EP0168736B1 - Rotating anode with a surface coating for x-ray tubes - Google Patents

Rotating anode with a surface coating for x-ray tubes Download PDF

Info

Publication number
EP0168736B1
EP0168736B1 EP85108417A EP85108417A EP0168736B1 EP 0168736 B1 EP0168736 B1 EP 0168736B1 EP 85108417 A EP85108417 A EP 85108417A EP 85108417 A EP85108417 A EP 85108417A EP 0168736 B1 EP0168736 B1 EP 0168736B1
Authority
EP
European Patent Office
Prior art keywords
coating
rotary
layer
focal track
ray anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85108417A
Other languages
German (de)
French (fr)
Other versions
EP0168736A2 (en
EP0168736A3 (en
Inventor
Peter Dr. Rödhammer
Hubert Dr. Bildstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of EP0168736A2 publication Critical patent/EP0168736A2/en
Publication of EP0168736A3 publication Critical patent/EP0168736A3/en
Application granted granted Critical
Publication of EP0168736B1 publication Critical patent/EP0168736B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system

Definitions

  • the invention relates to an X-ray rotary anode with a ring-shaped focal track, consisting of a base body, with or without a separate focal track coating, made of refractory metals and / or their alloys, and of a coating of refractory compounds applied to the focal track at least on partial areas thereof.
  • heat radiation from a body occurs in accordance with the Stefan-Boltzmann radiation law and is proportional to the fourth power of the temperature, to the surface and to the hemispherical emissivity E.
  • the radiation power of x-ray rotary anodes can in principle be increased by higher operating temperatures; however, the material-related limit temperatures have already been reached in the x-ray rotary anodes manufactured according to the prior art.
  • the radiating area can be enlarged as a measure to increase the radiated power on the one hand by roughening the anode surface and on the other hand by increasing the diameter and thickness of the anode. The latter is only possible to a limited extent due to the increase in the torque and the weight of the anode.
  • the focal path area in particular makes a disproportionate contribution to radiation cooling in relation to its area share of the x-ray rotary anode (typically: 25 to 30% of the total area).
  • An increase in the emissivity E in the focal path area from, for example, 0.25 for W / re focal path coverings to 0.8 increases in theory the radiation cooling of a coated anode that can be achieved at the same limit temperatures under CT conditions up to 40%.
  • the working temperatures of the anode can be significantly reduced by a coating that includes the focal path area, with the load conditions being kept the same.
  • French Patent No. 1,371,880 describes the carbides, nitrides and borides of the transition metals as possible layer materials on rotating anodes of different substrate materials to improve the heat radiation.
  • the preferred coating material is tantalum carbide because of its high emission coefficient, but also because of its high melting point and because of its low material evaporation rates at high temperatures. A value of 25 ⁇ m is given as the minimum layer thickness. Intermediate layers of rhenium are recommended to prevent reactions between the base material and the carbide. According to the wording of the claim, the patent does indeed cover the entire rotating anode surface, including the focal track. For individual exemplary embodiments, however, it is expressly recommended that the focal path be excluded from the coating.
  • Fully coated rotating anodes of the type mentioned have the disadvantage that because of the low thermal conductivity z. B. of the patent by means of plasma spraying brought TaC (approx. 1/20 of the tungsten) with the mentioned layer thicknesses very high temperature gradients occur across the cross section of the layer. These cause high mechanical stresses in the layer and in the layer-substrate transition zone, and the high brittleness of the carbide leads to cracks or chips in the coating. The resulting roughening of the surface in the region of the focal path is felt to be particularly disadvantageous, since this significantly affects the yield of the X-rays.
  • the object of the present invention is therefore to increase the heat radiation from X-ray rotary anodes by applying a coating which encloses the focal path area and thereby avoids the disadvantages of known designs, above all the lack of thermal shock resistance and the insufficient layer adhesion.
  • the heat radiation coating has a thickness between 0.1 microns and 2 microns, the source of the X-rays mainly in the under the coating
  • the design of the x-ray rotary anode according to the present invention leads to a targeted division of the functions of thermal emission on the one hand and generation of the x-rays on the other.
  • the layer thickness within the claimed layer thickness range is determined solely according to the requirements of the emissivity and the thermo-mechanical one as well as the metallurgical long-term stability of the thermal-emissive coating.
  • the generation of the X-rays is subordinate to the above criteria - depending on the circumstances, the coating practically does not influence it or at least influences it to a certain extent.
  • the layer thicknesses for the layer materials according to the invention at 0.1 to 2 ⁇ m, are far below the known layer thicknesses including the focal path.
  • the measures according to the present invention can achieve a 20-40% increase in heat radiation depending on the design and operating mode of the X-ray rotary anode. It was not foreseeable by the average person skilled in the art that coatings on the focal path have such favorable thermo-mechanical stabilities within the claimed layer thickness range. This is the only way to explain that the coatings according to the invention have so far neither been published nor implemented in practice, although the proposal for the coating itself was made more than 20 years ago.
  • the coating consists of a carbide, nitride or a carbonitride of the transition metals Hf, Ta or W or a mixed carbide of these metals, in particular a tantalum carbide coating of the composition TaC, (0.8 ⁇ x ⁇ 1.0) or a tantalum carbonitride -Coating the composition TaC y N z (0.8 ⁇ y + z ⁇ 1).
  • the difference in the atomic numbers between the metallic component of the coating on the one hand and the main component of the focal track covering on the other hand is ⁇ 3.
  • the coating has a thickness of less than 0.5 ⁇ m.
  • a small layer thickness precludes the X-ray radiation generated from being significantly influenced by the coating.
  • the thermal emissivity of the anode is at least predominantly determined by the coating and not by the base material.
  • the coating is carried out by a PVD method (physical vapor deposition), in particular by reactive ion plating.
  • the focal track covering is first made in a single coating run on the base body from high-temperature-resistant materials and then applied the heat radiating coating.
  • Figure 1 shows an X-ray rotating anode of typical design in section. It consists of a base body made of refractory metals and / or their alloys -1-. The top of the anode has a separate focal track covering -3- and a coating -2- over the entire anode surface in a layer thickness according to the invention.
  • FIG. 2 shows in a diagram for a typical X-ray rotary anode loading cycle (81 kV, 250 mA, firing time 6.4 sec.)
  • x-ray rotary anodes for computer tomography are usually used today such that the focal spot is heated to approx. 1800 ° C. by brief electron bombardment and that a pause is then made until the anode cools down again to approx. 600 ° C.-800 ° C. is then to be heated again by electron bombardment.
  • the diagram contains three curves. The curves were determined for rotating anodes of the same type but with different surface properties.
  • Curve 1 shows the temperature profile of the focal path (90 ° before re-entry into the focal spot) of an X-ray rotary anode according to the present invention, i. H.
  • the anode consists of a base body made of a molybdenum alloy known under the abbreviation TZM.
  • the anode In the area of the focal path, the anode has a focal path covering made of a tungsten / rhenium alloy and is covered with an approximately 0.5 J.1.m thick tantalum carbide layer over the entire surface.
  • curve 2 shows the temperature profile for an anode of the same type, in which the side of the anode facing the cathode (the side having the focal track coating) is excluded from the coating.
  • the third curve shows the temperature profile for an anode, also of the same design, but without a tantalum carbide coating.
  • the fully coated X-ray anode while maintaining the maximum focal track temperature, has more than halved the cooling time from 300 to 130 seconds, ie practically more than doubling the exposure cycles.
  • the ratio of the number of cycles is still approximately 1.5 to 1.
  • thermo-mechanical and metallurgical stability of the coating according to the invention were convincingly demonstrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • X-Ray Techniques (AREA)

Description

Die Erfindung betrifft eine Röntgendrehanode mit ringförmiger Brennbahn, bestehend aus einem Grundkörper, mit oder ohne gesonderten Brennbahnbelag, aus hochschmelzenden Metallen und/oder deren Legierungen und aus einer zumindest auf Teilbereichen derselben aufgebrachten, die Brennbahn einschließenden Beschichtung aus hochschmelzenden Verbindungen.The invention relates to an X-ray rotary anode with a ring-shaped focal track, consisting of a base body, with or without a separate focal track coating, made of refractory metals and / or their alloys, and of a coating of refractory compounds applied to the focal track at least on partial areas thereof.

Die sich stetig weiterentwickelnde Technik der Röntgendiagnostik, z. B. in der Digitalen Radiografie und der Röntgen-Computertomografie (CT), bedingt erhöhte thermische Belastungen der Röntgendrehanoden. Die Energieaufnahme während einer Serie von "CT-Scans" liegt beispielsweise bei 2 Megajoule; im . stationären Betrieb muß diese Wärmemenge während einer Zykluszeit von 15 Minuten durch thermische Strahlung abgegeben werden, was einer mittleren Strahlungsleistung von etwa 2 kW entspricht.The constantly developing technology of X-ray diagnostics, e.g. B. in digital radiography and X-ray computed tomography (CT), increased thermal loads on the X-ray rotary anodes. The energy consumption during a series of "CT scans" is, for example, 2 megajoules; in the . In stationary operation, this amount of heat must be emitted by thermal radiation over a cycle time of 15 minutes, which corresponds to an average radiation power of approximately 2 kW.

Die Wärmestrahlung von einem Körper erfolgt bekanntlich gemäß dem Stefan-Boltzmannschen Strahlungsgesetz und ist proportional zur vierten Potenz der Temperatur, zur Oberfläche und zur hemisphärischen Emissivität E.As is well known, heat radiation from a body occurs in accordance with the Stefan-Boltzmann radiation law and is proportional to the fourth power of the temperature, to the surface and to the hemispherical emissivity E.

Die Strahlungsleistung von Röntgendrehanoden kann somit im Prinzip durch höhere Betriebstemperaturen gesteigert werden; die werkstoffbedingten Grenztemperaturen sind jedoch bei den nach dem Stand der Technik gefertigten Röntgen-Drehanoden bereits erreicht. Die Vergrößerung der strahlenden Fläche als Maßnahme zur Steigerung der abgestrahlten Leistung kann einerseits durch Aufrauhung der Anodenoberfläche, andererseits durch Erhöhung des Durchmessers und der Dicke der Anode erfolgen. Letzteres ist aber wegen der Zunahme des Drehmomentes und des Gewichtes der Anode nur begrenzt möglich.The radiation power of x-ray rotary anodes can in principle be increased by higher operating temperatures; however, the material-related limit temperatures have already been reached in the x-ray rotary anodes manufactured according to the prior art. The radiating area can be enlarged as a measure to increase the radiated power on the one hand by roughening the anode surface and on the other hand by increasing the diameter and thickness of the anode. The latter is only possible to a limited extent due to the increase in the torque and the weight of the anode.

Schließlich ist auch eine Erhöhung der Strahlungsleistung durch Steigerung der Emissivität für Röntgendrehanoden bereits in einer Vielzahl von Vorveröffentlichungen vorgeschlagen worden; in der Regel in Form einer vollständigen oder teilweisen Beschichtung der Anodenoberfläche.Finally, an increase in the radiation power by increasing the emissivity for X-ray rotary anodes has already been proposed in a large number of previous publications; usually in the form of a complete or partial coating of the anode surface.

Eine Bewertung des Nutzeffektes von "schwarzen" Beschichtungen muß von den üblichen Betriebsbedingungen bei Hochleistungsröhren ausgehen. Im CT-Betrieb befindet sich beispielsweise die Anode während der Aufnahmeserie von typisch 3 Minuten Dauer je nach Anodenausgestaltung mehr oder weniger weitab vom thermischen Gleichgewicht. In jedem Fall liegen die Brennbahntemperaturen während der Aufnahme selbst um einige hundert Grad über den Temperaturen im Inneren bzw. an der Rückseite der Anode.An assessment of the efficiency of "black" coatings must be based on the normal operating conditions for high performance tubes. In CT mode, for example, the anode is more or less far from the thermal equilibrium during the recording series of typically 3 minutes, depending on the anode design. In any case, the focal path temperatures during the recording itself are several hundred degrees above the temperatures inside or at the back of the anode.

Wegen der T4-Abhängigkeit trägt also gerade der Brennbahnbereich im Verhältnis zu seinem Flächenanteil an der Röntgendrehanode (typisch: 25 bis 30 % der Gesamtfläche) überproportional zur Strahlungskühlung bei. Eine Erhöhung der Emissivität E im Brennbahnbereich von beispielsweise 0.25 für W/Re-Brennbahnbeläge auf 0.8 steigert die bei gleichen Grenztemperaturen erzielbare Strahlungskühlung einer beschichteten Anode unter CT-Bedingungen daher theoretisch auf bis zu 40 %. Umgekehrt lassen sich bei gleichgehaltenen Belastungsbedingungen die Arbeitstemperaturen der Anode durch eine Beschichtung, die den Brennbahnbereich einschließt, deutlich senken.Because of the T 4 dependency, the focal path area in particular makes a disproportionate contribution to radiation cooling in relation to its area share of the x-ray rotary anode (typically: 25 to 30% of the total area). An increase in the emissivity E in the focal path area from, for example, 0.25 for W / re focal path coverings to 0.8 increases in theory the radiation cooling of a coated anode that can be achieved at the same limit temperatures under CT conditions up to 40%. Conversely, the working temperatures of the anode can be significantly reduced by a coating that includes the focal path area, with the load conditions being kept the same.

Während die üblicherweise für den Basiskörper und den Brennbahnbelag von Drehanoden verwendeten Metalle, Molybdän und Wolfram, je nach Oberflächenbeschaffenheit (geschliffen, sandgestrahlt), Koeffizienten der totalen hemisphärischen Emissivität zwischen 0.25 und 0.35 (bei 1000°C) besitzen, weisen eine Reihe von Hartstoffen, insbesondere Karbide und Nitride der Übergangsmetalle, aber auch Boride und Oxide sowie Rhenium und Grafit eine wesentlich höhere Emissivität auf (0,5 bis 0,85 bei 10000 C).While the metals, molybdenum and tungsten commonly used for the base body and the focal path coating of rotating anodes, depending on the surface properties (ground, sandblasted), have coefficients of total hemispherical emissivity between 0.25 and 0.35 (at 1000 ° C), a number of hard materials, in particular carbides and nitrides of the transition metals, but also borides and oxides as well as rhenium and graphite have a significantly higher emissivity (0.5 to 0.85 at 1000 ° C.).

Bereits in der französischen Patentschrift Nr. 1 148 708 aus dem Jahre 1957 wurde vorgeschlagen, eine Wolfram-Drehanode mit einer Rhenium-Schicht, beispielsweise nach dem CVD-Verfahren, in einer Schichtdicke von mindestens 10 µm, zu beschichten, um dadurch die Wärmeabstrahl-Fähigkeit der Anode zu erhöhen und gleichzeitig bei einer so dimensionierten Schichtdicke das Rhenium im Bereich der Brennfleckbahn zur ausschließlichen Erzeugung der Röntgenstrahlen zu nutzen. Potentielle Ausfallursachen und damit Nachteile derartiger Drehanoden sind mangelnde Schichthaftung (adhäsives Versagen) und Schichtermüdung (kohäsives Versagen) bei den hohen thermischen Wechselbeanspruchungen. Nachteilig ist schließlich auch der etwa gegenüber den oben genannten Karbiden vergleichsweise niedrige Wert des Emissions-Koeffizienten.Already in French Patent No. 1 148 708 from 1957, it was proposed to coat a tungsten rotary anode with a rhenium layer, for example according to the CVD process, in a layer thickness of at least 10 μm, in order to thereby reduce the heat radiation. Ability to increase the anode and at the same time use the rhenium in the area of the focal spot path for the exclusive generation of the X-rays with such a dimensioned layer thickness. Potential causes of failure and thus disadvantages of such rotating anodes are insufficient layer adhesion (adhesive failure) and layer fatigue (cohesive failure) with the high thermal alternating stresses. Finally, the relatively low value of the emission coefficient compared to the carbides mentioned above is also disadvantageous.

Die französische Patentschrift Nr. 1 371 880 beschreibt die Karbide, Nitride und Boride der Übergangsmetalle als mögliche Schichtwerkstoffe auf Drehanoden unterschiedlicher Substratwerkstoffe zur Verbesserung der Wärmeabstrahlung. Bevorzugtes Beschichtungsmaterial ist Tantalkarbid wegen seines hohen Emissions-Koeffizienten, aber auch wegen seines hohen Schmelzpunktes und wegen seiner geringen Material-Abdampfraten bei hohen Temperaturen. Als minimale Schichtdicke wird ein Wert von 25 µm genannt. Um Reaktionen zwischen dem Grundmaterial und dem Karbid zu verhindern, werden Zwischenschichten aus Rhenium empfohlen. Das Patent umfaßt nach dem Anspruchswortlaut zwar die Beschichtung der gesamten Drehanoden-Oberfläche einschließlich Brennbahn. Es wird zu einzelnen Ausführungsbeispielen jedoch ausdrücklich empfohlen, die Brennbahn von der Beschichtung auszunehmen. Vollständig beschichtete Drehanoden der oben genannten Art haben den Nachteil, daß wegen der geringen Wärmeleitfähigkeit z. B. des nach dem Patent mittels Plasmaspritzen aufgebrachten TaC (ca. 1/20 des Wolfram) bei den genannten Schichtstärken sehr hohe Temperaturgradienten über den Querschnitt der Schicht auftreten. Diese bewirken hohe mechanische Spannungen in der Schicht und in der Übergangszone Schicht-Substrat, und infolge der hohen Sprödigkeit des Karbides kommt es zu Rissen bzw. Absplitterungen in der Beschichtung. Als besonders nachteilig wird die dadurch bewirkte Aufrauhung der Oberfläche im Bereich der Brennbahn empfunden, da diese die Ausbeute der Röntgenstrahlung wesentlich beeinträchtigt.French Patent No. 1,371,880 describes the carbides, nitrides and borides of the transition metals as possible layer materials on rotating anodes of different substrate materials to improve the heat radiation. The preferred coating material is tantalum carbide because of its high emission coefficient, but also because of its high melting point and because of its low material evaporation rates at high temperatures. A value of 25 µm is given as the minimum layer thickness. Intermediate layers of rhenium are recommended to prevent reactions between the base material and the carbide. According to the wording of the claim, the patent does indeed cover the entire rotating anode surface, including the focal track. For individual exemplary embodiments, however, it is expressly recommended that the focal path be excluded from the coating. Fully coated rotating anodes of the type mentioned have the disadvantage that because of the low thermal conductivity z. B. of the patent by means of plasma spraying brought TaC (approx. 1/20 of the tungsten) with the mentioned layer thicknesses very high temperature gradients occur across the cross section of the layer. These cause high mechanical stresses in the layer and in the layer-substrate transition zone, and the high brittleness of the carbide leads to cracks or chips in the coating. The resulting roughening of the surface in the region of the focal path is felt to be particularly disadvantageous, since this significantly affects the yield of the X-rays.

In einer Vielzahl von Folgepatenten werden bis in jüngste Zeit immer wieder Drehanoden mit Oberflächenbeschichtung und Verfahren zu deren Herstellung beschrieben, welche die Wärmeabstrahlung verbessern sollen. Bei der Beschichtung wird die Brennbahn jedoch aufgrund der nach der Lehrmeinung nicht beherrschbaren, oben beschriebenen Nachteile ausdrücklich ausgenommen, was aus herstellungstechnischen Gründen in der Praxis meist nicht nur eine Aussparung der Brennbahn, sonder eine vollständige Aussparung der die Brennbahn enthaltenden Röntgendrehanoden-Oberseite bedeutet - z. B. DE 2 946 386, EU 0 018 685.In a large number of subsequent patents, rotating anodes with surface coating and processes for their production have been described again and again until recently, which are intended to improve the heat radiation. In the coating, however, the focal path is expressly excluded due to the disadvantages that cannot be controlled according to the teaching, described above, which mostly means not only a recess in the focal path, but a complete recess in the X-ray rotary anode top side containing the focal path, for practical reasons in manufacturing . B. DE 2 946 386, EU 0 018 685.

Aufgabe vorliegender Erfindung ist es daher, die Wärmeabstrahlung von Röntgendrehanoden durch Aufbringen einer Beschichtung zu erhöhen, die den Brennbahnbereich einschließt und dabei die Nachteile bekannter Ausführungen, vor allem die mangelnde Thermoschockbeständigkeit und die unzureichende Schichthaftung vermeidet.The object of the present invention is therefore to increase the heat radiation from X-ray rotary anodes by applying a coating which encloses the focal path area and thereby avoids the disadvantages of known designs, above all the lack of thermal shock resistance and the insufficient layer adhesion.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die der Wärmeabstrahlung dienende Beschichtung eine Dicke zwischen 0.1 µm und 2 µm aufweist, wobei die Quelle der Röntgenstrahlung überwiegend in dem unter der BeschichtungThis object is achieved in that the heat radiation coating has a thickness between 0.1 microns and 2 microns, the source of the X-rays mainly in the under the coating

liegenden Brennbahnmaterial verbleibt.lying focal track material remains.

Es wird darauf hingewiesen, daß es aus der EP-A-104 515 an sich bekannt ist eine Drehanode mit einer Schicht aus einem amorphen Kohlenstoff mit einer Dicke von 0,1 µm und mehr zu versehen. Die Abscheidung hochschmelzender Verbindungen gemäß der Erfindung wird nicht angesprochen.It is pointed out that it is known per se from EP-A-104 515 to provide a rotating anode with a layer of an amorphous carbon with a thickness of 0.1 μm and more. The deposition of high-melting compounds according to the invention is not addressed.

Die Ausgestaltung der Röntgendrehanode gemäß vorliegender Erfindung führt zu einer gezielten Aufteilung der Funktionen von thermischer Emission einerseits und Erzeugung der Röntgenstrahlen andererseits. Im Gegensatz zu früheren Lösungsvorschlägen, bei denen die den Brennbahnbereich einschließende thermischemissive Schicht ausdrücklich oder aufgrund der angegebenen Schichtstärken implizit auch der ausschließliche Entstehungsort der Röntgenstrahlung ist, wird erfindungsgemäß die Schichtdicke innerhalb des beanspruchten Schichtdicken-Bereiches allein nach den Erfordernissen der Emissivität und der thermo-mechanischen sowie metallurigischen Langzeitstabilität der thermisch-emissiven Beschichtung festgelegt. Die Erzeugung der Röntgenstrahlung wird-obigen Kriterien untergeordnet - durch die Beschichtung je nach den Gegebenheiten praktisch nicht oder doch zu einem gewissen Anteil beeinflußt. Die Schichtdicken für die erfindungsgemäßen Schichtmaterialien liegen mit 0.1 bis 2 µm weit unterhalb der bekannten, die Brennbahn einschließenden Schichtdicken.The design of the x-ray rotary anode according to the present invention leads to a targeted division of the functions of thermal emission on the one hand and generation of the x-rays on the other. In contrast to previous solution proposals, in which the thermal emissive layer enclosing the focal path region is expressly or implicitly also the exclusive source of the X-radiation due to the layer thicknesses specified, the layer thickness within the claimed layer thickness range is determined solely according to the requirements of the emissivity and the thermo-mechanical one as well as the metallurgical long-term stability of the thermal-emissive coating. The generation of the X-rays is subordinate to the above criteria - depending on the circumstances, the coating practically does not influence it or at least influences it to a certain extent. The layer thicknesses for the layer materials according to the invention, at 0.1 to 2 μm, are far below the known layer thicknesses including the focal path.

Nachdem in den vergangenen Jahren über eine Vielzahl von Vorschlägen die Wärmeabstrahlung von Röntgendrehanoden jeweils nur geringfügig verbessert werden konnte, läßt sich mit den Maßnahmen gemäß vorliegender Erfindung je nach Ausführung und Betriebsart der Röntgendrehanode eine 20 - 40 % Steigerung der Wärmeabstrahlung erzielen. Es war für den Durchschnittsfachmann nicht vorhersehbar, daß Beschichtungen auf der Brennbahn innerhalb des beanspruchten Schichtdickenbereiches derart günstige thermo-mechanische Stabilitäten aufweisen. Nur so ist erklärlich, daß die erfindungsgemäßen Beschichtungen bisher weder publiziert noch praktisch verwirklicht wurden, obwohl der Vorschlag der Beschichtung selbst schon vor mehr als 20 Jahren gemacht wurde.After the heat radiation of X-ray rotary anodes could only be slightly improved in the past years over a variety of proposals, the measures according to the present invention can achieve a 20-40% increase in heat radiation depending on the design and operating mode of the X-ray rotary anode. It was not foreseeable by the average person skilled in the art that coatings on the focal path have such favorable thermo-mechanical stabilities within the claimed layer thickness range. This is the only way to explain that the coatings according to the invention have so far neither been published nor implemented in practice, although the proposal for the coating itself was made more than 20 years ago.

Nach einer bevorzugten Ausgestaltung der Erfindung besteht die Beschichtung aus einem Karbid, Nitrid oder einem Karbonitrid der Übergangsmetalle Hf, Ta oder W oder einem Mischkarbid dieser Metalle, insbesondere aus einer Tantalkarbid-Beschichtung der Zusammensetzung TaC, (0.8 < x < 1.0) oder einer Tantalkarbonitrid-Beschichtung der Zusammensetzung TaCyNz (0.8 ≼ y + z < 1).According to a preferred embodiment of the invention, the coating consists of a carbide, nitride or a carbonitride of the transition metals Hf, Ta or W or a mixed carbide of these metals, in particular a tantalum carbide coating of the composition TaC, (0.8 <x <1.0) or a tantalum carbonitride -Coating the composition TaC y N z (0.8 ≼ y + z < 1).

Nach einer weiteren bevorzugten Ausführung ist die Differenz der Ordnungszahlen zwischen der metallischen Komponente der Beschichtung einerseits und der Hauptkomponente des Brennbahnbelages andererseits < 3.According to a further preferred embodiment, the difference in the atomic numbers between the metallic component of the coating on the one hand and the main component of the focal track covering on the other hand is <3.

Durch diese Maßnahme ist sichergestellt, daß selbst dann keine wesentliche Veränderung (Verschiebung) des Röntgenspektrums eintreten kann, wenn nennenswerte Anteile der Röntgenstrahlung ihren Ursprung in der über dem Brennbahnbelag aufgebrachten Beschichtung haben.This measure ensures that no significant change (shift) in the X-ray spectrum can occur even if significant portions of the X-ray radiation have their origin in the coating applied over the focal track covering.

Nach einer weiteren bevorzugten Ausführung der Erfindung weist die Beschichtung eine Dicke kleiner 0,5 µm auf. Eine solche geringe Schichtdicke schließt aus, daß die erzeugte Röntgenstrahlung durch die Beschichtung nennenswert beeinflußt wird. Sie ist aber nur in solchen Fällen sinnvoll, wo aufgrund der gegebenen Beschichtungsmaterialien und Einsatzbedingungen gewährleistet bleibt, daß die thermische Emissivität der Anode zumindest überwiegend von der Beschichtung und nicht vom Grundmaterial bestimmt wird.According to a further preferred embodiment of the invention, the coating has a thickness of less than 0.5 μm. Such a small layer thickness precludes the X-ray radiation generated from being significantly influenced by the coating. However, it only makes sense in cases where the given coating materials and operating conditions ensure that the thermal emissivity of the anode is at least predominantly determined by the coating and not by the base material.

Nach einem bevorzugten Verfahren zur Herstellung einer Röntgendrehanode gemäß der Erfindung erfolgt die Beschichtung durch ein PVD-Verfahren (physical vapour deposition), insbesondere durch Reaktives lonenplattieren.According to a preferred method for producing an X-ray rotary anode according to the invention, the coating is carried out by a PVD method (physical vapor deposition), in particular by reactive ion plating.

Nach einem weiteren bevorzugten Verfahren zur Herstellung der Röntgendrehanode gemäß Erfindung wird in einem einzigen Beschichtungslauf auf dem Grundkörper aus hochwarmfesten Materialien zunächst der Brennbahnbelag und anschließend die wärmeabstrahlende Beschichtung aufgebracht.According to a further preferred method for producing the X-ray rotary anode according to the invention, the focal track covering is first made in a single coating run on the base body from high-temperature-resistant materials and then applied the heat radiating coating.

In der Praxis hat sich besonders bewährt, in einem gemeinsamen Beschichtungslauf zunächst eine 10 - 20 µm dicke Rheniumschicht als Brennbahnbelag und anschließend eine 0,5 - 1 um dicke Tantalkarbidschicht als wärmeemittierenden Überzug auf der gesamten Anodenoberfläche aufzubringen.In practice, it has proven particularly useful to first apply a 10-20 µm thick rhenium layer as the focal track coating and then a 0.5-1 µm thick tantalum carbide layer as a heat-emitting coating on the entire anode surface in a common coating run.

Die Röntgendrehanode gemäß vorliegender Erfindung wird anhand nachfolgender Figuren näher erläutert.

  • Fig. 1 zeigt eine Röntgendrehanode gemäß der Erfindung im Schnitt.
  • Fig. 2 zeigt anhand praxisnaher Aufheiz-Abkühlzyklen den Temperaturverlauf der Anodenoberfläche als Funktion der Zeit für Röntgendrehanoden mit unterschiedlicher Beschichtung.
The x-ray rotating anode according to the present invention is explained in more detail with reference to the following figures.
  • Fig. 1 shows an X-ray rotary anode according to the invention in section.
  • 2 shows the temperature curve of the anode surface as a function of time for X-ray rotary anodes with different coatings using practical heating-cooling cycles.

Figur 1 zeigt eine Röntgendrehanode typischer Bauart im Schnitt. Sie besteht aus einem Grundkörper aus hochschmelzenden Metallen und/oder deren Legierungen -1-. Die Anode besitzt auf ihrer Oberseite einen gesonderten Brennbahnbelag -3- und über die gesamte Anodenoberfläche eine Beschichtung -2- in einer erfindungsgemäßen Schichtdicke.Figure 1 shows an X-ray rotating anode of typical design in section. It consists of a base body made of refractory metals and / or their alloys -1-. The top of the anode has a separate focal track covering -3- and a coating -2- over the entire anode surface in a layer thickness according to the invention.

Eine Drehanode nach Fig. 1 wurde mit Hilfe des Reaktiven lonenplattierens mit einer 0,5 µm dicken Schicht, bestehend aus TaC, allseitig beschichtet. Durch intensives Zerstäuben der geschliffenen Anodenoberfläche in einer anomalen Glimmentladung ("Glimmen") war zuvor eine für die Schichthaftung und für eine erhöhte Abstrahlung günstige Oberflächentopologie geschaffen worden. Die Schicht war stoechiometrisches TaC mit NaCI-Struktur und blaß-goldener Farbe. Die im Ritztest bestimmte Haftfestigkeit betrug 200 kp/mm2. Die durch den Beschichtungsprozeß in die Schicht eingebrachten, intrinsischen Spannungen wurden durch eine Vakuumglühung der Anode zwischen 1200°C und 1600°C abgebaut.1 was coated on all sides with the aid of reactive ion plating with a 0.5 μm thick layer consisting of TaC. Intensive sputtering of the ground anode surface in an anomalous glow discharge ("glow") had previously created a surface topology which was favorable for layer adhesion and for increased radiation. The layer was stoechiometric TaC with a NaCI structure and a pale gold color. The adhesive strength determined in the scratch test was 200 kp / mm 2 . The intrinsic stresses introduced into the layer by the coating process were reduced by vacuum annealing the anode between 1200 ° C and 1600 ° C.

Es wurde an den so gefertigten erfindungsgemäßen Anoden keine erhöhte Anzahl von Röhrenstörungen, z. B. durch Hochspannungsinstabilitäten registriert, so daß eine Loslösung von Teilchen aus dem Belag ausgeschlossen werden kann.There was no increased number of tube disorders, z. B. registered by high-voltage instabilities, so that a detachment of particles from the coating can be excluded.

Die derart gefertigte Drehanode wurde in einem, die praktisch auftretenden Verhältnisse simulierenden Röhrenprüfstand entsprechend den Ausführungen zu Fig. 2 untersucht und den dort benannten Vergleichsanoden gegenübergestellt.The rotary anode manufactured in this way was examined in a tube test bench simulating the practically occurring conditions in accordance with the explanations given in FIG. 2 and compared with the comparison anodes named there.

Die Figur 2 zeigt in einem Diagramm für einen typischen Röntgendrehanoden-Belastungszyklus (81 kV, 250 mA, Schußdauer 6,4 sec.) den Anoden-Temperaturverlauf im Bereich der Brennbahn als Funktion der Zeit. Insbesondere Röntgendrehanoden für die Computertomografie werden heute üblicherweise so eingesetzt, daß durch kurzzeitigen Elektronenbeschuß eine Aufheizung des Brennflecks auf ca. 1800°C erfolgt und daß daran anschließend eine Pause gemacht wird, bis die Anode wieder auf ca. 600°C - 800°C abgekühlt ist, um dann erneut durch Elektronenbeschuß aufgeheizt zu werden. Das Diagramm enthält drei Kurven. Die Kurven wurden für Drehanoden gleicher Bauart, aber unterschiedlicher Oberflächenbeschaffenheit, ermittelt. Die Kurve 1 zeigt den Temperaturverlauf der Brennbahn (90° vor Wiedereintritt in den Brennfleck) einer Röntgendrehanode gemäß vorliegender Erfindung, d. h. die Anode besteht aus einem Grundkörper, aus einer unter der Abkürzung TZM bekannten Molybdän-Legierung. Die Anode weist im Bereich der Brennbahn einen Brennbahnbelag aus einer Wolfram/Rhenium-Legierung auf und ist über die gesamte Oberfläche mit einer ca. 0,5 J.1.m dicken Tantalkarbidschicht belegt. Im Vergleich hierzu ist mit der Kurve 2 der Temperaturverlauf für eine gleichartige Anode gezeigt, bei der die der Kathode zugewandte Seite der Anode (den Brennbahnbelag aufweisende Seite) von der Beschichtung ausgeschlossen ist. Schließlich zeigt die dritte Kurve den Temperaturverlauf für eine Anode, ebenfalls gleicher Bauart, jedoch gänzlich ohne Tantalkarbid-Beschichtung.FIG. 2 shows in a diagram for a typical X-ray rotary anode loading cycle (81 kV, 250 mA, firing time 6.4 sec.) The anode temperature curve in the region of the focal path as a function of time. In particular, x-ray rotary anodes for computer tomography are usually used today such that the focal spot is heated to approx. 1800 ° C. by brief electron bombardment and that a pause is then made until the anode cools down again to approx. 600 ° C.-800 ° C. is then to be heated again by electron bombardment. The diagram contains three curves. The curves were determined for rotating anodes of the same type but with different surface properties. Curve 1 shows the temperature profile of the focal path (90 ° before re-entry into the focal spot) of an X-ray rotary anode according to the present invention, i. H. the anode consists of a base body made of a molybdenum alloy known under the abbreviation TZM. In the area of the focal path, the anode has a focal path covering made of a tungsten / rhenium alloy and is covered with an approximately 0.5 J.1.m thick tantalum carbide layer over the entire surface. In comparison to this, curve 2 shows the temperature profile for an anode of the same type, in which the side of the anode facing the cathode (the side having the focal track coating) is excluded from the coating. Finally, the third curve shows the temperature profile for an anode, also of the same design, but without a tantalum carbide coating.

Die vollständig beschichtete Röntgendrehanode weist gegenüber der unbeschichteten Anode bei Beibehaltung der maximalen Brennbahntemperatur mehr als eine Halbierung der Abkühlzeit von 300 auf 130 sec. auf, also praktisch mehr als eine Verdoppelung der Aufnahmezyklen. Gegenüber der teilweise beschichteten Anode ist das Verhältnis der Zykluszahlen immer noch ca. 1,5 zu 1.Compared to the uncoated anode, the fully coated X-ray anode, while maintaining the maximum focal track temperature, has more than halved the cooling time from 300 to 130 seconds, ie practically more than doubling the exposure cycles. Compared to the partially coated anode, the ratio of the number of cycles is still approximately 1.5 to 1.

Die Röntgenbeugungs-Analyse der Beschichtung im Brennbahnbereich nach 110 h Röhrentest gemäß oben genannten Bedingungen ergab stoechiometrisches TaC; es konnte keine Legierungsbildung mit dem darunterliegenden W/Re-Belag beobachtet werden. Die Schichthaftung auf dem Grundkörper war unverändert gut.The X-ray diffraction analysis of the coating in the focal path region after a tube test of 110 h according to the above-mentioned conditions showed stoechiometric TaC; no alloy formation with the underlying W / Re coating could be observed. The layer adhesion on the base body was still good.

Mit diesem Ausführungsbeispiel konnte sowohl die thermo-mechanische und metallurgische Stabilität der erfindungsgemäßen Beschichtung als auch die damit bezweckte Erhöhung der Abstrahlung überzeugend nachgewiesen werden.With this exemplary embodiment, both the thermo-mechanical and metallurgical stability of the coating according to the invention and the increase in radiation intended for this were convincingly demonstrated.

Claims (8)

1. A rotary X-ray anode having a ring-shaped focal track area comprised of a basic body (1), with or without a separate layer of the focal track area, made of high-melting metals and/or their alloys and a coating (2) made of high-melting compounds, said coating (2) applied to at least partial zones of said rotary X-ray anode and covering said focal track area,
characterized in, that the thermal emissive coating (2) having a thickness in the range of 0.1 µm and 2 µm, whereby the source of the X-rays is remaining predominantly within the material of the focal track beneath the coating (2).
2. A rotary X-ray anode according to claim 1, characterized in, that the difference between the ordinal numbers in the periodic table of the metallic component of the coating (2) and the principal metallic element of the layer of the focal track (3) is less than or equal to 3.
3. A rotary X-ray anode according to claim 1 or 2, characterized in, that said coating (2) comprises a carbide, nitride or cabonitride of the transition metals, Hf, Ta or W, or a mixed carbide of said metals.
4. A rotary X-ray anode according to claims 1 to 3, characterized in, that said coating (2) comprises TaCx where 0.8 ≼ x < 1.0 or TaCyNz where 0.8≼y+z≼1.
5. A rotary X-ray anode according to claims 1 to 4, characterized in, that said coating (2) has a thickness of less than about 0.5 µm.
6. A rotary X-ray anode according to claims 1 to 5, characterized in, that said layer of the focal track area (3) is a rhenium layer of 10 µm to 20 µm thickness and the thermal emissive coating (2) is a TaC-layer of 0.5 µm to 1.0 µm thickness.
7. A process for producing a rotary X-ray anode according to claims 1 to 6, characterized in, that said coating (2) is produced by a PVD-process (physical vapour deposition), particularly by reactive ion plating.
8. A process for producing a rotary X-ray anode according to claims 1 to 6, characterized in, that the focal track layer (3) and said emissive coating (2) are applied in one single coating run by successive deposition of the focal track material and the thermally emissive coating (2) on a basic body with high resistance to heat.
EP85108417A 1984-07-16 1985-07-06 Rotating anode with a surface coating for x-ray tubes Expired EP0168736B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2287/84 1984-07-16
AT0228784A AT381805B (en) 1984-07-16 1984-07-16 X-RAY TURNING ANODE WITH SURFACE COATING

Publications (3)

Publication Number Publication Date
EP0168736A2 EP0168736A2 (en) 1986-01-22
EP0168736A3 EP0168736A3 (en) 1987-11-19
EP0168736B1 true EP0168736B1 (en) 1989-10-04

Family

ID=3531547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108417A Expired EP0168736B1 (en) 1984-07-16 1985-07-06 Rotating anode with a surface coating for x-ray tubes

Country Status (4)

Country Link
EP (1) EP0168736B1 (en)
JP (1) JPS6139352A (en)
AT (1) AT381805B (en)
DE (1) DE3573488D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008032995A1 (en) * 2008-07-14 2010-01-21 Siemens Aktiengesellschaft X-ray tube, has vacuum housing in which cathode and anode are arranged, where housing has inner wall that partially exhibits inertization, anode partially exhibits inertization and inertization comprises barrier layers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787082B2 (en) * 1987-07-24 1995-09-20 株式会社日立製作所 Rotating anode target for X-ray tube
AT699U1 (en) * 1993-07-19 1996-03-25 Gen Electric TURNING ANODE FOR AN X-RAY TUBE
US7672433B2 (en) * 2008-05-16 2010-03-02 General Electric Company Apparatus for increasing radiative heat transfer in an x-ray tube and method of making same
CN117174557B (en) * 2023-11-03 2024-01-09 上海超群检测科技股份有限公司 High-energy micro-focus X-ray tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1050457B (en) * 1956-03-15 1959-02-12 Compagnie Generale De Radiologie, Paris X-ray tube with preferably rotating the high-temperature-resistant anode
NL295542A (en) * 1963-07-19 1900-01-01
US4227112A (en) * 1978-11-20 1980-10-07 The Machlett Laboratories, Inc. Gradated target for X-ray tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008032995A1 (en) * 2008-07-14 2010-01-21 Siemens Aktiengesellschaft X-ray tube, has vacuum housing in which cathode and anode are arranged, where housing has inner wall that partially exhibits inertization, anode partially exhibits inertization and inertization comprises barrier layers

Also Published As

Publication number Publication date
JPS6139352A (en) 1986-02-25
AT381805B (en) 1986-12-10
ATA228784A (en) 1986-04-15
EP0168736A2 (en) 1986-01-22
EP0168736A3 (en) 1987-11-19
DE3573488D1 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
DE3303529C2 (en)
DE2805154C2 (en) X-ray tube anode and method for its manufacture
DE2154888A1 (en) ROENTINE PIPE
EP0399621B1 (en) Graphite-refractory metal composite
AT399244B (en) X-RAY TUBE ANODE TARGET AND X-RAY TUBE WITH SUCH A TARGET
AT14991U1 (en) X-ray anode
EP1019948A1 (en) Long-life electrode for high pressure discharge lamp
EP0168736B1 (en) Rotating anode with a surface coating for x-ray tubes
US4600659A (en) Emissive coating on alloy x-ray tube target
CA1081758A (en) X-ray tube anode with alloyed surface and method of making the same
DE3117961A1 (en) METHOD FOR PROVIDING A METAL ITEM WITH A THERMALLY BLACK SURFACE
DE4230047C1 (en) Rotating anode X=ray tube for eg for medical computer tomography - has aperture plate stop in path of electron beam between cathode and anode coated with material having low atomic number.
EP0874385A1 (en) Method of manufacturing an anode for x-ray tubes
DE2354518C2 (en) Anode for an X-ray tube
DE69209139T2 (en) Rotating anode X-ray tube and manufacturing method therefor
DE3134196A1 (en) &#34;TARGET FOR A TURNING ANODE TUBE AND METHOD FOR THE PRODUCTION THEREOF&#34;
AT393367B (en) LAYER COMPOSITE MATERIAL, ESPECIALLY FOR SLIDING AND FRICTION ELEMENTS, AND METHOD FOR THE PRODUCTION THEREOF
EP0421521B1 (en) X-ray tube anode with oxide layer
DE69017877T2 (en) X-ray rotating anode.
US2788460A (en) Electrodes for electron discharge devices and methods of making same
EP0488450A1 (en) X-Ray tube anode with oxide layer
DE3205919C1 (en) Process for the production of solid electrolyte layers for galvanic cells
EP0487144A1 (en) X-ray tube anode with oxide layer
DE1050457B (en) X-ray tube with preferably rotating the high-temperature-resistant anode
DE2722668A1 (en) PROCESS FOR MANUFACTURING THIN LAYERS FROM HIGH TEMPERATURE-RESISTANT METALS SUCH AS TUNGSTEN, MOLYBDA, RHENIUM OR OSMIUM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19871027

17Q First examination report despatched

Effective date: 19880721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890729

Year of fee payment: 7

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3573488

Country of ref document: DE

Date of ref document: 19891109

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900618

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900731

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911217

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920731

Ref country code: CH

Effective date: 19920731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST