EP0166830B1 - Articles non tissés comportant des fibres de polymères de cristaux liquides thermotropiques et procédé pour leur fabrication - Google Patents

Articles non tissés comportant des fibres de polymères de cristaux liquides thermotropiques et procédé pour leur fabrication Download PDF

Info

Publication number
EP0166830B1
EP0166830B1 EP19840304572 EP84304572A EP0166830B1 EP 0166830 B1 EP0166830 B1 EP 0166830B1 EP 19840304572 EP19840304572 EP 19840304572 EP 84304572 A EP84304572 A EP 84304572A EP 0166830 B1 EP0166830 B1 EP 0166830B1
Authority
EP
European Patent Office
Prior art keywords
moiety
mole percent
approximately
polymer
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840304572
Other languages
German (de)
English (en)
Other versions
EP0166830A1 (fr
Inventor
Alan Buckley
Gordon W. Calundann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Celanese Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8192684&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0166830(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Celanese Corp filed Critical Celanese Corp
Priority to DE8484304572T priority Critical patent/DE3480010D1/de
Priority to EP19840304572 priority patent/EP0166830B1/fr
Publication of EP0166830A1 publication Critical patent/EP0166830A1/fr
Application granted granted Critical
Publication of EP0166830B1 publication Critical patent/EP0166830B1/fr
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding

Definitions

  • the present invention relates to non-woven articles comprised of thermotropic liquid crystal polymer fibres.
  • non-woven articles comprised of polymeric materials have been employed for many purposes.
  • non-woven articles have been employed as filters, electrical insulation and reinforcement for resins.
  • non-woven articles have frequently been found to not be appropriate for use in a high temperature environment (e.g., in excess of about 200°C.) or in an environment where the structure will come into contact with solvents or corrosive chemicals. It is therefore desirable to provide non-woven articles comprised of a polymeric material which is resistant to solvents or corrosive chemicals and also suitable for use at high temperatures.
  • fibers comprised of lyotropic liquid crystal polymers have been employed in the production of non-woven scrim sheets in conjunction with polyester fibres which are not capable of forming an anisotropic melt phase wherein the polyester fibers are thermally bonded to the lyotropic liquid crystal polymer fibers.
  • EP-A-103 371 it is known that optically anisotropic melt forming copolyesters may be melt spun into fibers which can be used in non-wovens.
  • EP-A-103 371 does not mention copolyesters containing a naphthalene moiety and does not teach as to how the fibers may be formed into a non-woven sheet.
  • the present invention provides a non-woven article in the form of a sheet or web which exhibits desirable thermal stability and chemical and solvent resistance which comprises randomly arrayed fibers of a polymer which comprises not less than 10 mole percent of recurring units which include a naphthalene moiety and is capable of forming an anisotropic melt phase, said fibers being thermally bonded together at cross-over points to an extent sufficient to impart structural integrity to said article.
  • the present invention also provides a method for forming a non-woven article in the form of a web or sheet which exhibits desirable thermal stability and chemical and solvent resistance comprised of fibers of a polymer which is capable of forming an anisotropic melt phase, said method comprising (1) (a) spray spinning said polymer in the melt phase to form a multitude of discontinuous randomly arrayed fibers or (b) melt spinning said polymer and cutting the melt-spun material into fibers, (2) collecting said fibers in the form of a web or sheet, (3) thermally bonding said fibres together at cross-over points in the web or sheet, and (4) subjecting the resulting thermally bonded web or sheet to a heat treatment for a period of time and at a temperature sufficient to increase the melting temperature of the polymer between about 20 to 50 centigrade degrees subsequent to formation of said article.
  • Thermotropic liquid crystal polymers are polymers which are liquid crystalline (i.e., anisotropic) in the melt phase. These polymers have been described by various terms, including “liquid crystalline,” “liquid crystal” and “anisotropic.” Briefly, the polymers of this class are thought to involve a parallel ordering of the molecular chains. The state wherein the molecules are so ordered is often referred to either as the liquid crystal state or the nematic phase of the liquid crystalline material. These polymers are prepared from monomers which are generally long, flat and fairly rigid along the long axis of the molecule and commonly have chain-extending linkages that are either coaxial or parallel.
  • Such polymers readily form liquid crystals (i.e., exhibit anisotropic properties) in the melt phase. Such properties may be confirmed by conventional polarized light techniques whereby crossed polarizers are utilized. More specifically, the anisotropic melt phase may be confirmed by the use of a Leitz polarizing microscope at a magnification of 40X with the sample on a Leitz hot stage and under nitrogen atmosphere.
  • the polymer is optically anisotropic; i.e., it transmits light when examined between crossed polarizers. Polarized light is transmitted when the sample is optically anisotropic even in the static state.
  • thermotropic liquid crystal polymers suitable for use in the present invention include but are not limited to wholly aromatic polyesters, aromatic-aliphatic polyesters, aromatic polyazomethines, wholly and non-wholly aromatic poly(esteramide)s and aromatic polyester-carbonates.
  • the wholly aromatic thermotropic liquid crystal polymers are comprised of moieties which contribute at least one aromatic ring to the polymer backbone and which enable the polymer to exhibit anisotropic properties in the melt phase.
  • moieties include but are not limited to aromatic diols, aromatic amines, aromatic diacids and aromatic hydroxy acids.
  • Moieties which may be present in the thermotropic liquid crystal polymers employed in the present invention include but are not limited to the following:
  • thermotropic liquid crystal polymers which are employed comprise not less than about 10 mole percent of recurring units which include a naphthalene moiety.
  • Preferred naphthalene moieties include 6- oxy-2-naphthoyl, 2,6-dioxynaphthalene, and 2,6-dicarboxynaphthalene.
  • suitable aromatic-aliphatic polyesters are copolymers of polyethylene terephthalate and hydroxybenzoic acid as disclosed in PolyesterX7G-A Self Reinforced Thermoplastic, by W. J. Jackson, Jr., H. F. Kuhfuss, and T. F. Gray, Jr., 30th Anniversary Technical Conference, 1975 Reinforced Plastics/Composites Institute, The Society of the Plastics Industry, Inc., Section 17-D, Pages 1-4.
  • a further disclosure of such copolymers can be found in "Liquid Crystal Polymers: I. Preparation and Properties of p-Hydroxybenzoic Acid Copolymers," Journal of Polymer Science, Polymer Chemistry Edition, Vol. 14, pp. 2043-58 (1976), by W. J. Jackson, Jr. and H. F. Kuhfuss.
  • the above-cited references are herein incorporated by reference in their entirety.
  • Aromatic polyazomethines and processes of preparing the same are disclosed in the U.S. Patent Nos. 3,493,522; 3,493,524; 3,503,739; 3,516,970; 3,516,971; 3,526,611; 4,048,148; and 4,122,070. Each of these patents is herein incorporated by reference in its entirety.
  • polymers include poly(nitrilo - 2 - methyl - 1,4 - phenyl - enenitriloethylidyne - 1,4 - phenyleneethylidyne); poly(nitrilo - 2 - methyl -1,4 - phenylnenitrilomethylidyne - -1,4 - phenylene - methylidyne); and poly(nitrilo - 2 - chloro -1,4 - phenylenenitrilomethylidyne - 1,4 - phenylenemethylidyne).
  • Aromatic polyester-carbonates are disclosed in U.S. Patent No. 4,107,143, which is herein incorporated by reference in its entirety.
  • Examples of such polymers include those consisting essentially of hydroxybenzoic acid units, hydroquinone units, carbonate units, and aromatic carboxylic acid units.
  • the liquid crystal polymers which are preferred for use in the present invention include thermotropic wholly aromatic polyesters.
  • Recent publications disclosing such polyesters include (a) Belgian Pat. Nos. 828,935 and 828,936, (b) Dutch Pat. No. 7505551, (c) West German Pat Nos. 2,520,819, 2,520,820, and 2,722,120, (d) Japanese Pat. Nos. 43-223, 2132-116, 3017-692, and 3021-293, (e) U.S. Pat. Nos.
  • Wholly aromatic polymers which are preferred for use in the present invention include wholly aromatic polyesters and poly(ester-amide)s which are disclosed in commonly-assigned U.S. Patent Nos. 4,067,852; 4,083,829; 4,130,545; 4,161,470; 4,184,996; 4,219,461; 4,238,599; 4,256,624 and 4,279,803; and in commonly-assigned U.S. Application Serial Nos. 91,003, filed November 5, 1979; 128,759, filed March 10, 1980; and 214,557, filed December 9, 1980.
  • the disclosures of all of the above-identified commonly-assigned U.S. patents and applications are herein incorporated by reference in their entirety.
  • the wholly aromatic polymers disclosed therein typically are capable of forming an anisotropic melt phase at a temperature below approximately 400°C., and preferably below approximately 350°C.
  • the wholly aromatic polymers including wholly aromatic polyesters and poly(ester-amide)s which are suitable for use in the present invention may be formed by a variety of ester-forming techniques whereby organic monomer compounds possessing functional groups which, upon condensation, form the requisite recurring moieties are reacted.
  • the functional groups of the organic monomer compounds may be carboxylic acid groups, hydroxyl groups, ester groups, acyloxy groups, acid halides, amine groups, etc.
  • the organic monomer compounds may be reacted in the absence of a heat exchange fluid via a melt acidolysis procedure. They, accordingly, may be heated initially to form a melt solution of the reactants with the reaction continuing as the polymer particles are suspended therein. A vacuum may be applied to facilitate removal of volatiles formed during the final stage of the condensation (e.g., acetic acid or water).
  • the organic monomer reactants from which the wholly aromatic polyesters are derived may be initially provided in a modified form whereby the usual hydroxy groups of such monomers are esterified (i.e., they are provided as lower acyl esters).
  • the lower acyl groups preferably have from about two to about four carbon atoms.
  • the acetate esters of organic monomer reactants are provided.
  • Representative catalysts which optionally may be employed in either the melt acidolysis procedure or in the slurry procedure of U.S. Patent No. 4,083,829 include dialkyl tin oxide (e.g., dibutyl tin oxide), diaryl tin oxide, titanium dioxide, antimony trioxide, alkoxy titanium silicates, titanium alkoxides, alkali and alkaline earth metal salts of carboxylic acids (e.g., zinc acetate), the gaseous acid catalysts such as Lewis acids (e.g., BF 3 ), hydrogen halides (e.g., HCI), etc.
  • the quantity of catalyst utilized typically is about 0.001 to 1 percent by weight based upon the total monomer weight, and most commonly about 0.01 to 0.2 percent by weight.
  • the wholly aromatic polymers suitable for use in the present invention tend to be substantially insoluble in common solvents and accordingly are not susceptible to solution processing. As discussed previously, they can be readily processed by common melt processing techniques. Most suitable wholly aromatic polymers are soluble in pentafluorophenol to a limited degree.
  • the wholly aromatic polyesters which are preferred for use in the present invention commonly exhibit a weight average molecular weight of about 2,000 to 200,000, and preferably about 10,000 to 50,000, and most preferably about 20,000 to 25,000.
  • the wholly aromatic poly(ester-amide)s which are preferred commonly exhibit a molecular weight of about 5,000 to 50,000 and preferably about 10,000 to 30,000; e.g., 15,000 to 17,000.
  • Such molcular weight may be determined by gel permeation chromatography as well as by standard techniques not involving the solutioning of the polymer, e.g., by end group determination via infrared spectroscopy on compression molded films. Alternatively, light scattering techniques in a pentafluorophenol solution may be employed to determine the molecular weight.
  • the wholly aromatic polyesters and poly(ester-amide)s additionally commonly exhibit an inherent viscosity (i.e., I.V.) of at least approximately 2.0 dl./g., e.g., approximately 2.0 to 10.0 dl./g., when dissolved in a concentration of 0.1 percent by weight in pentafluorophenol at 60°C.
  • I.V. inherent viscosity
  • Especially preferred wholly aromatic polymers are those which are disclosed in above-noted U.S. Patent Nos. 4,161,470, 4,184,996, 4,219,461, 4,238,599 and 4,256,624 and Application Serial No. 214,557.
  • the aromatic rings which are included in the polymer backbones of the polymer components employed in the present invention may include substitution of at least some of the hydrogen atoms present upon an aromatic ring.
  • substituents include alkyl groups of up to four carbon atoms; alkoxy groups having up to four carbon atoms; halogens; and additional aromatic rings, such as phenyl or substituted phenyl.
  • Preferred halogens include fluorine, chlorine, and bromine. Although bromine atoms tend to be released from organic compounds at high temperatures, bromine is more stable on aromatic rings than on aliphatic chains, and therefore is suitable for inclusion as a possible substituent on the aromatic rings.
  • the wholly aromatic polyester which is disclosed in U.S. Patent No. 4,161,470 is a melt processable wholly aromatic polyester capable of forming an anisotropic melt phase at a temperature below approximately 350°C.
  • the polyester consists essentially of the recurring moieties I and II wherein:
  • the polyester comprises.approximately 10 to 90 mole percent of moiety 1, and approximately 10 to 90 mole percent of moiety II.
  • moiety II is present in a concentration of approximately 65 to 85 mole percent, and preferably in a concentration of approximately 70 to 80 mole percent, e.g., approximately 75 mole percent.
  • moiety II is present in a lesser proportion of approximately 15 to 35 mole percent, and preferably in a concentration of approximately 20 to 30 mole percent.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • the wholly aromatic polyester which is disclosed in U.S. Patent No. 4,184,996 is a melt processable wholly aromatic polyester capable of forming an anisotropic melt phase at a temperature below approximately 325°C.
  • the polyester consists essentially of the recurring moieties I, II, and III wherein: The polyester comprises approximately 30 to 70 mole percent of moiety I.
  • the polyester preferably comprises approximately 40 to 60 mole percent of moiety I, approximately 20 to 30 mole percent of moiety I, and approximately 20 to 30 mole percent of moiety III.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • the polyester disclosed in U.S. Patent No. 4,219,461 is a melt processable wholly aromatic polyester which is capable of forming an anisotropic melt phase at a temperature below approximately 320°C.
  • the polyester consists essentially of the recurring moieties I, II, III, and IV wherein:
  • III is a dioxy aryl moiety of the formula ⁇ [0 ⁇ Ar ⁇ 0] ⁇ wherein Ar is a divalent radical comprising at least one aromatic ring, and
  • IV is a dicarboxyl aryl moiety of the formula where Ar' is a divalent radical comprising at least one aromatic ring, and wherein the polyester comprises approximately 20 to 40 mole percent of moiety I, in excess of 10 up to about 50 mole percent of moiety II, in excess of 5 up to about 30 mole percent of moiety III, and in excess of 5 up to about 30 mole percent of moiety IV.
  • the polyester preferably comprises approximately 20 to 30 (e.g., approximately 25) mole percent of moiety I, approximately 25 to 40 (e.g., approximately 35) mole percent of moiety II, approximately 15 to 25 (e.g. approximately 20) mole percent of moiety III, and approximately 15 to 25 (e.g., approximately 20) mole percent of moiety IV.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • Moieties III and IV are preferably symmetrical in the sense that the divalent bonds which join these moieties to other moieties in the main polymer chain are symmetrically disposed on one or more aromatic rings (e.g., are para to each other or diagonally disposed when present on a naphthalene ring).
  • non-symmetrical moieties such as those derived from resorcinol and isophthalic acid, may also be used.
  • Preferred moieties III and IV are set forth in above-noted U.S. Patent No. 4,219,461.
  • the preferred dioxy aryl moiety III is: and the preferred dicarboxyl aryl moiety IV is:
  • the polyester disclosed in U.S. Patent No. 4,256,624 is a melt processable wholly aromatic polyester which is capable of forming an anisotropic melt phase at a temperature below approximately 400°C.
  • the polyester consists essentially of the recurring moieties I, II, and III wherein:
  • III is a dicarboxy aryl moiety of the formula where Ar' is a divalent radical comprising at least one aromatic ring, and wherein the polyester comprises approximately 10 to 90 mole percent of moiety I, approximately 5 to 45 mole percent of moiety II, and approximately 5 to 45 percent of moiety III.
  • the polyester preferably comprises approximately 20 to 80 mole percent of moiety I, approximately 10 to 40 mole percent of moiety II, and approximatly 10 to 40 mole percent of moiety III.
  • the polyester more preferably comprises approximatly 60 to 80 mole percent of moiety I, approximately 10 to 20 percent of moiety II, and approximately 10 to 20 mole percent of moiety III.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • moieties II and III of the polyester described immediately above may be symmetrical or nonsymmetrical, but are preferably symmetrical.
  • Preferred moieties II and III are set forth in above-noted U.S. Patent No. 4,256,624.
  • the preferred dioxy aryl moiety II is: and the preferred dicarboxy aryl moiety III is:
  • III is ⁇ [Y ⁇ Ar ⁇ Z] ⁇ , where Ar is a divalent radical comprising at least one aromatic ring, Y is O, NH, or NR, and Z is NH or NR, where R is an alkyl group of 1 to 6 carbon atoms or an aryl group; and
  • IV is ⁇ [O ⁇ Ar' ⁇ 0] ⁇ , where Ar' is a divalent radical comprising at least one aromatic ring; and wherein said poly(ester-amide) comprises approximately 10 to 90 mole percent of moiety I, approximately 5 to 45 mole percent of moiety II, approximately 5 to 45 percent of moiety III, and approximately 0 to 40 percent of moiety IV.
  • at least some of the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • Preferred moieties II, III and IV are set forth in above-noted U.S. Application Serial No 214,557.
  • the preferred dicarboxy aryl moiety II is: the referred moiety III is: and the preferred dioxy aryl moiety IV is:
  • the non-woven articles of the present invention are comprised of fibers of thermotropic liquid crystal polymers and may be produced in a variety of ways.
  • a thermotrophic liquids crystal polymer may be spray spun onto a web or screen to provide a random array of polymeric fibers.
  • melt spun fibers of a thermotropic liquid crystal polymer cut to appropriately short lengths can be slurried with a liquid which is a non-solvent for the polymer (e.g., water) and subsequently filtered (or wet-laid) onto a web or screen to provide a random (i.e., multi-dimensional) array of fibers.
  • the thus-produced random array may then be subjected to a suitable thermal bonding or heat pressing step at a suitable temperature to bond the fibers together and impart the desired structural integrity thereto. That is, the article at a minimum will support its own weight and preferably can be pulled apart only with difficulty.
  • the fibers are heated and pressed together for a period of time and at a pressure sufficient to at least bond the fibers together at the cross-over points.
  • Such fusion bonding does not result in any significant loss of orientation (and accordingly, loss of strength) since the polymer of which the fibers is comprised forms an anisotropic melt phase.
  • Such a characteristic is in direct contrast to conventional thermoplastic polymers which do not form an anisotropic melt phase and which readily lose their orientation upon being heated to temperatures in excess of their melting temperature. This is also in contrast to lyotropic liquid crystal polymers which cannot be fusion bonded.
  • the spray spun fibers are not allowed to cool sufficiently prior to being deposited on the web, the fibers will become bonded together as they collect upon the web or screen and a formal heat pressing step will not be required.
  • Polymers which are capable of forming an anisotropic melt phase are particularly suited for use in such a method since the polymer retains its orientation upon being spun and collected in the form of a web or sheet.
  • the spray-spun fibers can thus be thermally bonded together to form a non-woven article having the desired degree of structural integrity without exhibiting a significant loss of orientation (and strength) as a result of being bonded together in the melt phase.
  • the non-woven articles of the present invention possess many advantageous characteristics due to the presence of thermotropic liquid crystal polymers therein. That is, since liquid crystal polymers are fully drawn and highly oriented as spun, the fibers which comprise the non-woven articles of the present invention possess relatively high tensile strength and modulus. Accordingly, non-woven articles comprised of such fibers similarly exhibit relatively high tenacity and modulus.
  • the article exhibits such tensile strength and modulus in a multi-dimensional manner due to the multi-dimensional orientation of the fibers within the structure.
  • the non-woven articles also benefit from other physical characteristics of thermotropic liquid crystal polymers such as resistance to chemical corrosion or solvation and high temperature stability due to the high melting temperature of the fibers.
  • the melting temperature of the polymer is prefereably in excess of 200°C. and most preferably in excess of 400°C.
  • Such articles thus are well suited for use as filters in high temperature and/or otherwise destructive environments which would tend to degrade conventional filters such as treatment of stack gases from electrical generating plants
  • the articles can also be used to filter a variety of liquids without dissolving or being subject to corrosion or other degradative chemical processes.
  • non-woven articles are as the matrix material in ballistics protection wearing apparrel. Due to the high tenacity and modulus exhibited by the liquid crystal polymers which comprise the non-woven articles, such articles are readily adaptable to such a use.
  • the non-woven article comprise at least a major portion (e.g., at least about 50 percent by weight) of the fibers and preferably consists essentially of such fibers. In a most preferred embodiment the article consists entirely of fibers of liquid crystal polymers.
  • the mechanical properties of the non-woven articles produced in accordance with the present invention is improved by subjecting the articles to a heat treatment following formation thereof.
  • the heat treatment improves the properties of the article by increasing the molecular weight of the liquid crystalline polymer which comprises the fibers present within the article and increasing the degree of crystallinity thereof while also increasing the melting temperature of the polymer. Such heat treatment can also serve to bond the fibers together.
  • the articles may be thermally treated in an inert atmosphere (e.g., nitrogen, carbon dioxide, argon, helium) or alternatively, in a flowing oxygen-containing atmosphere (e.g., air).
  • an inert atmosphere e.g., nitrogen, carbon dioxide, argon, helium
  • a flowing oxygen-containing atmosphere e.g., air
  • the use of a non-oxidizing substantially moisture-free atmosphere is preferred to avoid the possibility of thermal degradation.
  • the article may be brought to a temperature approximateiy 10 to 30 centrigrade degrees below the melting temperature of the liquid crystal polymer, at which temperature the fibers remain a solid object. It is preferable for the temperature of the heat treatment to be as high as possible without equaling or exceeding the melting temperature of the polymer. It is most preferable to gradually increase the temperature of heat treatment in accordance with the increase of the melting temperature of the polymer during heat treatment.
  • the duration of the heat treatment will commonly range from a few minutes to a number of days, e.g., from 0.5 to 200 hours, or more.
  • the heat treatment is conducted for a time of 1 to 48 hours and typically from about 5 to 30 hours.
  • the duration of heat treatment varies depending upon the heat treatment temperature; that is, a shorter treatment time is required as a higher treatment temperature is used.
  • the duration of the heat treatment can be shortened for higher melting polymers, since higher heat treatment temperatures can be applied without melting the polymer.
  • the heat treatment is conducted under conditions sufficient to increase the melting temperature of the polymer at least 10 centrigrade degrees.
  • the melting temperature of the liquid crystal polymer is increased from between about 20 to about 50 centigrade degrees as a result of the heat treatment. The amount of increase which is obtained is dependent upon the temperature used in the heat treatment, with higher heat treatment temperatures giving greater increases.
  • the chemical resistance of the polymer also increases with heat treatment and the solubility into pentafluorophenol, one of the rare solvents for thermotropic liquid crystal polymers, continuously decreases with increasing heat treatment time and eventually the material will not dissolve even minimally (such as in amounts of 0.1 percent by weight). Accordingly, reference herein to solution characteristics of specific polymers is intended to refer to such characteristics prior to any heat treatment of the polymer.
  • As-spun fibers comprised of a thermotropic liquid crystal polymer consisting of 40 mole per cent of a p-oxybenzoyl moiety and 60 mole percent of a 6-oxy-2-naphthoyl moiety are provided having a denier per filament ranging from about 7 to 10.
  • the fibers are chopped into microfibers ranging in length from about % to % inch (6.35 to 9.53 mm) in length and admixed with water to form a slurry. The slurry is well stirred to achieve a uniform dispersal of the chopped fibers in the slurry.
  • the slurry admixture is poured into a tall Buchner filter funnel containing a disk of filter paper.
  • the water is drained off with the aid of a vacuum leaving a random mat of chopped fibers upon the filter paper.
  • the web is carefully removed from contact with the filter paper and dried.
  • the dried web of fibers demonstrates weak structural integrity (i.e., it barely supports its own weight and is easily pulled apart).
  • the fibers are bound together by pressing the web between two heated plates whereupon the web is heated to approximately 275°C.
  • the web is sandwiched between Kapton release films to prevent the web from sticking to the plates.
  • the web subsequent to hot pressing exhibits substantial structural integrity and is pulled apart only with difficulty while also exhibiting textile-like draping characteristics.
  • Pellets comprised of a thermotropic liquid crystal polymer consisting of 40 mole percent of a p-oxybenzoyl moiety and 60 mole percent of a 6-oxy-naphthoyl moiety are dried for 24 hours in a warm vacuum oven.
  • the pellets are then introduced into the hopper of a spray spinning unit with the temperature of the polymer subsequently being raised to 360°C within the extruder section of the unit to provide a polymer melt.
  • the melt is then spun from a 0.16 mill (0.41 mm) jet into an air attenuation section of the spray spinning unit where the melt is exposed to the air drag of three impinging unheated air jets and reduced to a fiber of about 50 denier (5.56 tex) per filament.
  • the spun fiber is collected as a non-bonded mat upon a wire screen located approximately 30 inches (76.2 cm) from the jet.
  • Air heated to between about 200-500°C. is also employed to attenuate the melt which results in the production of a mat of fibers which are bonded together at their cross-over points.
  • This bonded mat is formed by collecting the fibers on a screen located approximately 12 to 16 inches (30.48 to 40.64 cm) from the jet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Claims (58)

1. Article non tissé sous la forme d'une feuille ou d'un tissu qui présente une stabilité thermique et chimique et une résistance aux solvents souhaitables qui comprend des fibres arrangées au hasard d'un polymère qui comprend pas moins de 10% en moles d'unités récurrentes qui comprennent une partie naphtalène et est capable de former une phase de fusion anisotrope, lesdites fibres étant thermiquement liées ensemble aux points de jonction dans une mesure suffisante pour impartir une intégrité de structure audit article.
2. Article selon la revendication 1, où ledit polymère est un polymère entièrement aromatique.
3. Article selon la revendication 1, où ledit polymère est un polyester entièrement aromatique.
4. Article selon l'une des revendications 1, 2 ou 3, où ledit polymère présente une viscosité inhérente d'au moins 2,0 di/g quand il est dissous dans une concentration de 0,1% en poids dans du pentafluorophénol à 60°C.
5. Article selon l'une quelconque des revendications 1 à 4, où ladite partie naphtalène dudit polymère est choisie dans le groupe consistant en une partie 6-oxy-2-naphtoyie, une partie 2,6-dioxynaphtalène et une partie 2,6-dicarboxynaphtalène.
6. Article selon l'une quelconque des revendications 1 à 5, où ledit polymère est capable de former une phase de fusion anisotrope à une température approximativement en dessous de 400°C.
7. Article selon l'une quelconque des revendications 1 à 6, où ledit polymère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anisotrope et qui comprend essentiellement les parties récurrentes I, Il et III dans lequelles:
Figure imgb0075
Figure imgb0076
Figure imgb0077
où ledit polyester comprend approximativement 30 à 70% en moles de partie I et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par une substitution choisie dans le groupe consistant en un groupe alkyle de 1 à 4 atomes de carbone, un groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
8. Article selon la revendication 7, où ledit polyester comprend approximativement 40 à 60% en moles de partie I, approximativement 20 à 30% en moles de partie II, et approximativement 20 à 30% en moles de partie III.
9. Article selon l'une quelconque des revendications 1 à 6, où ledit polymère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anisotrope et comprend essentiellement les parties récurrentes I et II dans lesquelles:
Figure imgb0078
Figure imgb0079
où ledit polyester comprend approximativement 10 à 90% en moles de partie I et approximativement 10 à 90% en moles de partie II et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par une substitution choisie dans le groupe consistant en un groupe alkyle de 1 à 4 atomes de carbone, un groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
10. Article selon la revendication 9, où ledit polyester comprend approximativement 65 à 85% en moles de partie Il.
11. Article selon la revendication 10, où ledit polyester comprend approximativement 15 à 35% en moles de partie II.
12. Article selon l'une quelconque des revendications 1 à 6, où ledit polyère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anisotrope et comprend essentiellement les parties récurrentes I, Il et III dans lesquelles:
Figure imgb0080
II est une partie dioxy aryle de formule ―[O―Ar―O]― où Ar est un radical divalent comprenant au moins un cycle aromatique, et III est une partie dicarboxy aryle de formule
Figure imgb0081
où Ar' est un radical divalent comprenant au moins un cycle aromatique, et où ledit polyester comprend approximativement 10 à 90% en moles de partie I, approximativement 5 à 45% en moles de partie Il et approximativement 5 à 45% en moles de partie III et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par une substitution choisie dans le groupe consistant en un groupe alkyle de 1 à 4 atomes de carbone, un groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
13. Article selon la revendication 12, où ledit polyester comprend approximativement 20 à 80% en moles de partie I, approximativement 10 à 40% en moles de partie II et approximativement 10 à 40% en moles de partie III.
14. Article selon l'une quelconque des revendications 1 à 6, où ledit polymère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anisotrope et comprend essentiellement les parties récurrentes I, II, III et IV dans lesquelles:
Figure imgb0082
Figure imgb0083
III est une partie dioxy aryle de formule -0-Ar-0- où Ar est un radical divalent comprenant au moins un cycle aromatique, et
IV est une partie dicarboxy aryle de formule
Figure imgb0084
où Ar' est un radical divalent comprenant au moins un cycle aromatique, et où le polyester comprend approximativement 20 à 40% en moles de partie I, un excès de 10 jusqu'à environ 50% en moles de partie II, un excès de 5 jusqu'à environ 30% en moles de partie III, et un excès de 5 jusqu'à environ 30% en moles de partie IV et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par une substitution choisie dans le groupe consistant en groupe alkyle de 1 à 4 atomes de carbone, groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
15. Article selon la revendication 14, où ledit polyester comprend approximativement 20 à 30% en moles de partie 1, approximativement 25 à 40% en moles de partie II, approximativement 15 à 25% en moles de partie III et approximativement 15 à 25% en moles de partie IV.
16. Article selon l'une quelconque des revendications 1 à 6, où ledit polymère comprend un poly(ester- amide) traitable par fusion qui est capable de former une phase de fusion anisotrope et comprend essentiellement les parties récurrentes I, II, III et facultativement IV lesquelles:
Figure imgb0085
Figure imgb0086
où A est un radical divalent comprenant au moins un cycle aromatique ou un radical trans-cyclohexane divalent;
III est ―[Y―Ar―Z]―, où Ar est un radical divalent comprenant au moins un cycle aromatique, Y est O, NH, ou NR, et Z est NH ou NR, où R est un groupe alkyle de 1 à 6 atomes de carbone ou un groupe aryle, et
IV est ―[O―Ar'―O]―, où Ar' est un radical divalent comprenant au moins un cycle aromatique; et où ledit poly(ester-amide) comprend approximativement 10 à 90% en moles de partie I, approximativement 5 à 45% en moles de partie II, approximativement 5 à 45% en moles de partie III, et approximativement 0 à 40% en moles de partie IV et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par substitution choisie dans le groupe consistant en groupe alkyle de 1 à 4 atomes de carbone, groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
17. Article selon l'une quelconque des revendications 1 à 16, où ledit polymère a été soumis à un traitement thermique pendant une période de temps et à une température suffisantes pour augmenter la température de fusion du polymère entre environ 20 et 50 degrés centigrades.
18. Article selon la revendication 17, où ledit polymère a été soumis à un traitement thermique après formation dudit article.
19. Article selon la revendication 17 ou 18, où la température dudit traitement thermique s'étend d'environ 10 à environ 30 degrés centigrades au-dessous de la température de fusion du polymère.
20. Article selon l'une des revendications 17, 18 ou 19, où ladite période de temps s'étend d'environ 0,5 à environ 200 heures.
21. Article selon la revendication 20, où ladite période de temps s'étend d'environ 1 à environ 48 heures.
22. Article selon la revendication 21, où ladite période de temps s'étend d'environ 5 à environ 30 heures.
23. Article selon l'une quelconque des revendications 17 à 22, où ledit traitement thermique a lieu dans une atmosphère non oxydante.
24. Article selon la revendication 23, où ladite atmosphère est sensiblement dépourvue d'humidité.
25. Article selon la revendication 23 ou 24, où ledit traitement thermique a lieu dans une atmosphère d'azote.
26. Article selon l'une quelconque des revendications 1 à 25, qui comprend essentiellement des fibres d'un polymère qui est capable de former une phase de fusion anisotrope.
27. Article selon l'une quelconque des revendications 1 à 26, où ledit polymère a une température de fusion dépassant environ 200°C.
28. Article selon la revendication 27, où ledit polymère a un température de fusion dépassant environ 400°C.
29. Procédé pour former un article non tissé sous la forme d'une feuille ou d'un tissu qui présente une stabilité thermique et chimique et une résistance aux solvants souhaitables comprenant des fibres d'un polymère qui est capable de former une phase de fusion anisotrope, ledit procédé consistant à (1) (a) filer par pulvérisation ledit polymère dans la phase de fusion pour former une multitude de fibres discontinues arrangées au hasard ou (b) filer par fusion ledit polymère et couper ledit matériau filé par fusion en fibres;
(2) rassembler lesdites fibres sous la forme d'une feuille ou d'un tissu; (3) lier thermiquement lesdites fibres ensemble aux points de jonction dans la feuille ou tissu; et (4) soumettre le feuille ou le tissu résultant lié thermiquement à un traitement thermique pendant une période de temps et à une température suffisantes pour augmenter la température de fusion du polymère entre environ 20 et 50 degrés centigrades à la suite de la formation dudit article.
30. Procédé selon la revendication 29, où lesdites fibres sont produites selon l'étape (1) (a) et deviennent liées thermiquement ensemble quand elles sont rassemblées.
31. Procédé selon la revendication 29, où lesdites fibres sont produites selon l'étape (1) (b) et sont mises en bouillie dans un liquide non solvant à partir duquel les fibres sont disposées à l'état humide dans - l'étape (2).
32. Procédé selon l'une des revendications 29, 30 ou 31, où lesdites fibres sont rassemblées sur un crible.
33. Procédé selon l'une des revendications 29 à 32, où ledit polymère est un polymère entièrement aromatique.
34. Procédé selon la revendication 33, où ledit polymère est un polyester entièrement aromatique.
35. Procédé selon l'une des revendications 29 à 34, où ledit polymère présente une viscosité inhérente d'au moins 2,0 dl/g quand il est dissous dans une concentration de 0,1% en poids dans du pentafluorophénol.
36. Procédé selon l'une quelconque des revendications 29 à 35, où ledit polymère comprend pas moins qu'environ 10% en moles d'unités récurrentes qui comprennent une partie naphtalène.
37. Procédé selon la revendication 36, où ladite partie naphtalène dudit polymère est choisie dans le groupe consistant en une partie 6-oxy-2-naphtoyle, une partie 2.,6-dioxynaphtalène et une partie 2,6-dicarboxynaphtalène.
38. Procédé selon l'une quelconque des revendications 29 à 37, où ledit polymère est capable de former une phase de fusion anisotrope à une température approximativement en dessous de 400°C.
39. Procédé selon l'une quelconque des revendications 29 à 38, où ledit polymère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anistrope et comprend essentiellement les parties récurrentes I, Il et 111 dans lesquelles:
Figure imgb0087
Figure imgb0088
et
Figure imgb0089
et où ledit polyester comprend approximativement 30 à 70% en moles de partie 1 et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être remplacés facultativement par une substitution choisie dans le groupe consistant en groupe alkyle de 1 à 4 atomes de carbone, groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
40. Procédé selon la revendication 39, où ledit polyester comprend approximativement 40 à 60% en moles de partie I, approximativement 20 à 30% en moles de partie II et approximativement 20 à 30% en moles de partie III.
41. Procédé selon l'une quelconque des revendications 29 à 38, où ledit polymère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anisotrope et comprend essentiellement les parties récurrentes I et Il dans lesquelles:
Figure imgb0090
Figure imgb0091
où ledit polyester comprend approximativement 10 à 90% en moles de partie I et approximativement 10 à 90% en moles de partie II et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par une substitution choisie dans le groupe consistant en groupe alkyle de 1 ax 4 atomes de carbone, groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
42. Procédé selon la revendication 41, où ledit polyester comprend approximativement 65 à 85% en moles de partie II.
43. Procédé selon la revendication 42, où ledit polyester comprend approximativement 15 à 35% en moles de partie II.
44. Procédé selon l'une quelconque des revendications 29 à 38, où ledit polymère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anisotrope et qui comprend essentiellement les parties récurrentes I, Il et III dans lesquelles:
Figure imgb0092
II est une partie dioxy aryle de formule ―[O―Ar―O]― où Ar est un radical divalent comprenant au moins un cycle aromatique, et
III est une partie dicarboxy aryle de formule
Figure imgb0093
où Ar' est un radical divalent comprenant au moins un cycle aromatique, et où ledit polyester comprend approximativement 10 à 90% en moles de partie I, approximativement 5 ax 45% en moles de partie II, et approximativement 5 à 45% en moles de partie III et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par substitution choisie dans le groupe consistant en groupe alkyle de 1 à 4 atomes de carbone, groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
45. Procédé selon la revendication 44, où ledit polyester comprend approximativement 20 à 80% en moles de partie I, approximativement 10 à 40% en moles de partie II et approximativement 10 à 40% en moles de partie III.
46. Procédé selon l'une quelconque des revendications 29 à 38, où ledit polymère comprend un polyester entièrement aromatique traitable par fusion qui est capable de former une phase de fusion anisotrope et qui comprend essentiellement les parties récurrentes I, II, III et IV dans lesquelles:
Figure imgb0094
Figure imgb0095
III est une partie dioxy aryle de formule ―[O―Ar―O]― où Ar est un radical divalent comprenant au moins un cycle aromatique, et IV est une partie dicarboxy aryle de formule
Figure imgb0096
où Ar' est un radical divalent comprenant au moins un cycle aromatique et où le polyester comprend approximativement 20 à 40% en moles de partie I, un excès de 10 jusqu'à environ 50% en moles de partie II, un excès de 5 jusqu'à environ 30% en moles de partie III, et un excès de 5 jusqu'à environ 30% en moles de partie IV et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par substitution choisie dans le groupe consistant en groupe alkyle de 1 à 4 atomes de carbone, groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué et leurs mélanges.
47. Procédé selon la revendication 46, où ledit polyester comprend approximativement 20 à 30% en moles de partie I, approximativement 25 à 40% en moles de partie II, approximativement 15 à 25% en moles de partie III et approximativement 15 à 25% en moles de partie IV.
48. Procédé selon l'une quelconque des revendications 29 à 38, où ledit polymère comprend un poly(ester-amide) traitable par fusion qui est capable de former une phase de fusion anisotrope et comprend essentiellement les parties récurrentes I, II, III et facultativement IV dans lesquelles:
Figure imgb0097
Figure imgb0098
où A est un radical divalent comprenant au moins un cycle aromatique ou un radical trans-cyclohexane divalent; III est ―[Y―Ar―Z]―, où Ar est un radical divalent comprenant au moins un cycle aromatique, Y est O, NH, ou NR, et Z est NH ou NR, où R est un groupe alkyle de 1 à 6 atomes de carbone ou un groupe aryle; et
Figure imgb0099
où Ar' est un radical divalent comprenant au moins un cycle aromatique; et où ledit poly(ester-amide) comprend approximativement 10 à 90% en moles de partie I, approximativement 5 à 45% en moles de partie II, approximativement 5 à 45% en moles de partie III, et approximativement 0 à 40% en moles de partie IV et où au moins quelques-uns des atomes d'hydrogène présents sur les cycles peuvent être facultativement remplacés par substitution choisie dans le groupe consistant en groupe alkyle de 1 à 4 atomes de carbone, groupe alcoxy de 1 à 4 atomes de carbone, halogène, phényle, phényle substitué, et leurs mélanges.
49. Procédé selon l'une quelconque des revendications 29 à 48, où ladite température de traitement thermique s'étend d'environ 10 à environ 30 degrés centigrades en dessous de la température de fusion du polymère.
50. Procédé selon l'une quelconque des revendications 29 à 49, où ladite période de temps s'étend d'environ 0,5 à environ 200 heures.
51. Procédé selon la revendication 50, où ladite période de temps s'étend d'environ 1 à environ 48 heu res.
52. Procédé selon la revendication 51, où ladite période de temps s'étend d'environ 5 à environ 30 heures.
53. Procédé selon l'une quelconque des revendications 29 à 52, où ledit traitement thermique a lieu dans une atmosphère non oxydante.
54. Procédé selon la revendication 53, où ladite atmosphère est sensiblement dépourvue d'humidité.
55. Procédé selon la revendication 53 ou 54, où ledit traitement thermique a lieu dans une atmosphère d'azote.
56. Procédé selon l'une quelconque des revendications 29 à 55, où ledit polymère a une température de fusion qui dépasse d'environ 200°C.
57. Procédé selon la revendication 56, où ledit polymère a une température de fusion qui dépasse environ 400°C.
EP19840304572 1984-07-04 1984-07-04 Articles non tissés comportant des fibres de polymères de cristaux liquides thermotropiques et procédé pour leur fabrication Expired EP0166830B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8484304572T DE3480010D1 (en) 1984-07-04 1984-07-04 Non-woven articles comprised of thermotropic liquid crystal polymer fibers and method of production thereof
EP19840304572 EP0166830B1 (fr) 1984-07-04 1984-07-04 Articles non tissés comportant des fibres de polymères de cristaux liquides thermotropiques et procédé pour leur fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19840304572 EP0166830B1 (fr) 1984-07-04 1984-07-04 Articles non tissés comportant des fibres de polymères de cristaux liquides thermotropiques et procédé pour leur fabrication

Publications (2)

Publication Number Publication Date
EP0166830A1 EP0166830A1 (fr) 1986-01-08
EP0166830B1 true EP0166830B1 (fr) 1989-10-04

Family

ID=8192684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840304572 Expired EP0166830B1 (fr) 1984-07-04 1984-07-04 Articles non tissés comportant des fibres de polymères de cristaux liquides thermotropiques et procédé pour leur fabrication

Country Status (2)

Country Link
EP (1) EP0166830B1 (fr)
DE (1) DE3480010D1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245751A (ja) * 1985-08-26 1987-02-27 住友化学工業株式会社 防護材料
US4963298A (en) * 1989-02-01 1990-10-16 E. I. Du Pont De Nemours And Company Process for preparing fiber, rovings and mats from lyotropic liquid crystalline polymers
US5296286A (en) * 1989-02-01 1994-03-22 E. I. Du Pont De Nemours And Company Process for preparing subdenier fibers, pulp-like short fibers, fibrids, rovings and mats from isotropic polymer solutions
USH1502H (en) * 1993-08-17 1995-11-07 Fiberweb North America, Inc. Meltblown fibers and webs produced from liquid crystal polymers
CN112501954A (zh) * 2020-11-23 2021-03-16 江苏展宝新材料有限公司 一种lcp薄膜的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184996A (en) * 1977-09-12 1980-01-22 Celanese Corporation Melt processable thermotropic wholly aromatic polyester
US4238599A (en) * 1979-02-08 1980-12-09 Fiber Industries, Inc. Polyester of para-hydroxy benzoic acid, 1,2-bis(para-carboxy phenoxy)ethane, terephthalic acid and substituted hydroquinone capable of forming an anisotropic melt which readily undergoes melt processing
US4219461A (en) * 1979-04-23 1980-08-26 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid, para-hydroxy benzoic acid, aromatic diol, and aromatic diacid capable of readily undergoing melt processing
US4256624A (en) * 1979-07-02 1981-03-17 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and aromatic diacid capable of undergoing melt processing
US4330457A (en) * 1980-12-09 1982-05-18 Celanese Corporation Poly(ester-amide) capable of forming an anisotropic melt phase derived from 6-hydroxy-2-naphthoic acid, dicarboxylic acid, and aromatic monomer capable of forming an amide linkage
US4395307A (en) * 1981-11-09 1983-07-26 Celanese Corporation Thermotropic liquid crystal polymer pulp and method of preparation thereof wherein said polymer comprises recurring units which contain a 2,6-dioxyanthraquinone moiety
US4381389A (en) * 1982-07-15 1983-04-26 E. I. Du Pont De Nemours And Company Optically anisotropic melt forming copolyesters

Also Published As

Publication number Publication date
EP0166830A1 (fr) 1986-01-08
DE3480010D1 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
EP0072210B1 (fr) Stratifiés à haute performance orientés multiaxialement à couches orientées uniaxialement en polymères thermotropiques à cristaux liquides
EP0063880B1 (fr) Poly(esteramide) dérivant de 6-dihydroxy-2-naphtoique acide
US4256624A (en) Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and aromatic diacid capable of undergoing melt processing
CA1197979A (fr) Transformation par fusion de polymeres de cristaux liquides thermotropiques
US4479999A (en) Fabric comprised of fusible and infusible fibers, the former comprising a polymer which is capable of forming an anisotropic melt phase
CA1169191A (fr) Poly(ester-amide) prepare a partir de l'acide p-hydroxybenzoique, du 2,6-dihydroxynaphtalene, d'acide carbocyclique dicarboxylique, de monomere aromatique pouvant constituer unlien amide et, facultativement, d'un diol aromatique supplementaire
US4161470A (en) Polyester of 6-hydroxy-2-naphthoic acid and para-hydroxy benzoic acid capable of readily undergoing melt processing
US4219461A (en) Polyester of 6-hydroxy-2-naphthoic acid, para-hydroxy benzoic acid, aromatic diol, and aromatic diacid capable of readily undergoing melt processing
US4318842A (en) Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and 1,4-cyclohexanedicarboxylic acid capable of undergoing melt processing
US4299756A (en) Polyester of phenyl-4-hydroxybenzoic acid, aromatic diol, and aromatic diacid capable of forming an anisotropic melt
US4439578A (en) Use of liquid crystal polymer particulates having a high aspect ratio in polymeric molding resins to suppress melt dripping
EP0001185A1 (fr) Polyester entièrement aromatique, thermotropique, façonnable à l'état fondu, renfermant simultanément des segments para-oxybenzoyles et méta-oxybenzoyles, ainsi que les masses à mouler, les articles moulés et les fibres à base de celui-ci
EP0063881A1 (fr) Poly(esteramide) dérivant d'acide p-hydroxybenzoique, d'acide 2,6 naphtalène-dicarboxylique et d'un monomère aromatique capable de former une liaison amide
EP0044675A1 (fr) Traitement par contrôle de l'historique thermique de cristaux liquides de polymères pouvant être fondus
US4238599A (en) Polyester of para-hydroxy benzoic acid, 1,2-bis(para-carboxy phenoxy)ethane, terephthalic acid and substituted hydroquinone capable of forming an anisotropic melt which readily undergoes melt processing
US4224433A (en) Thermotropic polyesters of 2,6-dihydroxyanthraquinone
US4265802A (en) Polyester of para-hydroxy benzoic acid, 1,4-bis(para-carboxyphenoxy) benzene, aromatic diol and aromatic diacid capable of undergoing melt processing
EP0166830B1 (fr) Articles non tissés comportant des fibres de polymères de cristaux liquides thermotropiques et procédé pour leur fabrication
US4395307A (en) Thermotropic liquid crystal polymer pulp and method of preparation thereof wherein said polymer comprises recurring units which contain a 2,6-dioxyanthraquinone moiety
JPS6128059A (ja) サ−モトロピツク液晶ポリマ−繊維よりなる不織製品およびその製法
US4457962A (en) Molded article comprised of a thermotropic liquid crystal line polymer with an inherently weak weld line incorporated therein
JPH0633595B2 (ja) サ−モトロピツク液晶ポリマ−のフイブリルよりなる高性能紙
US4614790A (en) Melt processable optically anisotropic polyesters
CA1246820A (fr) Articles non tisses formes de fibres polymeres a cristaux liquides thermotropes et methode de fabrication connexe
EP0167682A1 (fr) Papiers haut rendement comprenant des fibrilles de polymères thermotropiques de cristaux liquides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19860618

17Q First examination report despatched

Effective date: 19871221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3480010

Country of ref document: DE

Date of ref document: 19891109

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ENKA AG

Effective date: 19900126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900625

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900917

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910617

Year of fee payment: 8

27W Patent revoked

Effective date: 19910131

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state