EP0175207B1 - Process and apparatus for gasifying refuse - Google Patents

Process and apparatus for gasifying refuse Download PDF

Info

Publication number
EP0175207B1
EP0175207B1 EP85111104A EP85111104A EP0175207B1 EP 0175207 B1 EP0175207 B1 EP 0175207B1 EP 85111104 A EP85111104 A EP 85111104A EP 85111104 A EP85111104 A EP 85111104A EP 0175207 B1 EP0175207 B1 EP 0175207B1
Authority
EP
European Patent Office
Prior art keywords
gas
refuse
openings
process according
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85111104A
Other languages
German (de)
French (fr)
Other versions
EP0175207A2 (en
EP0175207A3 (en
Inventor
Bernt Dr. Obkircher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Molten Metal Technology Inc
Original Assignee
Dornier System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier System GmbH filed Critical Dornier System GmbH
Priority to AT85111104T priority Critical patent/ATE39709T1/en
Publication of EP0175207A2 publication Critical patent/EP0175207A2/en
Publication of EP0175207A3 publication Critical patent/EP0175207A3/en
Application granted granted Critical
Publication of EP0175207B1 publication Critical patent/EP0175207B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Definitions

  • the invention relates to methods and devices for the gasification of carbon-containing waste or organic special waste according to the preamble of claim 1 or that of claim 11.
  • PCB's polychlorinated biphenyls
  • HSH's hexachlorocyclohexanes
  • dioxin dioxin
  • a process for the gasification of domestic waste (DE-A-3 212 534) is known, in which waste is introduced into a hot iron bath (approx. 1130 to 1600 ° C.) and an oxidizing agent is added. In this process, the waste is first crushed to a particle size of at least 50 mm and added below the surface of the molten iron. Crushing is energy-intensive and - at least with toxic probe waste - dangerous. The introduction of the waste under the molten iron is technically complex. In addition, there is no guarantee that all waste particles will actually reach the temperature of the molten metal, which is necessary for the disposal of hazardous waste.
  • This device forms the preamble of claim 11.
  • the opening between the two gas spaces described in this document is so large that it can happen that even coarse, not yet largely reacted pieces get into the second gas space, appear and pollutants that have not yet been broken down submit.
  • the object of the invention is to improve the method and the device of US-A-4 244180 in such a way that all harmful substances contained in the garbage are removed, so that the end products are harmless.
  • waste gasification is achieved by adding an oxidizing agent, preferably air or oxygen, at an extremely high temperature (> 1000 ° C.) in a two-part reactor.
  • an oxidizing agent preferably air or oxygen
  • the gas formation lowers the level of the hot liquid in the first gas space and increases it in the second gas space. This continues until the gas reaches the top of the Openings or the upper, smaller openings in the partition between the two spaces of the reactor reached, flows through the openings, entrains slag or lets flow through larger openings and the gas in the second reactor bubbles up through the liquid and finally reaches the second gas space where it is subtracted.
  • Iron is advantageously used as the liquid metal, then reactor temperatures of 1350 to 1400 ° C. are present in the iron bath.
  • ultra-toxic poisons for example dioxin, PCB's, HCH's, warfare agents such as Tabun, Soman, Lost etc. even more safely
  • metals can be used which have even higher melting temperatures than iron, such as e.g. B. Chrome.
  • Co, Ni, Mn or metal alloys and melts of metal oxides, such as. B. copper oxide can be used to reach the highest temperatures.
  • the incombustible slag-forming waste components float in liquid form on the liquid metal.
  • the reducing gases H 2 and CO possibly also H 2 0.
  • the sulfur, chlorine and fluorine impurities in the waste are initially in gaseous form as H 2 S, HCl, HF etc.
  • the slag is additionally supplied with lime from a corresponding container.
  • the alleys mentioned are then unstable at the high temperatures and the presence of the basic slag, so that the impurities are present in the slag in the form of liquid CaS, CaC1 2 , CaF 2 etc.
  • the slag is continuously withdrawn from the reactor in liquid form and is cooled, for example, with water.
  • the calcium compounds that leave the system through the slag discharge lock are completely water-insoluble and environmentally neutral and can be deposited as residue without any problems, while the product gas leaving the system only contains impurities in HCI, HF, H 2 S etc. in the ppm range.
  • the oxidizing agent can either be introduced directly into the hot liquid or blown into the first gas space above the liquid.
  • the method according to the invention can be operated batchwise or continuously.
  • a pressure lock in the first gas space is advantageous, as there is no pressure loss when the space is opened.
  • the opening can be so large that entire casks of poison can be introduced without prior crushing.
  • the process temperature can be increased by adding coal, preferably coal dust, or reduced by recycling process gas or by admixing water vapor or an inert gas. These gases can also be used to cool the oxidant injection nozzles.
  • the reactor is advantageously designed to be pressure-resistant, at least in the region of the first gas space, and has a pressure lock for the waste and / or slag former in the upper region.
  • a pressure lock for the waste and / or slag former in the upper region In the second gas space, one or more vents for gas and slag are provided.
  • the height of the just opened fume cupboard in the second gas space depends on the liquid level.
  • the reactors used for the gasification are advantageously thermally insulated.
  • the waste or lime can be preheated with the heat of the product gases.
  • An electric heater can be provided for starting the process or as an additional heater.
  • the passage cross section of the openings in the partition between the two gas spaces should increase from top to bottom, so that the flow cross section that flows from one gas to the other has a disproportionately increasing flow cross section, the more the liquid level in the space from which the gas flows out decreases .
  • This can be done through larger or more openings in the lower part, also through openings whose cross-section is wider at the bottom than at the top, that is, for. B. through triangular openings.
  • the increase in the opening cross-section with increasing depth prevents vibrations of the two liquid columns.
  • the arrangement of the openings in the lower area automatically regulates the amount of gas that is transferred.
  • the size of the openings prevents unreacted waste components from passing through.
  • the height of the liquid column in the second room guarantees that the gases stay at the temperature of the hot liquid for longer.
  • Small openings on the lowered liquid level allow only small gas bubbles to pass through, which are then safely heated to the desired temperature in the liquid in the second gas space.
  • the smaller openings can through porous ceramic stones or ceramic flow bodies with certain pore sizes, eg. B. by 1 mm or smaller. Larger openings in the lower area of the lowered liquid allow easier passage of the liquid into the second gas space.
  • the invention is illustrated by a figure.
  • the figure shows schematically an apparatus for performing a method according to the invention.
  • a storage container 1 for waste is connected via a pressure lock 2 to a thermally insulated reactor 3, in which a liquid 4, here a liquid metal, is located.
  • An oxidizing agent 5 is blown into the liquid 4 via nozzles 6.
  • the reactor 3 contains two gas spaces 7 and 8, which are separated by a partition 9 with openings 9a in the lower region.
  • a reservoir 11 with lime is provided for converting the slag 10 floating on the metal.
  • a device known per se with slag cooling 12, slag discharge lock 13 and gas outlet 14 is provided to draw off slag 10 and product gas.
  • the gas exhaust 14 is followed by a device 15 for heat recovery and dedusting.
  • the dust can be returned to the waste container 1 via a line 16.
  • Part of the product gas is fed through line 17 to a pump 18, which leads the gas to the nozzles 6 or to the pressure lock 2.
  • the other part of the product gas leaves the device 15 via the line 19 for further use.
  • the garbage is treated as follows: The garbage comes from the storage container 1 in bulk or in whole drums into the pressure lock 2 at the entrance of the first gas space 7 into the reactor 3. The garbage falls into the hot liquid 4. The combustible components break down into hydrogen and carbon. The incombustible slag-forming constituents float as slag 10 on the liquid 4. An oxidizing agent 5 is blown in through the nozzles 6. The carbon dissolved in the liquid 4 is partially oxidized to CO.
  • the pressure in the first gas space 7 rises and presses a part of the liquid 4 through the openings 9a into the second gas space 8. If the liquid level is pressed down to the uppermost opening 9a, slag 10 and product gas also reach the second gas space 8. The gas bubbles through the liquid 4 and takes on its temperature. The slag 10 and the product gas are drawn off at an opening at a suitable height in the second gas space.
  • the slag is preferably cooled with water and leaves the system through the slag discharge lock 13.
  • the product gas passes from the gas outlet 14 into a device 15 for heat recovery - gas cooling - and dedusting.
  • the resulting dust can be returned via line 16 to the waste storage container 1, while part of the gas via line 17 after corresponding compression with the pump 18 on the one hand for cooling the nozzles 6 for the oxidizing agent 5 and on the other hand for pressurizing the pressure lock 2 can be used at the entrance of the reactor 3.
  • the other part of the cleaned and cooled gas is discharged via line 19 for use, for example electricity and / or heat generation.
  • the heat generated in the waste heat device 15 can also be used to preheat the waste and lime feedstocks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Waste or refuse is fed to a first reaction chamber communicating with a second one through openings in the lower portion of a partition between the chambers and hot metal or the like is fed into at least one of the two chambers; gas is extracted from the second chamber and the pressure conditions are such that different liquid levels obtain in the two chambers causing reaction gas to bubble through the openings and the liquid in the second chamber. The principle product gases extracted are hydrogen, carbonoxide and inert gases. Lime is preferably added to the waste to be processed.

Description

Die Erfindung betrifft Verfahren und Vorrichtungen zur Vergasung von kohlenstoffhaltigem Müll oder organischem Sondermüll nach dem Oberbegriff des Anspruchs 1 oder dem des Anspruchs 11.The invention relates to methods and devices for the gasification of carbon-containing waste or organic special waste according to the preamble of claim 1 or that of claim 11.

Allein schon wegen des Volumens stellen die anfallenden kommunalen und gewerblichen Müllmengen, die bisher hauptsächlich deponiert wurden, ein Problem dar. Deshalb ging man teilweise dazu über, den Müll zu verbrennen oder zu pyrolisieren.Because of the volume alone, the amount of municipal and commercial waste that has so far mainly been dumped is a problem. Therefore, some started to burn or pyrolyze the waste.

Bei der Müllverbrennung, die die Nutzung des Müllheizwertes (2 - 2,5 kWh/kg) erlaubt, entstehen jedoch hochagressive Gase (vor allem HCI, HF, S02, NOX), die mit hohen Kosten aus dem Rauchgas wieder entfernt werden müssen, soweit dies überhaupt möglich ist.In waste incineration, which allows the use of the refuse calorific value (2 - 2.5 kWh / kg), highly aggressive gases are produced (especially HCI, HF, S0 2 , NO X ), which have to be removed from the flue gas at high costs as far as this is possible at all.

Bei der Müllprolyse (Verschwelung des Mülls durch Wärmezufuhr unter Luftabschluß) ist dieses Problem auf die Verunreinigungen des entstehenden Schwelgases verlagert, in dem neben den erwünschten Gasen CH4, H2 und CO eine Vielzahl von lästigen Nebenprodukten wie H2S, HCI, HF, Teere, Öle, Phenole und andere Kohlenwasserstoffe enthalten sind.In garbage prolysis (smoldering of the garbage through the supply of heat with the exclusion of air), this problem is shifted to the contamination of the smoldering gas formed, in which, in addition to the desired gases CH 4 , H 2 and CO, a large number of annoying by-products such as H 2 S, HCI, HF, Tars, oils, phenols and other hydrocarbons are included.

Diese Bestandteile müssen mit einer aufwendigen und daher teuren chemischen Verfahrenstechnik aus dem Schwelgas entfernt werden, bevor dies genutzt werden kann.These components must be removed from the carbonization gas using a complex and therefore expensive chemical process technology before this can be used.

Neben dem Problem der Müllbeseitigung existiert das Problem der Sondermüllbeseitigung. Vor allem Sondermüll aus organischen Verbindungen, polychlorierte Biphenyle (PCB's), Hexachlorcyclohexane (HCH's), Dioxin usw. können oft nur mit Schwierigkeiten sicher entsorgt oder vernichtet werden.In addition to the problem of waste disposal, there is the problem of hazardous waste disposal. Especially hazardous waste from organic compounds, polychlorinated biphenyls (PCB's), hexachlorocyclohexanes (HCH's), dioxin etc. can often only be disposed of safely or destroyed with difficulty.

Bekannt ist ein Verfahren zur Vergasung von Hausmüll (DE-A-3 212 534), bei dem Müll in ein heißes Eisenbad (ca. 1130 bis 1600°C) eingebracht und ein Oxidationsmittel zugegeben wird. Bei diesem Verfahren wird der Müll vorher auf mindestens 50 mm Teilchengröße zerkleinert und unterhalb der Oberfläche der Eisenschmelze zugegeben. Das Zerkleinern ist energieaufwendig und - zumindest bei giftigem Sondenmüll - gefährlich. Das Einbringen des Mülls unter die flüssige Eisenschmelze ist verfahrenstechnisch aufwendig. Zudem ist nicht gesichert, daß alle Müllpartikel wirklich die Temperatur der Metallschmelze erreichen, was bei der Sondermüllbeseitigung notwendig ist.A process for the gasification of domestic waste (DE-A-3 212 534) is known, in which waste is introduced into a hot iron bath (approx. 1130 to 1600 ° C.) and an oxidizing agent is added. In this process, the waste is first crushed to a particle size of at least 50 mm and added below the surface of the molten iron. Crushing is energy-intensive and - at least with toxic probe waste - dangerous. The introduction of the waste under the molten iron is technically complex. In addition, there is no guarantee that all waste particles will actually reach the temperature of the molten metal, which is necessary for the disposal of hazardous waste.

Aus der US-A-4 244180 ist ein Verfahren zur Vergasung von kohlenstoffhaltigem Müll oder organischem Sondermüll bekannt, bei dem der Müll in einen Reaktor eingebracht wird, der eine heiße Flüssigkeit mit einer Temperatur > 1000° C enthält und der durch eine von oben in die Flüssigkeit tauchende Trennwand in zwei Teile getrennt ist. Dabei wird der Müll in den ersten Gasraum eingebracht, ein Oxidationsmittel zugegeben und die entstehenden Produktgase (hauptsächlich H2, CO und Inertgase) werden zusammen mit der Schlacke im zweiten Gasraum abgezogen. Dieses Verfahren bildet den Oberbegriff des Anspruchs 1. In diesem Dokument ist eine Vorrichtung beschrieben mit einem Reaktor, der eine heiße Flüssigkeit mit einer Temperatur > 1000° C enthält, und der durch eine von oben in die Flüssigkeit tauchende Trennwand in zwei Teile getrennt ist, mit einer Öffnung im ersten Gasraum durch die der Müll eingebracht wird, mit Düsen durch die ein Oxidationsmittel zugegeben wird, und mit einem Abzug für die entstehenden Produktgase (hauptsächlich H2, CO und Inertgase) und die Schlacke im zweiten Gasraum. Diese Vorrichtung bildet den Oberbegriff des Anspruchs 11. Die in diesem Dokument beschriebene Öffnung zwischen den zwei Gasräumen ist so groß, daß es vorkommen kann, daß auch grobe, noch nicht weitgehend durchreagierte Stücke in den zweiten Gasraum gelangen, auftauchen und dort noch nicht zerlegte Schadstoffe abgeben.From US-A-4 244180 a process for the gasification of carbon-containing waste or organic hazardous waste is known, in which the waste is introduced into a reactor which contains a hot liquid with a temperature> 1000 ° C and which by a from above in the liquid-immersed partition is separated into two parts. The waste is brought into the first gas space, an oxidizing agent is added and the product gases (mainly H 2 , CO and inert gases) are drawn off together with the slag in the second gas space. This method forms the preamble of claim 1. This document describes a device having a reactor which contains a hot liquid with a temperature> 1000 ° C. and which is separated into two parts by a partition wall immersed in the liquid from above, with an opening in the first gas space through which the waste is introduced, with nozzles through which an oxidizing agent is added, and with a discharge for the product gases (mainly H 2 , CO and inert gases) and the slag in the second gas space. This device forms the preamble of claim 11. The opening between the two gas spaces described in this document is so large that it can happen that even coarse, not yet largely reacted pieces get into the second gas space, appear and pollutants that have not yet been broken down submit.

Aufgabe der Erfindung ist es, daß Verfahren und die Vorrichtung der US-A-4 244180 dahingehend zu verbessern, daß alle im Müll enthaltenen schädlichen Stoffe beseitigt werden, sodaß die Endprodukte ungefährlich sind.The object of the invention is to improve the method and the device of US-A-4 244180 in such a way that all harmful substances contained in the garbage are removed, so that the end products are harmless.

Diese Aufgabe wird erfindungsgemäß durch Verfahren mit den in den Ansprüchen 1 bis 10 genannten Schritten gelöst.This object is achieved according to the invention by methods with the steps mentioned in claims 1 to 10.

Vorrichhungen zur Durchführung des Verfahrens sind Gegenstand von Unteransprüchen.Devices for performing the method are the subject of subclaims.

Erfindungsgemäß wird eine Müllvergasung unter Zugabe eines Oxidationsmittels, vorzugsweise Luft oder Sauerstoff, bei einer extrem hohen Temperatur (> 1000°C) in einem zweigeteilten Reaktor erreicht.According to the invention, waste gasification is achieved by adding an oxidizing agent, preferably air or oxygen, at an extremely high temperature (> 1000 ° C.) in a two-part reactor.

Die extrem hohe Temperatur ist in Reaktoren mit flüssigem Metallinhalt (z. B. Fe) garantiert. Wird Müll oder Sondermüll in einen solchen Reaktor eingebracht, zerfallen alle Kohlenwasserstoffe (C-H Verbindungen) und sonstigen organischen Verbindungen. Wasserstoff entweicht gasförmig, während Kohlenstoff im flüssigen Metall in Lösung geht. Dieser Kohlenstoff wird durch Einblasen eines Oxidationsmittels zu CO teiloxidiert und verläßt dadurch das flüssige Metall wieder, wie es vom Prinzip der Stahlherstellung aus Roheisen bekannt ist. Die brennbaren Bestandteile des Mülls verwandeln sich also in H2 und CO und erhöhen dadurch den Druck im ersten Gasraum des Reaktors. Die Oxidation von C zu CO ist exotherm und hält das flüssige Metall auf Temperatur, wenn nur der Reaktor gut genug thermisch isoliert ist. Dabei verbraucht sich dieses Metall im Laufe der Zeit nicht, sondern dient nur als Wärmeübertragungsmedium und Lösungsmittel für den Kohlenstoff. Falls der Kohlenstoffgehalt des Mülls nicht ausreicht, die Temperatur der Schmelze aufrechtzuerhalten, kann dem Müll auch Kohle zugesetzt werden.The extremely high temperature is guaranteed in reactors with a liquid metal content (e.g. Fe). If waste or special waste is placed in such a reactor, all hydrocarbons (CH compounds) and other organic compounds will disintegrate. Hydrogen escapes in gaseous form, while carbon dissolves in the liquid metal. This carbon is partially oxidized to CO by blowing in an oxidizing agent and thereby leaves the liquid metal again, as is known from the principle of steel production from pig iron. The combustible constituents of the waste thus convert into H 2 and CO and thereby increase the pressure in the first gas space of the reactor. The oxidation of C to CO is exothermic and keeps the liquid metal at temperature if only the reactor is thermally insulated well enough. This metal does not wear out over time, but only serves as a heat transfer medium and solvent for the carbon. If the carbon content of the waste is insufficient to maintain the temperature of the melt, coal can also be added to the waste.

Durch die Gasbildung wird der Spiegel der heißen Flüssigkeit im ersten Gasraum erniedrigt und im zweiten Gasraum erhöht. Dies geschieht so lange, bis das Gas den oberen Rand der Öffnungen oder die oberen, kleineren Öffnungen in der Trennwand zwischen den beiden Räumen des Reaktors erreicht, durch die Öffnungen hindurchströmt, Schlacke mitnimmt oder durch größere Öffnungen fließen läßt und das Gas im zweiten Reaktor durch die Flüssigkeit nach oben perlt und schließlich in den zweiten Gasraum gelangt, wo es abgezogen wird. Dadurch wird erfindungsgemäß garantiert, daß alle den Reaktor verlassenden Gase eine gewisse Zeit auf der Temperatur der Metallschmelze waren und bei vorteilhafter Wahl von Temperatur und Zeit sicher keine Kohlenwasserstoffe, das heißt Restbruchstücke des Mülls mehr enthalten.The gas formation lowers the level of the hot liquid in the first gas space and increases it in the second gas space. This continues until the gas reaches the top of the Openings or the upper, smaller openings in the partition between the two spaces of the reactor reached, flows through the openings, entrains slag or lets flow through larger openings and the gas in the second reactor bubbles up through the liquid and finally reaches the second gas space where it is subtracted. This guarantees according to the invention that all the gases leaving the reactor have been at the temperature of the molten metal for a certain time and, with an advantageous choice of temperature and time, certainly no longer contain any hydrocarbons, that is to say residual fragments of the waste.

Als flüssiges Metall wird vorteilhaft Eisen verwendet, dann liegen im Eisenbad Reaktortemperaturen von 1350 bis 1400° C vor. Um speziell organischen Sondermüll, Ultragifte, zum Beispiel Dioxin, PCB's, HCH's, Kampfstoffe wie Tabun, Soman, Lost usw. noch sicherer zu zerstören, können Metalle verwendet werden, die noch höhere Schmelztemperaturen als Eisen aufweisen, wie z. B. Chrom. Ebenso sind Co, Ni, Mn oder Metallegierungen sowie Schmelzen von Metalloxiden, wie z. B. Kupferoxid zum Erreichen höchster Temperaturen verwendbar.Iron is advantageously used as the liquid metal, then reactor temperatures of 1350 to 1400 ° C. are present in the iron bath. In order to destroy organic hazardous waste, ultra-toxic poisons, for example dioxin, PCB's, HCH's, warfare agents such as Tabun, Soman, Lost etc. even more safely, metals can be used which have even higher melting temperatures than iron, such as e.g. B. Chrome. Likewise, Co, Ni, Mn or metal alloys and melts of metal oxides, such as. B. copper oxide can be used to reach the highest temperatures.

Die unbrennbaren schlackebildenden Müllbestandteile schwimmen in flüssiger Form auf dem Flössigmetall. Darüber befinden sich die reduzierenden Gase H2 und CO (eventuell auch H20). Die Schwefel-, Chlor- und Fluorverunreinigungen des Mülls liegen zunächst gasförmig als H2S, HCI, HF usw. vor.The incombustible slag-forming waste components float in liquid form on the liquid metal. Above are the reducing gases H 2 and CO (possibly also H 2 0). The sulfur, chlorine and fluorine impurities in the waste are initially in gaseous form as H 2 S, HCl, HF etc.

In einer vorteilhaften Ausführung des Verfahrens wird der Schlacke zusätzlich Kalk aus einem entsprechendem Behälter zugeführt. Die genannten Gasse sind dann bei den hohen Temperaturen und der Anwesenheit der basischen Schlacke unstabil, so daß die Verunreinigungen, in Form von flüssigem CaS, CaC12, CaF2 usw. in der Schlacke vorliegen. Die Schlacke wird dem Reaktor ständig flüssig entzogen und zum Beispiel mittels Wasser abgekühlt. Die Kalziumverbindungen, die durch die Schlackeaustrageschleuse das System verlassen, sind völlig wasserunlöslich und umweltneutral und können als Rückstand problemlos deponiert werden, während das das System verlassende Produktgas Verunreinigungen an HCI, HF, H2S usw. nur noch im ppm-Bereich enthält.In an advantageous embodiment of the method, the slag is additionally supplied with lime from a corresponding container. The alleys mentioned are then unstable at the high temperatures and the presence of the basic slag, so that the impurities are present in the slag in the form of liquid CaS, CaC1 2 , CaF 2 etc. The slag is continuously withdrawn from the reactor in liquid form and is cooled, for example, with water. The calcium compounds that leave the system through the slag discharge lock are completely water-insoluble and environmentally neutral and can be deposited as residue without any problems, while the product gas leaving the system only contains impurities in HCI, HF, H 2 S etc. in the ppm range.

Das Oxidationsmittel kann entweder direkt in die heiße Flüssigkeit eingegeben werden oder in den ersten Gasraum über der Flüssigkeit eingeblasen werden.The oxidizing agent can either be introduced directly into the hot liquid or blown into the first gas space above the liquid.

Das erfindungsgemäße Verfahren kann schubweise oder kontinuierlich betrieben werden. Im zweiten Fall ist eine Druckschleuse im ersten Gasraum vorteilhaft, durch die beim Öffnen des Raumes kein Druckverlust entsteht. Die Öffnung kann so groß sein, daß ganze Fässer mit Gift ohne vorherige Zerkleinerung eingebracht werden können. Die Prozeßtemperatur kann, je nach Kohlenstoffgehalt des Mülls, durch Zugabe von Kohle, vorzugsweise Kohlestaub, erhöht werden oder durch Rückführung von Prozeßgas oder durch Zumischen von Wasserdampf oder einem inerten Gas erniedrigt werden. Diese Gase können auch zum Kühlen der Einblasdüsen für das Oxidationsmittel verwendet werden.The method according to the invention can be operated batchwise or continuously. In the second case, a pressure lock in the first gas space is advantageous, as there is no pressure loss when the space is opened. The opening can be so large that entire casks of poison can be introduced without prior crushing. Depending on the carbon content of the waste, the process temperature can be increased by adding coal, preferably coal dust, or reduced by recycling process gas or by admixing water vapor or an inert gas. These gases can also be used to cool the oxidant injection nozzles.

Vorteilhaft ist der Reaktor, zumindest im Bereich des ersten Gasraumes, druckfest ausgebildet und weist im oberen Bereich eine Druckschleuse für den Müll und/oder Schlackebildner auf. Im zweiten Gasraum sind ein oder mehrere Abzüge für Gas und Schlacke vorgesehen. Die Höhe des gerade geöffneten Abzugs im zweiten Gasraum richtet sich nach dem Flüssigkeitsspiegel.The reactor is advantageously designed to be pressure-resistant, at least in the region of the first gas space, and has a pressure lock for the waste and / or slag former in the upper region. In the second gas space, one or more vents for gas and slag are provided. The height of the just opened fume cupboard in the second gas space depends on the liquid level.

Vorteilhaft sind die für die Vergasung verwendeten Reaktoren thermisch isoliert. Zum Aufrechterhalten der Temperatur kann neben der Zuführung von Kohle eine Vorwärmung des Mülls oder des Kalks mit der Wärme der Produktgase erfolgen. Eine elektrische Heizung kann für den Start des Verfahrens oder als Zusatzheizung vorgesehen sein.The reactors used for the gasification are advantageously thermally insulated. In order to maintain the temperature, in addition to the supply of coal, the waste or lime can be preheated with the heat of the product gases. An electric heater can be provided for starting the process or as an additional heater.

Günstig ist auch die konzentrische Anordnung der zwei Gasräume, bei der z. B. der erste Gasraum vom zweiten umhüllt ist. Der erste Gasraum hat dann praktisch keine Außenfläche, durch die Wärme entweichen könnte.The concentric arrangement of the two gas spaces in which, for. B. the first gas space is encased by the second. The first gas space then has practically no outer surface through which heat can escape.

Vorteilhaft sollte der Durchlaßquerschnitt der Öffnungen in der Trennwand zwischen beiden Gasräumen von oben nach unten zunehmen, so daß das von einem in den anderen Raum strömende Gas einen überproportional anwachsenden Strömungsquerschnitt vorfindet, je mehr der Flüssigkeitsspiegel in dem Raum, aus dem das Gas ausströmt, absinkt. Dies kann durch größere oder mehr Öffnungen im unteren Teil, auch auch durch Öffnungen erfolgen, deren Querschnitt unten breiter ist als oben, also z. B. durch dreieckige Öffnungen. Der Anstieg des Öffnungsquerschnitts mit zunehmender Tiefe verhindert Schwingungen der beiden Flüssigkeitssäulen. Die Anordnung der Öffnungen im unteren Bereich regelt selbsttätig die Menge des übertretenden Gases. Die Größe der Öffnungen verhindert ein Durchtreten von noch nicht reagierten Müllbestandteilen. Die Höhe der Flüssigkeitssäule im zweiten Raum garantiert einen längeren Aufenthalt der Gase auf der Temperatur der heißen Flüssigkeit.Advantageously, the passage cross section of the openings in the partition between the two gas spaces should increase from top to bottom, so that the flow cross section that flows from one gas to the other has a disproportionately increasing flow cross section, the more the liquid level in the space from which the gas flows out decreases . This can be done through larger or more openings in the lower part, also through openings whose cross-section is wider at the bottom than at the top, that is, for. B. through triangular openings. The increase in the opening cross-section with increasing depth prevents vibrations of the two liquid columns. The arrangement of the openings in the lower area automatically regulates the amount of gas that is transferred. The size of the openings prevents unreacted waste components from passing through. The height of the liquid column in the second room guarantees that the gases stay at the temperature of the hot liquid for longer.

Kleine Öffnungen am abgesenkten Flüssigkeitsspiegel lassen nur kleine Gasperlen übertreten, die dann in der Flüssigkeit im zweiten Gasraum sicher auf die gewünschte Temperatur erhitzt werden. Die kleineren Öffnungen können durch poröse Keramiksteine oder keramische Durchströmkörper mit bestimmten Porengrößen, z. B. um 1 mm oder kleiner, realisiert werden. Größere Öffnungen im tieferen Bereich der abgesenkten Flüssigkeit erlauben ein leichteres Durchtreten der Flüssigkeit in den zweiten Gasraum.Small openings on the lowered liquid level allow only small gas bubbles to pass through, which are then safely heated to the desired temperature in the liquid in the second gas space. The smaller openings can through porous ceramic stones or ceramic flow bodies with certain pore sizes, eg. B. by 1 mm or smaller. Larger openings in the lower area of the lowered liquid allow easier passage of the liquid into the second gas space.

Das erfindungsgemäße Verfahren weist folgende Vorteile auf:

  • - Das Verfahren erlaubt eine relativ problemlose, d. h. sichere Vernichtung von kohlenstoffhaltigem Müll und Sondermüll, insbesondere von allen Rückständen aus der organischen Chemie wie z. B. alle chlorierten Kohlenwasserstoffe.
  • - Der Müll oder Sondermüll muß nicht in irgendeiner Weise vorbehandelt werden.
  • - Das Deponievolumen wird (ähnlich wie bei der Verbrennung und der Pyrolyse) drastisch reduziert.
  • - Der Brennwert des Mülls wird genutzt; das Metallbad bleibt auf der hohen Temperatur, bei Müll mit sehr wenig Kohlenstoffgehalt kann das entstehende Brenngas, H2 und CO, zum Nachheizen verwendet werden.
  • - Die Verunreinigungen im Müll fallen als völlig umweltneutrale; das heißt ungefährliche Stoffe an.
  • - Aufgrund der Einfachheit des Verfahrens können wirtschaftliche Vorteile gegenüber Müllverbrennung oder Müllpyrolyse erwartet werden.
The method according to the invention has the following advantages:
  • - The procedure allows a relative problem-free, ie safe destruction of carbon-containing waste and special waste, in particular of all residues from organic chemistry such as B. all chlorinated hydrocarbons.
  • - The waste or special waste does not have to be pre-treated in any way.
  • - The landfill volume is reduced drastically (similar to incineration and pyrolysis).
  • - The calorific value of the waste is used; the metal bath remains at the high temperature, in the case of waste with very little carbon content, the fuel gas produced, H 2 and CO, can be used for reheating.
  • - The impurities in the garbage fall as completely environmentally neutral; that means harmless substances.
  • - Due to the simplicity of the process, economic advantages over waste incineration or waste pyrolysis can be expected.

Die Erfindung wird anhand einer Figur näher erläutert.The invention is illustrated by a figure.

Die Figur zeigt schematisch eine Vorrichtung zur Durchführung eines erfindungsgemäßen Verfahrens.The figure shows schematically an apparatus for performing a method according to the invention.

Ein Vorratsbehälter 1 für Müll ist über eine Druckschleuse 2 mit einem thermisch isolierten Reaktor 3 verbunden, in dem sich eine Flüssigkeit 4, hier ein flüssiges Metall, befindet. Ein Oxidationsmittel 5 wird über Düsen 6 in die Flüssigkeit 4 eingeblasen. Der Reaktor 3 enthält zwei Gasräume 7 und 8, die durch eine Trennwand 9 mit Öffnungen 9a im unteren Bereich getrennt sind. Zur Umwandlung der auf dem Metall schwimmenden Schlacke 10 ist ein Vorratsbehälter 11 mit Kalk vorgesehen. Zum Abziehen von Schlacke 10 und Produktgas ist eine an sich bekannte Vorrichtung mit Schlackenkühlung 12, Schlackenaustragschleuse 13 und Gasabzug 14 vorgesehen. Dem Gasabzug 14 schließt sich eine Vorrichtung 15 zur Abhitzenutzung und Entstaubung an. Der Staub kann über eine Leitung 16 in den Vorratsbehälter 1 für Müll zurückgeführt werden. Ein Teil des Produktgases wird durch die Leitung 17 einer Pumpe 18 zugeführt, die das Gas zu den Düsen 6 oder zu der Druckschleuse 2 führt. Der andere Teil des Produktgases verläßt die Vorrichtung 15 über die Leitung 19 zur weiteren Verwertung.A storage container 1 for waste is connected via a pressure lock 2 to a thermally insulated reactor 3, in which a liquid 4, here a liquid metal, is located. An oxidizing agent 5 is blown into the liquid 4 via nozzles 6. The reactor 3 contains two gas spaces 7 and 8, which are separated by a partition 9 with openings 9a in the lower region. A reservoir 11 with lime is provided for converting the slag 10 floating on the metal. To draw off slag 10 and product gas, a device known per se with slag cooling 12, slag discharge lock 13 and gas outlet 14 is provided. The gas exhaust 14 is followed by a device 15 for heat recovery and dedusting. The dust can be returned to the waste container 1 via a line 16. Part of the product gas is fed through line 17 to a pump 18, which leads the gas to the nozzles 6 or to the pressure lock 2. The other part of the product gas leaves the device 15 via the line 19 for further use.

Erfindungsgemäß wird der Müll wie folgt behandelt: Aus dem Vorratsbehälter 1 gelangt der Müll grobstückig oder in ganzen Fässern in die Druckschleuse 2 am Eingang des ersten Gasraums 7 in den Reaktor 3. Der Müll fällt in die heiße Flüssigkeit 4. Die brennbaren Bestandteile zerfallen in Wasserstoff und Kohlenstoff. Die unbrennbaren schlackebildenden Bestandteile schwimmen als Schlacke 10 auf der Flüssigkeit 4. Durch die Düsen 6 wird ein Oxidationsmittel 5 eingeblasen. Der in der Flüssigkeit 4 gelöste Kohlenstoff wird zu CO teiloxidiert.According to the invention, the garbage is treated as follows: The garbage comes from the storage container 1 in bulk or in whole drums into the pressure lock 2 at the entrance of the first gas space 7 into the reactor 3. The garbage falls into the hot liquid 4. The combustible components break down into hydrogen and carbon. The incombustible slag-forming constituents float as slag 10 on the liquid 4. An oxidizing agent 5 is blown in through the nozzles 6. The carbon dissolved in the liquid 4 is partially oxidized to CO.

Bei dieser Reaktion steigt der Druck in dem ersten Gasraum 7 und drückt einen Teil der Flüssigkeit 4 durch die Öffnungen 9a in den zweiten Gasraum 8. Ist der Flüssigkeitsspiegel bis zur obersten Öffnung 9a herabgedrückt, gelangt auch Schlacke 10 und Produktgas in den zweiten Gasraum 8. Dabei perlt das Gas durch die Flüssigkeit 4 und nimmt dessen Temperatur an. Die Schlacke 10 und das Produktgas werden an einer in geeigneter Höhe angebrachten Öffnung im zweiten Gasraum abgezogen. Die Schlacke wird vorzugsweise mit Wasser gekühlt und verläßt das System durch die Schlackenaustragschleuse 13.During this reaction, the pressure in the first gas space 7 rises and presses a part of the liquid 4 through the openings 9a into the second gas space 8. If the liquid level is pressed down to the uppermost opening 9a, slag 10 and product gas also reach the second gas space 8. The gas bubbles through the liquid 4 and takes on its temperature. The slag 10 and the product gas are drawn off at an opening at a suitable height in the second gas space. The slag is preferably cooled with water and leaves the system through the slag discharge lock 13.

Das Produktgas gelangt vom Gasabzug 14 in eine Vorrichtung 15 zur Abhitzenutzung - Gaskühlung - und Entstaubung. Der dabei anfallende Staub kann über die Leitung 16 in den Müllvorratsbehälter 1 zurückgeführt werden, während ein Teil des Gases über die Leitung 17 nach entsprechender Kompression mit der Pumpe 18 einerseits zur Kühlung der Düsen 6 für das Oxidationsmittel 5 und andererseits zur Druckbeaufschlagung für die Druckschleuse 2 am Eingang des Reaktors 3 verwendet werden kann. Der andere Teil des gereinigten und gekühlten Gases wird über die Leitung 19 zur Nutzung, zum Beispiel Strom- und/oder Wärmeerzeugung abgeführt. Die in der Abhitzevorrichtung 15 anfallende Wärme kann noch zur Vorwärmung der Einsatzstoffe Müll und Kalk genutzt werden.The product gas passes from the gas outlet 14 into a device 15 for heat recovery - gas cooling - and dedusting. The resulting dust can be returned via line 16 to the waste storage container 1, while part of the gas via line 17 after corresponding compression with the pump 18 on the one hand for cooling the nozzles 6 for the oxidizing agent 5 and on the other hand for pressurizing the pressure lock 2 can be used at the entrance of the reactor 3. The other part of the cleaned and cooled gas is discharged via line 19 for use, for example electricity and / or heat generation. The heat generated in the waste heat device 15 can also be used to preheat the waste and lime feedstocks.

Claims (17)

1. Process for gasifying refuse containing carbon or special organic refuse, the refuse being introduced into a reactor (3) containing a hot fluid (4) at a temperature of > 1 000° C and wich is divided into two parts (gas chambers 7, 8) by a partition wall (9) immersed in the fluid (4) from above, the refuse being introduced into the first gas chamber (7), an oxidising agent (5) being added and the resulting product gases (mainly H2, CO and inert gases) being withdrawn together with the slag (10) in the second gas chamber (8), characterised in that the refuse or its reaction products arc forced through several openings (9a) in the lower area of the partition wall (9).
2. Process according to claim 1, characterised in that the oxidising agent (5) is blown into the hot fluid (4) and/or into the first gas chamber (7).
3. Process according to claims 1 or 2, characterised in that the refuse which may also be in lumps is introduced through an opening or a pressure sluice, disposed in the upper area of the first gas chamber (7), whereby if a pressure sluice is used an increase in pressure may occur as a result of the returned product gas.
4. Process according to one of the preceding claims, characterised in that in addition to the slag (10) on the hot fluid (4) a slag-forming constituent such as lime (CaO, 11) is introduced in order to remove HC1, HF, H2S and other impurities from the resulting gases and the slag (10) is withdrawn and cooled in the fluid condition.
5. Process according to one of the preceding claims characterized in that a molten metal made of one or several of the metals Fe, Co, Ni, Cr or Mn is used as a hot fluid (4).
6. Process according to one of the preceding claims, characterised in that a metallic oxide melt such as copper oxide is used as a hot fluid (4) to achieve extreme temperatures.
7. Process according to one of the preceding claims, characterised in that oxygen or air are used as the oxidising agent (5).
8. Process according to one of the preceding claims, characterised in that in order to regulate the temperature in the hot fluid (4) and in order to cool the nozzles (6), a portion of the product gas after removal of the dust and cooling or another gas such as water vepour together with the oxidising agent (5) is blown in over it into the fluid (4) or the chamber (7).
9. Process according to one of the preceding claims, characterised in that carbon preferably in dust form is added to the types of refuse which have a low fuel value or an insufficient carbon content.
10. Process according to one of the preceding claims, characterised in that the heat content of the product gases is used for preheating the applied substances of refuse and/or lime (11).
11. Apparatus for carrying out the process covered by one of the preceding claims having a reactor (3), which contains a hot fluid (4) at a temperature of > 1000°C and which is divided into two parts (gas chambers 7, 8) by a partition wall (9) which descends into the fluid (4) from above, having an opening in the first gas chamber (7), through which the reruse is introduced having nozzles (6), through which an oxidising agent (5) is added and having an outlet for the product gases which are generated (mainly H2, CO, and inert gases) and the slag (10) in the second gas chamber (8), characterised in that the partition wall (9) in the lower area is provided with several openings (9a).
12. Apparatus according to claim 11, characterised in that the two gas chambers (7, 8) are thermally insulated and/or electric resistance or induction heating is provided.
13. Apparatus according to claim 11 or 13, characterised in that one gas chamber surrounds the other gas chamber concentrically.
14. Apparatus according to one of claims 11 to 13, characterised in that the throughput cross- section of the openings (9a) in the partition wall (9) incresses from top to bottom between the two gas chambers (7, 8).
15. Apparatus according to claim 14, characterised in that larger or more openings (9a) are provided in the lower part of the partition wall (9) than in the upper part.
16. Apparatus according to claim 14, characterised in that the openings (9a) are narrower above than below, for preference are of triangular shape and/or porous ceramic throughflow bodies with defined pore size are arranged in the upper ends of the openings (9a).
17. Apparatus according to claim 15, characterised in that the pores are of the order of magnitude of 1 mm and/or below.
EP85111104A 1984-09-15 1985-09-03 Process and apparatus for gasifying refuse Expired EP0175207B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85111104T ATE39709T1 (en) 1984-09-15 1985-09-03 METHOD AND DEVICE FOR WASTE GASIFICATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3434004A DE3434004C2 (en) 1984-09-15 1984-09-15 Process and device for waste gasification
DE3434004 1985-09-15

Publications (3)

Publication Number Publication Date
EP0175207A2 EP0175207A2 (en) 1986-03-26
EP0175207A3 EP0175207A3 (en) 1986-12-30
EP0175207B1 true EP0175207B1 (en) 1989-01-04

Family

ID=6245542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85111104A Expired EP0175207B1 (en) 1984-09-15 1985-09-03 Process and apparatus for gasifying refuse

Country Status (5)

Country Link
US (1) US4681599A (en)
EP (1) EP0175207B1 (en)
JP (1) JPS61133187A (en)
AT (1) ATE39709T1 (en)
DE (1) DE3434004C2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608005A1 (en) * 1986-03-11 1987-10-01 Dornier System Gmbh Process for disposing of special waste
CA2037860C (en) * 1990-03-08 2001-07-31 Paul Katona Waste processing
EP0464802A1 (en) * 1990-07-03 1992-01-08 Franz Puschauer Process for the production of synthetic power gas by a material melting bath process
US5354940A (en) * 1991-07-29 1994-10-11 Molten Metal Technology, Inc. Method for controlling chemical reaction in a molten metal bath
US5776420A (en) * 1991-07-29 1998-07-07 Molten Metal Technology, Inc. Apparatus for treating a gas formed from a waste in a molten metal bath
US5585532A (en) * 1991-07-29 1996-12-17 Molten Metal Technology, Inc. Method for treating a gas formed from a waste in a molten metal bath
US5191154A (en) * 1991-07-29 1993-03-02 Molten Metal Technology, Inc. Method and system for controlling chemical reaction in a molten bath
RU2096685C1 (en) * 1991-07-29 1997-11-20 Молтен Метал Текнолоджи, Инк. Method of treatment of wastes and reworking of wastes into atmospheric gases
DE69225470T2 (en) * 1991-12-06 1999-01-14 Tech Resources Pty Ltd Processing waste
CA2136074A1 (en) * 1992-06-08 1993-12-23 Christopher J. Nagel Method for treating organic waste
MD960311A (en) * 1992-06-08 1998-06-30 Molten Metal Technology, Inc. Method and apparatus for treating organic waste
US5435814A (en) * 1992-08-13 1995-07-25 Ashland Inc. Molten metal decomposition apparatus
US5645615A (en) * 1992-08-13 1997-07-08 Ashland Inc. Molten decomposition apparatus and process
DE4333082A1 (en) * 1992-10-10 1994-04-14 Heinz Hinterholzinger Fuel gas prodn from esp domestic waste - by reaction with coal and water in abandoned coal mine.
US5744117A (en) * 1993-04-12 1998-04-28 Molten Metal Technology, Inc. Feed processing employing dispersed molten droplets
US5537940A (en) * 1993-06-08 1996-07-23 Molten Metal Technology, Inc. Method for treating organic waste
AT401301B (en) * 1993-07-01 1996-08-26 Holderbank Financ Glarus REACTOR AND METHOD FOR MELTING COMBUSTION RESIDUES
AUPN226095A0 (en) 1995-04-07 1995-05-04 Technological Resources Pty Limited A method of producing metals and metal alloys
US6432149B1 (en) * 1995-06-02 2002-08-13 Marathon Ashland Petroleum Llc Burner-feed multi-zone molten metal syngas generator
DE19622152A1 (en) * 1996-06-01 1997-12-04 Krupp Uhde Gmbh Process for the production of gas
DE19629544C2 (en) * 1996-07-22 1998-10-22 Linde Kca Dresden Gmbh Process for the preparation of polyvinyl chloride (PVC) and use of the process
AUPO426396A0 (en) 1996-12-18 1997-01-23 Technological Resources Pty Limited A method of producing iron
AUPO426096A0 (en) 1996-12-18 1997-01-23 Technological Resources Pty Limited Method and apparatus for producing metals and metal alloys
DE19735153C2 (en) * 1997-08-13 2003-10-16 Linde Kca Dresden Gmbh Process and device for gasifying waste materials
AUPO944697A0 (en) * 1997-09-26 1997-10-16 Technological Resources Pty Limited A method of producing metals and metal alloys
AUPP442598A0 (en) 1998-07-01 1998-07-23 Technological Resources Pty Limited Direct smelting vessel
AUPP483898A0 (en) 1998-07-24 1998-08-13 Technological Resources Pty Limited A direct smelting process & apparatus
MY119760A (en) 1998-07-24 2005-07-29 Tech Resources Pty Ltd A direct smelting process
AUPP554098A0 (en) 1998-08-28 1998-09-17 Technological Resources Pty Limited A process and an apparatus for producing metals and metal alloys
AUPP570098A0 (en) 1998-09-04 1998-10-01 Technological Resources Pty Limited A direct smelting process
AUPP647198A0 (en) 1998-10-14 1998-11-05 Technological Resources Pty Limited A process and an apparatus for producing metals and metal alloys
AUPP805599A0 (en) 1999-01-08 1999-02-04 Technological Resources Pty Limited A direct smelting process
AUPQ083599A0 (en) 1999-06-08 1999-07-01 Technological Resources Pty Limited Direct smelting vessel
AUPQ152299A0 (en) 1999-07-09 1999-08-05 Technological Resources Pty Limited Start-up procedure for direct smelting process
AUPQ205799A0 (en) 1999-08-05 1999-08-26 Technological Resources Pty Limited A direct smelting process
AUPQ213099A0 (en) 1999-08-10 1999-09-02 Technological Resources Pty Limited Pressure control
AUPQ308799A0 (en) 1999-09-27 1999-10-21 Technological Resources Pty Limited A direct smelting process
AUPQ346399A0 (en) 1999-10-15 1999-11-11 Technological Resources Pty Limited Stable idle procedure
AUPQ365799A0 (en) 1999-10-26 1999-11-18 Technological Resources Pty Limited A direct smelting apparatus and process
FR2801895B1 (en) 1999-12-03 2002-03-01 Agriculture Azote Et Carbone O PROCESS AND PLANT FOR GASIFICATION OF CARBON COMPOUNDS
US6602321B2 (en) 2000-09-26 2003-08-05 Technological Resources Pty. Ltd. Direct smelting process
US6717026B2 (en) * 2001-02-27 2004-04-06 Clean Technologies International Corporation Molten metal reactor utilizing molten metal flow for feed material and reaction product entrapment
US8956459B2 (en) 2005-02-23 2015-02-17 Kyocera Corporation Joined assembly, wafer holding assembly, attaching structure thereof and method for processing wafer
JP5327417B2 (en) * 2006-04-12 2013-10-30 株式会社Ihi Fluidized bed reactor
US8303916B2 (en) * 2008-02-01 2012-11-06 Oscura, Inc. Gaseous transfer in multiple metal bath reactors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL45687C (en) * 1934-10-30
DE706304C (en) * 1939-04-09 1941-05-23 Gewerkschaft Ver Klosterbusch Process for the production of gases, especially water gas, and gas generators for carrying out the process
US2612444A (en) * 1948-12-28 1952-09-30 Rummel Roman Production of metals from their ores
DE940132C (en) * 1953-02-03 1956-03-08 Otto & Co Gmbh Dr C Gas generator with slag bath and process for its operation
US3252773A (en) * 1962-06-11 1966-05-24 Pullman Inc Gasification of carbonaceous fuels
FR2186524A1 (en) * 1972-05-30 1974-01-11 Siderurgie Fse Inst Rech Continuous reducing gas prodn - by injecting hydrocarbon and oxygen into different parts of an agitated molten metal bath
DE2304369C2 (en) * 1973-01-26 1974-12-12 Mannesmann Ag, 4000 Duesseldorf Method and device for the pyrolytic build-up of waste materials
US3916617A (en) * 1974-03-29 1975-11-04 Rockwell International Corp Process for production of low BTU gas
US4187672A (en) * 1977-11-17 1980-02-12 Rasor Associates, Inc. Apparatus for converting carbonaceous material into fuel gases and the recovery of energy therefrom
DE2813207A1 (en) * 1978-03-25 1979-10-04 Bosch Gmbh Robert SYSTEM FOR CORRECTION OF SIGNALS THAT ARE TAKEN FREQUENCY MODULATED FROM A RECORDING MEDIA
DE2813209A1 (en) * 1978-03-25 1979-10-04 Kloeckner Humboldt Deutz Ag Gasification of solid fuels in molten copper bath - with removal of sulphur by reaction with the copper
US4244180A (en) * 1979-03-16 1981-01-13 Rasor Associates, Inc. Process for producing fuel gases from carbonaceous material
US4362554A (en) * 1981-03-06 1982-12-07 Skf Steel Engineering Aktiebolag Method and apparatus for manufacturing sponge iron
DE3111168C2 (en) * 1981-03-21 1987-01-08 Klöckner-Humboldt-Deutz AG, 5000 Köln Process and apparatus for producing a gas containing essentially H↓2↓ and CO
DE3212534A1 (en) * 1982-02-27 1983-10-13 Artur Richard 6000 Frankfurt Greul Process and equipment for gasifying domestic and similar refuse

Also Published As

Publication number Publication date
ATE39709T1 (en) 1989-01-15
DE3434004C2 (en) 1987-03-26
EP0175207A2 (en) 1986-03-26
US4681599A (en) 1987-07-21
JPS61133187A (en) 1986-06-20
DE3434004A1 (en) 1986-05-22
EP0175207A3 (en) 1986-12-30

Similar Documents

Publication Publication Date Title
EP0175207B1 (en) Process and apparatus for gasifying refuse
DE69607465T2 (en) INJECTABLE MATERIAL INJECTION IN A MELT BATH
DE69112385T2 (en) JOINT TREATMENT OF WASTEWATER AND WASTE OF STEELWORKS.
AT402964B (en) METHOD FOR THE USE OF DISPOSAL GOODS
DE69225470T2 (en) Processing waste
DE69228607T2 (en) Process and apparatus for continuous preheating of scrap
DE4446803C2 (en) Process and device for thermal and material recycling of residual and waste materials
EP0143364B1 (en) Process and furnace for eliminating radioactive wastes
DE69324682T2 (en) WASTE TREATMENT
DE69533089T2 (en) METHOD FOR TREATING TOWN MILL AND OTHER WASTE
DE3513731A1 (en) METHOD FOR DESTRUCTING HAZARDOUS WASTE
DE3922383A1 (en) PROCESS FOR DESTROYING TOXIC PRODUCTS AND PLASMACHEMICAL REACTOR
DE4435349C1 (en) Destruction of pollutants and gasifying of waste in a fluidised bed
DE69208302T2 (en) Process for the treatment of process gases or flue gases containing halogen compounds
DE10004138C2 (en) Process and device for the disposal and recycling of waste goods
DE19735153C2 (en) Process and device for gasifying waste materials
DE19522457C2 (en) Process for treating household waste
EP0143106A2 (en) Method of working up heavy metal-containing residues from the chemical industry
DE69313113T2 (en) METHOD AND DEVICE FOR TREATING ORGANIC WASTE
DE19536383C2 (en) Method and device for the gasification of low calorific value fuels
DE3608005C2 (en)
DE69308020T2 (en) METHOD FOR TREATING ORGANIC WASTE
EP1203060B1 (en) Method and apparatus for utilizing gas from a sedimentation basin
DE4109063A1 (en) Combustible waste utilisation method - involves gasifying lumps by using medium flowing in same direction before flame reaction chamber
DE2723567A1 (en) WASTE DISPOSAL PROCEDURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870130

17Q First examination report despatched

Effective date: 19871105

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 39709

Country of ref document: AT

Date of ref document: 19890115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19931201

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 85111104.7

BERE Be: lapsed

Owner name: DORNIER SYSTEM G.M.B.H.

Effective date: 19940930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MOLTON METAL TECHNOLOGY, INC.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;MOLTEN METAL TECHNOLOGY INC.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: MOLTEN METAL TECHNOLOGY, INC.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960801

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960913

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970820

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970821

Year of fee payment: 13

Ref country code: NL

Payment date: 19970821

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970826

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970828

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970903

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980903

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 85111104.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST