07-20 1998-03-16 Magneti Marelli France PROCEDURE AND DEVICE FOR THE CORRECTION OF THE INJECTION DURATION DEPENDING ON THE BLEEDING FLOW OF THE BLEEDING CIRCUIT WITH ACCUMULATION CONTAINER FOR AN INJECTION MOTOR.
FR2708047B1 (en) * 1993-07-20 1995-09-22 Solex Method and device for self-adaptation of richness and authorization of purging of a purge circuit in a canister of an injection engine.
US5464000A (en) * 1993-10-06 1995-11-07 Ford Motor Company Fuel controller with an adaptive adder
FR2775315B1 (en) * 1998-02-25 2000-05-05 Magneti Marelli France METHOD AND DEVICE FOR FAST SELF-ADAPTATION OF RICHNESS FOR AN INJECTION ENGINE WITH AN OXYGEN PROBE IN EXHAUST GASES
US6497223B1 (en) 2000-05-04 2002-12-24 Cummins, Inc. Fuel injection pressure control system for an internal combustion engine
JP5287839B2 (en) * 2010-12-15 2013-09-11 株式会社デンソー Fuel injection characteristic learning device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824967A (en) * 1972-10-30 1974-07-23 Gen Motors Corp Electronic fuel injection system
US3964443A (en) * 1973-05-25 1976-06-22 The Bendix Corporation Digital engine control system using DDA schedule generators
IT1081383B (en) * 1977-04-27 1985-05-21 Magneti Marelli Spa ELECTRONIC EQUIPMENT FOR THE CONTROL OF THE POWER OF AN AIR / PETROL MIXTURE OF AN INTERNAL COMBUSTION ENGINE
JPS6060019B2 (en) * 1977-10-17 1985-12-27 株式会社日立製作所 How to control the engine
DE2961307D1 (en) * 1978-08-09 1982-01-14 Bosch Gmbh Robert Ignition and fuel injection control system for internal combustion engines
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
US4375209A (en) * 1980-06-20 1983-03-01 Rca Corporation Digital timing system for spark advance
JPS57165644A (en) * 1981-04-07 1982-10-12 Nippon Denso Co Ltd Control method of air-fuel ratio
JPS5853184A (en) * 1981-09-24 1983-03-29 東芝ライテック株式会社 Implement built-in automatic dimmer
JPS58104342A (en) * 1981-12-16 1983-06-21 Toyota Motor Corp Air-fuel ratio controlling method for internal- combustion engine
JPS58162736A (en) * 1982-03-24 1983-09-27 Toyota Motor Corp Fuel supply control of internal combustion engine

Also Published As

Publication number Publication date
US4593666A (en) 1986-06-10
FR2567962B1 (en) 1989-05-26
JPH0569972B2 (en) 1993-10-04
EP0175596A1 (en) 1986-03-26
JPS61182437A (en) 1986-08-15
DE3562942D1 (en) 1988-06-30
FR2567962A1 (en) 1986-01-24
CA1229900A (en) 1987-12-01

Similar Documents

Publication Publication Date Title
EP0175596B1 (en) Adaptive method for regulating the injection in an injection motor
FR2657397A1 (en) DUAL SENSOR TYPE AIR / FUEL CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR OPERATING SAME.
FR2688547A1 (en) System for controlling an internal combustion engine
FR2830276A1 (en) METHOD FOR DETERMINING THE NITROGEN OXIDE CONTENT IN EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
US4466410A (en) Air-fuel ratio control for internal combustion engine
FR2551798A1 (en) METHOD FOR CONTROLLING THE FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE IMMEDIATELY AFTER STARTING
JP2003120383A (en) Method of setting fuel/air mixture for internal combustion engine
FR2475130A1 (en) METHOD AND APPARATUS FOR CAPTURING A CONTROL SIZE FOR REGULATING THE AIR-FUEL RATIO OF THE SUPPLY MIXTURE OF INTERNAL COMBUSTION ENGINES
EP1058781B1 (en) Method and device for fast automatic adaptation of richness for internal combustion engine
EP0236207A1 (en) Electronic-injection method and system using lambda sensor regulation for an internal-combustion engine
WO2008084170A2 (en) Method for tuning an internal combustion engine
FR2910052A1 (en) METHOD FOR DIAGNOSING A CATALYST.
EP0028174B1 (en) Electronic control unit to regulate the air-fuel ratio of the mixture fed to an internal-combustion engine
EP1090219B1 (en) Method for correcting ignition advance of an internal combustion engine
FR2797951A1 (en) METHOD FOR DETERMINING THE TORQUE PROVIDED BY AN INTERNAL COMBUSTION ENGINE
FR2548272A1 (en) METHOD FOR CONTROLLING FUEL INJECTION TO ACCELERATION OF A SEQUENTIAL INJECTION TYPE SEQUENTIAL INJECTION INTERNAL COMBUSTION ENGINE
EP1671023B1 (en) Engine air supply control method which is intended, for example, for the control of a turbocharged engine
FR2847944A1 (en) I.c. engine fuel/air mixture regulating procedure with multiple injection consists of adjusting fuel mass on each injection operation
FR2672086A1 (en) METHOD AND DEVICE FOR CONTROLLING A CLOSED LOOP OF THE POWER OF AN INTERNAL COMBUSTION ENGINE PROPELLING A MOTOR VEHICLE.
EP0639704B1 (en) Method for calculating the mass of air admitted to an internal combustion engine
EP0146426B1 (en) Method of controlling a lambda probe regulated fuel injection and controlled ignition engine
FR2746851A1 (en) Closed-loop control of mixture of fuel and air for combustion engine
EP1787020B1 (en) System for controlling the operation of a diesel engine of a motor vehicle
EP1597468B1 (en) Method for calculating fuel injector gain
WO2021052808A1 (en) Method for adjusting richness in a controlled-ignition internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL SE

17Q First examination report despatched

Effective date: 19870519

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3562942

Country of ref document: DE

Date of ref document: 19880630

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85401363.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990614

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990617

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990624

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 85401363.8

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040706

Year of fee payment: 20