EP0166830B1 - Nichtgewobene Artikel aus thermotropischen flüssigen Kristall-Polymeren, und Verfahren zur Herstellung derselben - Google Patents

Nichtgewobene Artikel aus thermotropischen flüssigen Kristall-Polymeren, und Verfahren zur Herstellung derselben Download PDF

Info

Publication number
EP0166830B1
EP0166830B1 EP19840304572 EP84304572A EP0166830B1 EP 0166830 B1 EP0166830 B1 EP 0166830B1 EP 19840304572 EP19840304572 EP 19840304572 EP 84304572 A EP84304572 A EP 84304572A EP 0166830 B1 EP0166830 B1 EP 0166830B1
Authority
EP
European Patent Office
Prior art keywords
moiety
mole percent
approximately
polymer
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840304572
Other languages
English (en)
French (fr)
Other versions
EP0166830A1 (de
Inventor
Alan Buckley
Gordon W. Calundann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Celanese Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8192684&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0166830(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Celanese Corp filed Critical Celanese Corp
Priority to DE8484304572T priority Critical patent/DE3480010D1/de
Priority to EP19840304572 priority patent/EP0166830B1/de
Publication of EP0166830A1 publication Critical patent/EP0166830A1/de
Application granted granted Critical
Publication of EP0166830B1 publication Critical patent/EP0166830B1/de
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding

Definitions

  • the present invention relates to non-woven articles comprised of thermotropic liquid crystal polymer fibres.
  • non-woven articles comprised of polymeric materials have been employed for many purposes.
  • non-woven articles have been employed as filters, electrical insulation and reinforcement for resins.
  • non-woven articles have frequently been found to not be appropriate for use in a high temperature environment (e.g., in excess of about 200°C.) or in an environment where the structure will come into contact with solvents or corrosive chemicals. It is therefore desirable to provide non-woven articles comprised of a polymeric material which is resistant to solvents or corrosive chemicals and also suitable for use at high temperatures.
  • fibers comprised of lyotropic liquid crystal polymers have been employed in the production of non-woven scrim sheets in conjunction with polyester fibres which are not capable of forming an anisotropic melt phase wherein the polyester fibers are thermally bonded to the lyotropic liquid crystal polymer fibers.
  • EP-A-103 371 it is known that optically anisotropic melt forming copolyesters may be melt spun into fibers which can be used in non-wovens.
  • EP-A-103 371 does not mention copolyesters containing a naphthalene moiety and does not teach as to how the fibers may be formed into a non-woven sheet.
  • the present invention provides a non-woven article in the form of a sheet or web which exhibits desirable thermal stability and chemical and solvent resistance which comprises randomly arrayed fibers of a polymer which comprises not less than 10 mole percent of recurring units which include a naphthalene moiety and is capable of forming an anisotropic melt phase, said fibers being thermally bonded together at cross-over points to an extent sufficient to impart structural integrity to said article.
  • the present invention also provides a method for forming a non-woven article in the form of a web or sheet which exhibits desirable thermal stability and chemical and solvent resistance comprised of fibers of a polymer which is capable of forming an anisotropic melt phase, said method comprising (1) (a) spray spinning said polymer in the melt phase to form a multitude of discontinuous randomly arrayed fibers or (b) melt spinning said polymer and cutting the melt-spun material into fibers, (2) collecting said fibers in the form of a web or sheet, (3) thermally bonding said fibres together at cross-over points in the web or sheet, and (4) subjecting the resulting thermally bonded web or sheet to a heat treatment for a period of time and at a temperature sufficient to increase the melting temperature of the polymer between about 20 to 50 centigrade degrees subsequent to formation of said article.
  • Thermotropic liquid crystal polymers are polymers which are liquid crystalline (i.e., anisotropic) in the melt phase. These polymers have been described by various terms, including “liquid crystalline,” “liquid crystal” and “anisotropic.” Briefly, the polymers of this class are thought to involve a parallel ordering of the molecular chains. The state wherein the molecules are so ordered is often referred to either as the liquid crystal state or the nematic phase of the liquid crystalline material. These polymers are prepared from monomers which are generally long, flat and fairly rigid along the long axis of the molecule and commonly have chain-extending linkages that are either coaxial or parallel.
  • Such polymers readily form liquid crystals (i.e., exhibit anisotropic properties) in the melt phase. Such properties may be confirmed by conventional polarized light techniques whereby crossed polarizers are utilized. More specifically, the anisotropic melt phase may be confirmed by the use of a Leitz polarizing microscope at a magnification of 40X with the sample on a Leitz hot stage and under nitrogen atmosphere.
  • the polymer is optically anisotropic; i.e., it transmits light when examined between crossed polarizers. Polarized light is transmitted when the sample is optically anisotropic even in the static state.
  • thermotropic liquid crystal polymers suitable for use in the present invention include but are not limited to wholly aromatic polyesters, aromatic-aliphatic polyesters, aromatic polyazomethines, wholly and non-wholly aromatic poly(esteramide)s and aromatic polyester-carbonates.
  • the wholly aromatic thermotropic liquid crystal polymers are comprised of moieties which contribute at least one aromatic ring to the polymer backbone and which enable the polymer to exhibit anisotropic properties in the melt phase.
  • moieties include but are not limited to aromatic diols, aromatic amines, aromatic diacids and aromatic hydroxy acids.
  • Moieties which may be present in the thermotropic liquid crystal polymers employed in the present invention include but are not limited to the following:
  • thermotropic liquid crystal polymers which are employed comprise not less than about 10 mole percent of recurring units which include a naphthalene moiety.
  • Preferred naphthalene moieties include 6- oxy-2-naphthoyl, 2,6-dioxynaphthalene, and 2,6-dicarboxynaphthalene.
  • suitable aromatic-aliphatic polyesters are copolymers of polyethylene terephthalate and hydroxybenzoic acid as disclosed in PolyesterX7G-A Self Reinforced Thermoplastic, by W. J. Jackson, Jr., H. F. Kuhfuss, and T. F. Gray, Jr., 30th Anniversary Technical Conference, 1975 Reinforced Plastics/Composites Institute, The Society of the Plastics Industry, Inc., Section 17-D, Pages 1-4.
  • a further disclosure of such copolymers can be found in "Liquid Crystal Polymers: I. Preparation and Properties of p-Hydroxybenzoic Acid Copolymers," Journal of Polymer Science, Polymer Chemistry Edition, Vol. 14, pp. 2043-58 (1976), by W. J. Jackson, Jr. and H. F. Kuhfuss.
  • the above-cited references are herein incorporated by reference in their entirety.
  • Aromatic polyazomethines and processes of preparing the same are disclosed in the U.S. Patent Nos. 3,493,522; 3,493,524; 3,503,739; 3,516,970; 3,516,971; 3,526,611; 4,048,148; and 4,122,070. Each of these patents is herein incorporated by reference in its entirety.
  • polymers include poly(nitrilo - 2 - methyl - 1,4 - phenyl - enenitriloethylidyne - 1,4 - phenyleneethylidyne); poly(nitrilo - 2 - methyl -1,4 - phenylnenitrilomethylidyne - -1,4 - phenylene - methylidyne); and poly(nitrilo - 2 - chloro -1,4 - phenylenenitrilomethylidyne - 1,4 - phenylenemethylidyne).
  • Aromatic polyester-carbonates are disclosed in U.S. Patent No. 4,107,143, which is herein incorporated by reference in its entirety.
  • Examples of such polymers include those consisting essentially of hydroxybenzoic acid units, hydroquinone units, carbonate units, and aromatic carboxylic acid units.
  • the liquid crystal polymers which are preferred for use in the present invention include thermotropic wholly aromatic polyesters.
  • Recent publications disclosing such polyesters include (a) Belgian Pat. Nos. 828,935 and 828,936, (b) Dutch Pat. No. 7505551, (c) West German Pat Nos. 2,520,819, 2,520,820, and 2,722,120, (d) Japanese Pat. Nos. 43-223, 2132-116, 3017-692, and 3021-293, (e) U.S. Pat. Nos.
  • Wholly aromatic polymers which are preferred for use in the present invention include wholly aromatic polyesters and poly(ester-amide)s which are disclosed in commonly-assigned U.S. Patent Nos. 4,067,852; 4,083,829; 4,130,545; 4,161,470; 4,184,996; 4,219,461; 4,238,599; 4,256,624 and 4,279,803; and in commonly-assigned U.S. Application Serial Nos. 91,003, filed November 5, 1979; 128,759, filed March 10, 1980; and 214,557, filed December 9, 1980.
  • the disclosures of all of the above-identified commonly-assigned U.S. patents and applications are herein incorporated by reference in their entirety.
  • the wholly aromatic polymers disclosed therein typically are capable of forming an anisotropic melt phase at a temperature below approximately 400°C., and preferably below approximately 350°C.
  • the wholly aromatic polymers including wholly aromatic polyesters and poly(ester-amide)s which are suitable for use in the present invention may be formed by a variety of ester-forming techniques whereby organic monomer compounds possessing functional groups which, upon condensation, form the requisite recurring moieties are reacted.
  • the functional groups of the organic monomer compounds may be carboxylic acid groups, hydroxyl groups, ester groups, acyloxy groups, acid halides, amine groups, etc.
  • the organic monomer compounds may be reacted in the absence of a heat exchange fluid via a melt acidolysis procedure. They, accordingly, may be heated initially to form a melt solution of the reactants with the reaction continuing as the polymer particles are suspended therein. A vacuum may be applied to facilitate removal of volatiles formed during the final stage of the condensation (e.g., acetic acid or water).
  • the organic monomer reactants from which the wholly aromatic polyesters are derived may be initially provided in a modified form whereby the usual hydroxy groups of such monomers are esterified (i.e., they are provided as lower acyl esters).
  • the lower acyl groups preferably have from about two to about four carbon atoms.
  • the acetate esters of organic monomer reactants are provided.
  • Representative catalysts which optionally may be employed in either the melt acidolysis procedure or in the slurry procedure of U.S. Patent No. 4,083,829 include dialkyl tin oxide (e.g., dibutyl tin oxide), diaryl tin oxide, titanium dioxide, antimony trioxide, alkoxy titanium silicates, titanium alkoxides, alkali and alkaline earth metal salts of carboxylic acids (e.g., zinc acetate), the gaseous acid catalysts such as Lewis acids (e.g., BF 3 ), hydrogen halides (e.g., HCI), etc.
  • the quantity of catalyst utilized typically is about 0.001 to 1 percent by weight based upon the total monomer weight, and most commonly about 0.01 to 0.2 percent by weight.
  • the wholly aromatic polymers suitable for use in the present invention tend to be substantially insoluble in common solvents and accordingly are not susceptible to solution processing. As discussed previously, they can be readily processed by common melt processing techniques. Most suitable wholly aromatic polymers are soluble in pentafluorophenol to a limited degree.
  • the wholly aromatic polyesters which are preferred for use in the present invention commonly exhibit a weight average molecular weight of about 2,000 to 200,000, and preferably about 10,000 to 50,000, and most preferably about 20,000 to 25,000.
  • the wholly aromatic poly(ester-amide)s which are preferred commonly exhibit a molecular weight of about 5,000 to 50,000 and preferably about 10,000 to 30,000; e.g., 15,000 to 17,000.
  • Such molcular weight may be determined by gel permeation chromatography as well as by standard techniques not involving the solutioning of the polymer, e.g., by end group determination via infrared spectroscopy on compression molded films. Alternatively, light scattering techniques in a pentafluorophenol solution may be employed to determine the molecular weight.
  • the wholly aromatic polyesters and poly(ester-amide)s additionally commonly exhibit an inherent viscosity (i.e., I.V.) of at least approximately 2.0 dl./g., e.g., approximately 2.0 to 10.0 dl./g., when dissolved in a concentration of 0.1 percent by weight in pentafluorophenol at 60°C.
  • I.V. inherent viscosity
  • Especially preferred wholly aromatic polymers are those which are disclosed in above-noted U.S. Patent Nos. 4,161,470, 4,184,996, 4,219,461, 4,238,599 and 4,256,624 and Application Serial No. 214,557.
  • the aromatic rings which are included in the polymer backbones of the polymer components employed in the present invention may include substitution of at least some of the hydrogen atoms present upon an aromatic ring.
  • substituents include alkyl groups of up to four carbon atoms; alkoxy groups having up to four carbon atoms; halogens; and additional aromatic rings, such as phenyl or substituted phenyl.
  • Preferred halogens include fluorine, chlorine, and bromine. Although bromine atoms tend to be released from organic compounds at high temperatures, bromine is more stable on aromatic rings than on aliphatic chains, and therefore is suitable for inclusion as a possible substituent on the aromatic rings.
  • the wholly aromatic polyester which is disclosed in U.S. Patent No. 4,161,470 is a melt processable wholly aromatic polyester capable of forming an anisotropic melt phase at a temperature below approximately 350°C.
  • the polyester consists essentially of the recurring moieties I and II wherein:
  • the polyester comprises.approximately 10 to 90 mole percent of moiety 1, and approximately 10 to 90 mole percent of moiety II.
  • moiety II is present in a concentration of approximately 65 to 85 mole percent, and preferably in a concentration of approximately 70 to 80 mole percent, e.g., approximately 75 mole percent.
  • moiety II is present in a lesser proportion of approximately 15 to 35 mole percent, and preferably in a concentration of approximately 20 to 30 mole percent.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • the wholly aromatic polyester which is disclosed in U.S. Patent No. 4,184,996 is a melt processable wholly aromatic polyester capable of forming an anisotropic melt phase at a temperature below approximately 325°C.
  • the polyester consists essentially of the recurring moieties I, II, and III wherein: The polyester comprises approximately 30 to 70 mole percent of moiety I.
  • the polyester preferably comprises approximately 40 to 60 mole percent of moiety I, approximately 20 to 30 mole percent of moiety I, and approximately 20 to 30 mole percent of moiety III.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • the polyester disclosed in U.S. Patent No. 4,219,461 is a melt processable wholly aromatic polyester which is capable of forming an anisotropic melt phase at a temperature below approximately 320°C.
  • the polyester consists essentially of the recurring moieties I, II, III, and IV wherein:
  • III is a dioxy aryl moiety of the formula ⁇ [0 ⁇ Ar ⁇ 0] ⁇ wherein Ar is a divalent radical comprising at least one aromatic ring, and
  • IV is a dicarboxyl aryl moiety of the formula where Ar' is a divalent radical comprising at least one aromatic ring, and wherein the polyester comprises approximately 20 to 40 mole percent of moiety I, in excess of 10 up to about 50 mole percent of moiety II, in excess of 5 up to about 30 mole percent of moiety III, and in excess of 5 up to about 30 mole percent of moiety IV.
  • the polyester preferably comprises approximately 20 to 30 (e.g., approximately 25) mole percent of moiety I, approximately 25 to 40 (e.g., approximately 35) mole percent of moiety II, approximately 15 to 25 (e.g. approximately 20) mole percent of moiety III, and approximately 15 to 25 (e.g., approximately 20) mole percent of moiety IV.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • Moieties III and IV are preferably symmetrical in the sense that the divalent bonds which join these moieties to other moieties in the main polymer chain are symmetrically disposed on one or more aromatic rings (e.g., are para to each other or diagonally disposed when present on a naphthalene ring).
  • non-symmetrical moieties such as those derived from resorcinol and isophthalic acid, may also be used.
  • Preferred moieties III and IV are set forth in above-noted U.S. Patent No. 4,219,461.
  • the preferred dioxy aryl moiety III is: and the preferred dicarboxyl aryl moiety IV is:
  • the polyester disclosed in U.S. Patent No. 4,256,624 is a melt processable wholly aromatic polyester which is capable of forming an anisotropic melt phase at a temperature below approximately 400°C.
  • the polyester consists essentially of the recurring moieties I, II, and III wherein:
  • III is a dicarboxy aryl moiety of the formula where Ar' is a divalent radical comprising at least one aromatic ring, and wherein the polyester comprises approximately 10 to 90 mole percent of moiety I, approximately 5 to 45 mole percent of moiety II, and approximately 5 to 45 percent of moiety III.
  • the polyester preferably comprises approximately 20 to 80 mole percent of moiety I, approximately 10 to 40 mole percent of moiety II, and approximatly 10 to 40 mole percent of moiety III.
  • the polyester more preferably comprises approximatly 60 to 80 mole percent of moiety I, approximately 10 to 20 percent of moiety II, and approximately 10 to 20 mole percent of moiety III.
  • the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • moieties II and III of the polyester described immediately above may be symmetrical or nonsymmetrical, but are preferably symmetrical.
  • Preferred moieties II and III are set forth in above-noted U.S. Patent No. 4,256,624.
  • the preferred dioxy aryl moiety II is: and the preferred dicarboxy aryl moiety III is:
  • III is ⁇ [Y ⁇ Ar ⁇ Z] ⁇ , where Ar is a divalent radical comprising at least one aromatic ring, Y is O, NH, or NR, and Z is NH or NR, where R is an alkyl group of 1 to 6 carbon atoms or an aryl group; and
  • IV is ⁇ [O ⁇ Ar' ⁇ 0] ⁇ , where Ar' is a divalent radical comprising at least one aromatic ring; and wherein said poly(ester-amide) comprises approximately 10 to 90 mole percent of moiety I, approximately 5 to 45 mole percent of moiety II, approximately 5 to 45 percent of moiety III, and approximately 0 to 40 percent of moiety IV.
  • at least some of the hydrogen atoms present upon the rings optionally may be replaced by substitution selected from the group consisting of an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms, halogen, phenyl, substituted phenyl, and mixtures thereof.
  • Preferred moieties II, III and IV are set forth in above-noted U.S. Application Serial No 214,557.
  • the preferred dicarboxy aryl moiety II is: the referred moiety III is: and the preferred dioxy aryl moiety IV is:
  • the non-woven articles of the present invention are comprised of fibers of thermotropic liquid crystal polymers and may be produced in a variety of ways.
  • a thermotrophic liquids crystal polymer may be spray spun onto a web or screen to provide a random array of polymeric fibers.
  • melt spun fibers of a thermotropic liquid crystal polymer cut to appropriately short lengths can be slurried with a liquid which is a non-solvent for the polymer (e.g., water) and subsequently filtered (or wet-laid) onto a web or screen to provide a random (i.e., multi-dimensional) array of fibers.
  • the thus-produced random array may then be subjected to a suitable thermal bonding or heat pressing step at a suitable temperature to bond the fibers together and impart the desired structural integrity thereto. That is, the article at a minimum will support its own weight and preferably can be pulled apart only with difficulty.
  • the fibers are heated and pressed together for a period of time and at a pressure sufficient to at least bond the fibers together at the cross-over points.
  • Such fusion bonding does not result in any significant loss of orientation (and accordingly, loss of strength) since the polymer of which the fibers is comprised forms an anisotropic melt phase.
  • Such a characteristic is in direct contrast to conventional thermoplastic polymers which do not form an anisotropic melt phase and which readily lose their orientation upon being heated to temperatures in excess of their melting temperature. This is also in contrast to lyotropic liquid crystal polymers which cannot be fusion bonded.
  • the spray spun fibers are not allowed to cool sufficiently prior to being deposited on the web, the fibers will become bonded together as they collect upon the web or screen and a formal heat pressing step will not be required.
  • Polymers which are capable of forming an anisotropic melt phase are particularly suited for use in such a method since the polymer retains its orientation upon being spun and collected in the form of a web or sheet.
  • the spray-spun fibers can thus be thermally bonded together to form a non-woven article having the desired degree of structural integrity without exhibiting a significant loss of orientation (and strength) as a result of being bonded together in the melt phase.
  • the non-woven articles of the present invention possess many advantageous characteristics due to the presence of thermotropic liquid crystal polymers therein. That is, since liquid crystal polymers are fully drawn and highly oriented as spun, the fibers which comprise the non-woven articles of the present invention possess relatively high tensile strength and modulus. Accordingly, non-woven articles comprised of such fibers similarly exhibit relatively high tenacity and modulus.
  • the article exhibits such tensile strength and modulus in a multi-dimensional manner due to the multi-dimensional orientation of the fibers within the structure.
  • the non-woven articles also benefit from other physical characteristics of thermotropic liquid crystal polymers such as resistance to chemical corrosion or solvation and high temperature stability due to the high melting temperature of the fibers.
  • the melting temperature of the polymer is prefereably in excess of 200°C. and most preferably in excess of 400°C.
  • Such articles thus are well suited for use as filters in high temperature and/or otherwise destructive environments which would tend to degrade conventional filters such as treatment of stack gases from electrical generating plants
  • the articles can also be used to filter a variety of liquids without dissolving or being subject to corrosion or other degradative chemical processes.
  • non-woven articles are as the matrix material in ballistics protection wearing apparrel. Due to the high tenacity and modulus exhibited by the liquid crystal polymers which comprise the non-woven articles, such articles are readily adaptable to such a use.
  • the non-woven article comprise at least a major portion (e.g., at least about 50 percent by weight) of the fibers and preferably consists essentially of such fibers. In a most preferred embodiment the article consists entirely of fibers of liquid crystal polymers.
  • the mechanical properties of the non-woven articles produced in accordance with the present invention is improved by subjecting the articles to a heat treatment following formation thereof.
  • the heat treatment improves the properties of the article by increasing the molecular weight of the liquid crystalline polymer which comprises the fibers present within the article and increasing the degree of crystallinity thereof while also increasing the melting temperature of the polymer. Such heat treatment can also serve to bond the fibers together.
  • the articles may be thermally treated in an inert atmosphere (e.g., nitrogen, carbon dioxide, argon, helium) or alternatively, in a flowing oxygen-containing atmosphere (e.g., air).
  • an inert atmosphere e.g., nitrogen, carbon dioxide, argon, helium
  • a flowing oxygen-containing atmosphere e.g., air
  • the use of a non-oxidizing substantially moisture-free atmosphere is preferred to avoid the possibility of thermal degradation.
  • the article may be brought to a temperature approximateiy 10 to 30 centrigrade degrees below the melting temperature of the liquid crystal polymer, at which temperature the fibers remain a solid object. It is preferable for the temperature of the heat treatment to be as high as possible without equaling or exceeding the melting temperature of the polymer. It is most preferable to gradually increase the temperature of heat treatment in accordance with the increase of the melting temperature of the polymer during heat treatment.
  • the duration of the heat treatment will commonly range from a few minutes to a number of days, e.g., from 0.5 to 200 hours, or more.
  • the heat treatment is conducted for a time of 1 to 48 hours and typically from about 5 to 30 hours.
  • the duration of heat treatment varies depending upon the heat treatment temperature; that is, a shorter treatment time is required as a higher treatment temperature is used.
  • the duration of the heat treatment can be shortened for higher melting polymers, since higher heat treatment temperatures can be applied without melting the polymer.
  • the heat treatment is conducted under conditions sufficient to increase the melting temperature of the polymer at least 10 centrigrade degrees.
  • the melting temperature of the liquid crystal polymer is increased from between about 20 to about 50 centigrade degrees as a result of the heat treatment. The amount of increase which is obtained is dependent upon the temperature used in the heat treatment, with higher heat treatment temperatures giving greater increases.
  • the chemical resistance of the polymer also increases with heat treatment and the solubility into pentafluorophenol, one of the rare solvents for thermotropic liquid crystal polymers, continuously decreases with increasing heat treatment time and eventually the material will not dissolve even minimally (such as in amounts of 0.1 percent by weight). Accordingly, reference herein to solution characteristics of specific polymers is intended to refer to such characteristics prior to any heat treatment of the polymer.
  • As-spun fibers comprised of a thermotropic liquid crystal polymer consisting of 40 mole per cent of a p-oxybenzoyl moiety and 60 mole percent of a 6-oxy-2-naphthoyl moiety are provided having a denier per filament ranging from about 7 to 10.
  • the fibers are chopped into microfibers ranging in length from about % to % inch (6.35 to 9.53 mm) in length and admixed with water to form a slurry. The slurry is well stirred to achieve a uniform dispersal of the chopped fibers in the slurry.
  • the slurry admixture is poured into a tall Buchner filter funnel containing a disk of filter paper.
  • the water is drained off with the aid of a vacuum leaving a random mat of chopped fibers upon the filter paper.
  • the web is carefully removed from contact with the filter paper and dried.
  • the dried web of fibers demonstrates weak structural integrity (i.e., it barely supports its own weight and is easily pulled apart).
  • the fibers are bound together by pressing the web between two heated plates whereupon the web is heated to approximately 275°C.
  • the web is sandwiched between Kapton release films to prevent the web from sticking to the plates.
  • the web subsequent to hot pressing exhibits substantial structural integrity and is pulled apart only with difficulty while also exhibiting textile-like draping characteristics.
  • Pellets comprised of a thermotropic liquid crystal polymer consisting of 40 mole percent of a p-oxybenzoyl moiety and 60 mole percent of a 6-oxy-naphthoyl moiety are dried for 24 hours in a warm vacuum oven.
  • the pellets are then introduced into the hopper of a spray spinning unit with the temperature of the polymer subsequently being raised to 360°C within the extruder section of the unit to provide a polymer melt.
  • the melt is then spun from a 0.16 mill (0.41 mm) jet into an air attenuation section of the spray spinning unit where the melt is exposed to the air drag of three impinging unheated air jets and reduced to a fiber of about 50 denier (5.56 tex) per filament.
  • the spun fiber is collected as a non-bonded mat upon a wire screen located approximately 30 inches (76.2 cm) from the jet.
  • Air heated to between about 200-500°C. is also employed to attenuate the melt which results in the production of a mat of fibers which are bonded together at their cross-over points.
  • This bonded mat is formed by collecting the fibers on a screen located approximately 12 to 16 inches (30.48 to 40.64 cm) from the jet.

Claims (58)

1. Nichtgewebter Artikel in Form einer Folie oder Bahn, die wünschenswerte thermische Stabilität sowie chemische Beständigkeit und Beständigkeit gegen Lösungsmittel aufweist, umfassend statistisch ageordnete Fasern eines Polymers, das nicht weniger als 10 Mols-% wiederkehrender Einheiten, die eine, Naphthalin-Struktureinheit enthalten, umfaßt und zur Bildung einer anisotropen Schmelzphase befähigt ist, wobei die Fasern an Überkreuz-Punkten in ausreichendem Maße thermisch miteinander verbunden sind, um dem Gegenstand strukturelle Unversehrtheit zu verleihen.
2. Gegenstand nach Anspruch 1, worin das Polymer ein vollaromatisches Polymer ist.
3. Gegenstand nach Anspruch 1, worin das Polymer ein vollaromatischer Polymer ist.
4. Gegenstand nach Anspruch 1, 2 oder 3, worin das Polymer eine logarithmische Viskositätszahl von wenigstens 2,0 di/g, gemessen in einer Lösung mit einer Konzentration von 0,1 Gew.-% in Pentafluorophenol bei 60°C, hat.
5. Gegenstand nach irgendeinem der Ansprüche 1 bis 4, worin die Naphthalin-Struktureinheit des Polymers aus der aus einer 6-Oxy-2-naphthoyl-Struktureinheit, einer 2,6-Dioxynaphthalin-Struktureinheit und einer 2,6-Dicarboxynaphthalin-Struktureinheit bestehenden Gruppe ausgewählt ist.
6. Gegenstand nach irgendeinem der Ansprüche 1 bis 5, worin das Polymer zur Bildung einer anisotropen Schmelzphase bei einer Temperatur unterhalb von etwa 400°C befähigt ist.
7. Gegenstand nach irgendeinem der Ansprüche 1 bis 6, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheiten I, II, und III besteht worin
Figure imgb0051
ist,
Figure imgb0052
ist und
Figure imgb0053
ist, und worin der Polyester annähernd 30 bis 70 Mol-% der Struktureinheit I umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl subtituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
8. Gegenstand nach Anspruch 7, worin der Polyester etwa 40 bis 60 Mol-% der Struktureinheit I, etwa 20 bis 30 Mol-% der Struktureinheit II und etwa 20 bis 30 Mol-% der Struktureinheit III enthält.
9. Gegenstand nach irgendeinem der Ansprüche 1 bis 6, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheiten I und 11 besteht, worin
Figure imgb0054
ist und
Figure imgb0055
ist, worin der Polyester etwa 10 bis 90 Mol-% der Struktureinheit I und etwa 10 bis 90 Mol-% der Struktureinheit II umfabt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
10. Gegenstand nach Anspruch 9, worin der Polyester etwa 65 bis 85 Mol-% der Struktureinheit II umfaßt.
11. Gegenstand nach Anspruch 9, worin der Polyester etwa 15 bis 35 Mol-% der Struktureinheit II umfaßt.
12. Gegenstand nach irgendeinem der Ansprüche 1 bis 6, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer Anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheit I, II und III besteht, worin
Figure imgb0056
ist und
II eine Dioxyaryl-Struktureinheit der Formel ―[O―Ar―O]― ist, worin Ar ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und
III eine Dicarboxyaryl-Struktureinheit der Formel
Figure imgb0057
ist, worin Ar' ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und worin der Polyester etwa 10 bis 90 Mol.-% der Struktureinheit I, etwa 5 bis 45 Mol-% der Struktureinheit II und etwa 5 bis 45 Mol-% der Struktureinheit III umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein Können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
13. Gegenstand nach Anspruch 12, worin der Polyester etwa 20 bis 80 Mol.-% der Struktureinheit I, etwa 10 bis 40 Mol-% der Struktureinheit II und etwa 10 bis 40 Mol-% der Struktureinheit III umfaßt.
14. Gegenstand nach irgendeinem der Ansprüche 1 bis 6, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheit I, 11, III und IV besteht, worin
Figure imgb0058
ist,
Figure imgb0059
ist,
III eine Dioxyaryl-Struktureinheit der Formel ―[O―Ar―O]― ist, worin Ar ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und
IV eine Dicarboxyaryl-Struktureinheit der Formel
Figure imgb0060
ist, worin Ar' ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und worin der Polyester etwa 20 bis 40 Mol.-% der Struktureinheit I, mehr als 10 bis etwa 50 Mol-% der Struktureinheit 11, mehr als 5 bis etwa 30 Mol-% der Struktureinheit III und mehr als 5 bis etwa 30 Mol-% der Struktureinheit IV umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein Können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
15. Gegenstand nach Anspruch 14, worin der Polyester etwa 20 bis 30 Mol.-% der Struktureinheit I, etwa 25 bis 40 Mol-% der Struktureinheit II, etwa 15 bis 25 Mol-% Struktureinheit III und etwa 15 bis 25 Mol- % der Struktureinheit IV umfaßt.
16. Gegenstand nach irgendeinem der Ansprüche 1 bis 6, worin das Polymer ein in der Schmelze verarbeitbares Poly(ester-amid) unfaßt, das zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheit I, II, III und gegebenenfalls IV, besteht, worin
Figure imgb0061
ist,
Figure imgb0062
ist, worin wenigstens einen aromatischen Ring umfassender zweiwertiger Rest oder ein zweiwertiger trans-Cyclo-hexan-Rest ist,
111 ―[Y―Ar―Z]― ist, worin Ar ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, Y O, NH oder NR ist und Z NH oder NR ist, worin R eine Alkyl-Gruppe mit 1 bis 6 Kohlenstoff-Atomen oder eine Aryl-Gruppe ist, und
IV ―[O―Ar'―O]― ist, worin Ar' ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und
worin das Poly(ester-amid) etwa 10 bis 90 Mol.-% der Struktureinheit I, etwa 5 bis 45 Mol-% der Struktureinheit 11, mehr 5 bis etwa 45 Mol-% der Struktureinheit 111 und etwa 0 bis 40 Mol-% der Struktureinheit IV umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein Können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
17. Gegenstand nach irgendeinem der Ansprüche 1 bis 16, worin das Polymer einer Wärmebehandlung während einer Zeitdauer und bei einer Temperatur unterworfen wird, die ausreichen, um die Schmelztemperatur des Polymers um einen Betrag zwischen 20°C und 50°C zu erhöhen.
18. Gegenstand nach Anspruch 17, worin das Polymer der Wärmebehandlung nach der Bilding des Gegenstandes unterworfen worden ist.
19. Gegenstand nach Anspruch 17 oder 18, worin die Temperatur der Wärmebehandlung im Bereich von etwa 10°C bis etwa 30°C unterhalb der Schmelztemperatur des Polmers liegt.
20. Gegenstand nach Anspruch 17, 18 oder 19, worin die Zeitdauer im Bereich von etwa 0,5 bis etwa 200 Stunden liegt.
21. Gegenstand nach Anspruch 20, worin die Zeitdauer im Bereich von etwa 1 bis etwa 48 Stunden liegt.
22. Gegenstand nach Anspruch 21, worin die Zeitdauer im Bereich von etwa 5 bis etwa 30 Stunden liegt.
23. Gegenstand nach irgendeinem der Ansprüche 17 bis 22,..worin die Wärmebehandlung in einer nicht-oxidierenden Atmosphäre erfolgt.
24. Gegenstand nach Anspruch 23, worin die Atmosphäre im wesentlichen feuchtigkeitsfrei ist.
25. Gegenstand nach Anspruch 23 oder 24, worin die Wärmebehandlung in einer Stickstoff-Atmosphäre erfolgt.
26. Gegenstand nach irgendeinem der Ansprüche 1 bis 25, bestehend im wesentlichen aus Fasern eines Polymers, das zur Bildung einer anisotropen Schmelzphase befähigt ist.
27. Gegenstand nach irgendienem der Ansprüche 1 bis 26, worin das Polymer eine Schmeltztemperatur oberhalb von etwa 200°C hat.
28. Gegenstand nach Anspruch 27, worin das Polymer eine Schmelztemperatur oberhalb von etwa 400°C hat.
29. Verfahren zur Herstellung eines nichtgewebten Artikels in Form einer Bahn oder Folie, die wünschenswerte thermische Stabilität sowie chemische Beständigkeit und Beständigkeit gegen Lösungsmittel aufweist, gebildet aus Fasern eines Polymers, das zur Bildung einer anisotropen Schmelzphase befähigt ist, wobei dieses Verfahren (1) (a) das Spritzspinnen des Polymers in der Schmelzphase zur Bildung einer Vielzahl unzusammenhängender, statistisch angeordneter Fasern oder (b) das Schmelzspinnen des Polymers und Zerschneiden des schmelzgesponnenen Materials in Fasern, (2) das Sammeln der Fasern in Form einer Bahn oder Folie, (3) das thermische Verbinden der Fasern miteinander an Überkreuz-Punkten in der Bahn oder Folie und (4) das Einwirkenlassen einer Wärmebehandlung auf die resultierende thermisch gebundene Bahn oder Folie während einer Zeitdauer und bei einer Temperatur, die ausreichen, um die Schmelztemperatur des Polymers nach der Bildung des Gegenstandes um einen Betrag zwischen 20°C und 50°C zu erhöhen.
30. Verfahren nach Anspruch 29, worin die Fasern nach Schritt (1)(a) erzeugt werden und beim Sammeln thermisch miteinander verbunden werden.
31. Verfahren nach Anspruch 29, worin die Fasern nach Schritt (1)(b) erzeugt werden und in einem flüssigen Nicht-Lösungsmittel aufgeschlämmt werden, aus dem die Fasern in Schritt (2) naßgelegt werden.
32. Verfahren nach Anspruch 29, 30 oder 31, worin die Fasern auf einem Sieb gesammelt werden.
33. Verfahren nach irgendeinem der Ansprüche 29 bis 32, worin das Polymer ein vollaromatisches Polymer ist.
34. Verfahren nach Anspruch 33, worin das Polymer ein vollaromatischer Polyester ist.
35. Verfahren nach irgendeinem der Ansprüche 29 bis 34, worin das Polymer eine logarithmische Viskositätszahl von wenigstens 2,0 dl/g, gemessen in einer Lösung mit einer Konzentration von 0,1 Gew.-% in Pentafluorophenol bei 60°C, hat.
36. Verfahren nach irgendeinem der Ansprüche 29 bis 35, worin das Polymer nicht weniger als etwa 10 Mol-% wiederkehrender Einheiten umfaßt, die eine Naphthalin-Struktureinheit enthalten.
37. Verfahren nach Anspruch 36, worin die Naphthalin-Struktureinheit des Polymers aus der aus einer 6-Oxy-2-naphthoyl-Struktureinheit, einer 2,6-Dioxynaphthalin-Struktureinheit und einer 2,6-Dicarboxynaphthalin-Struktureinheit bestehenden Gruppe ausgewählt ist.
38. Verfahren nach irgendeinem der Ansprüche 29 bis 37, worin das Polymer zur Bildung einer anisotropen Schmelzphase bei einer Temperatur unterhalb von etwa 400°C befähigt ist.
39. Verfahren nach irgendeinem der Ansprüche 29 bis 38, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheiten I, II und III besteht, worin
Figure imgb0063
ist,
Figure imgb0064
ist und
Figure imgb0065
, und worin der Polyester annähernd 30 bis 70 Mol-% der Struktureinheit I umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Subtituenten substituiert sein Können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlensoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
40. Verfahren nach Anspruch 39, worin der Polyester etwa 40 bis 60 Mol.-% der Struktureinheit I, etwa 20 bis 30 Mol-% der Struktureinheit 11 und etwa 20 bis 30 Mol-% der Struktureinheit III enthält.
41. Verfahren nach irgendeinem der Ansprüche 29 bis 38, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheiten I und 11 besteht, worin
Figure imgb0066
ist und
Figure imgb0067
ist, worin der Polyester etwa 10 bis 90 Mol-% der Struktureinheit I und etwa 10 bis 90 Mol-% der Struktureinheit II umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohiensoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
42. Verfahren nach Anspruch 41, worin der Polyester etwa 65 bis 85 Mol-% der Struktureinheit II umfaßt.
43. Verfahren nach Anspruch 41, worin der Polyester etwa 15 bis 35 Mol-% der Struktureinheit II umfaßt.
44. Verfahren nach irgendeinem der Ansprüche 29 bis 38, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheiten I, II und III besteht, worin
Figure imgb0068
ist und
II eine Dioxyaryl-Struktureinheit der Formel ―[O―Ar―O]― ist, worin Ar ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und
III eine Dicarboxyaryl-Struktureinheit der Formel
Figure imgb0069
ist, worin Ar' ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und worin der Polyester etwa 10 bis 90 Mol.-% der Struktureinheit I, etwa 5 bis 45 Mol-% der Struktureinheit II und etwa 5 bis 45 Mol-% der Struktureinheit III umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein Können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
45. Verfahren nach Anspruch 44, worin der Polyester etwa 20 bis 80 Mol.% der Struktureinheit I, etwa 10 bis 40 Mol-% der Struktureinheit II und etwa 10 bis 40 Mol-% Struktureinheit III umfaßt.
46. Verfahren nach irgendeinem der Ansprüche 29 bis 38, worin das Polymer einen in der Schmelze verarbeitbaren, vollständig aromatischen Polyester umfaßt, der zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheit I, 11, III und IV besteht, worin
Figure imgb0070
ist,
Figure imgb0071
ist,
111 eine Dioxyaryl-Struktureinheit der Formel ―[O―Ar―O]― ist, worin Ar ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und
IV eine Dicarboxyaryl-Struktureinheit der Formel
Figure imgb0072
ist, worin Ar' ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und worin der Polyester etwa 20 bis 40 Mol.-% der Struktureinheit I, mehr als 10 bis etwa 50 Mol-% der Struktureinheit 11, mehr als 5 bis etwa 30 Mol-% der Struktureinheit III und mehr als 5 bis etwa 30 Mol-% der Struktureinheit IV umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein Können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
47. Verfahren nach Anspruch 46, worin der Polyester etwa 20 bis 30 Mol.-% der Struktureinheit I, etwa 25 bis 40 Mol-% der Struktureinheit II, etwa 15 bis 25 Mol-% Struktureinheit III und etwa 15 bis 25 Mol-% der Struktureinheit IV umfaßt.
48. Verfahren nach irgendeinem der Ansprüche 29 bis 38, worin das Polymer ein in der Schmelze verarbeitbares Poly(ester-amid) unfaßt, das zur Bildung einer anisotropen Schmelzphase befähigt ist und im wesentlichen aus den wiederkehrenden Struktureinheit I, II, III und gegebenenfalls IV, besteht, worin
Figure imgb0073
ist,
Figure imgb0074
ist, worin wenigstens einen aromatischen Ring umfassender zweiwertiger Rest older ein zweiwertiger trans-Cyclo-hexan-Rest ist,
111 ―[Y―Ar―Z]― ist, worin Ar ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, Y 0, NH oder NR ist und Z NH oder NR ist, worin R eine Alkyl-Gruppe mit 1 bis 6 Kohlenstoff-Atomen oder eine Aryle-Gruppe ist, und
IV ―[O―Ar'―O]― ist, worin Ar' ein wenigstens einen aromatischen Ring umfassender zweiwertiger Rest ist, und
worin das Poly(ester-amid) etwa 10 bis 90 Mol.-% der Struktureinheit I, etwa 5 bis 45 Mol-% der Struktureinheit 11, mehr 5 bis etwa 45 Mol-% der Struktureinheit III und etwa 0 bis 40 Mol-% der Struktureinheit IV umfaßt und worin wenigstens einige der an den Ringen vorhandenen Wasserstoff-Atome gegebenenfalls durch Substituenten substituiert sein können, die aus der aus einer Alkyl-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, einer Alkoxy-Gruppe mit 1 bis 4 Kohlenstoff-Atomen, Halogen, Phenyl, substituiertem Phenyl und deren Mischungen bestehenden Gruppe ausgewählt sind.
49. Verfahren nach irgendeinem der Ansprüche 29 bis 48, worin die Temperatur der Wämebehandlung im Bereich von etwa 10°C bis etwa 30°C unterhalb der Schmelztemperatur des Polmers liegt.
50. Verfahren nach irgendeinem der Anspruch 29 bis 49, worin die Zeitdauer im Bereich von etwa 0,5 bis etwa 200 Stunden liegt.
51. Verfahren nach Anspruch 50, worin die Zeitdauer im Bereich von etwa 1 bis etwa 48 Stunden liegt.
52. Verfahren nach Anspruch 51, worin die Zeitdauer im Bereich von etwa 5 bis etwa 30 Stunden liegt.
53. Verfahren nach irgendeinem der Ansprüche 29 bis 52, worin die Wärmebehandlung in einer nicht-oxidierenden Atmosphäre erfolgt.
54. Verfahren nach Anspruch 53, worin die Atmosphäre im wesentlichen feuchtigkeitsfrei ist.
55. Verfahren nach Anspruch 53 oder 54, worin die Wärmebehandlung in einer Stickstoff-Atmosphäre erfolgt.
56. Verfahren nach irgendeinem der Ansprüche 29 bis 55, worin das Polymer eine Schmelztemperatur oberhalb von etwa 200°C hat.
57. Verfahren nach Anspruche 56, worin das Polymer eine Schmelztemperatur oberhalb von etwa 400°C hat.
EP19840304572 1984-07-04 1984-07-04 Nichtgewobene Artikel aus thermotropischen flüssigen Kristall-Polymeren, und Verfahren zur Herstellung derselben Expired EP0166830B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8484304572T DE3480010D1 (en) 1984-07-04 1984-07-04 Non-woven articles comprised of thermotropic liquid crystal polymer fibers and method of production thereof
EP19840304572 EP0166830B1 (de) 1984-07-04 1984-07-04 Nichtgewobene Artikel aus thermotropischen flüssigen Kristall-Polymeren, und Verfahren zur Herstellung derselben

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19840304572 EP0166830B1 (de) 1984-07-04 1984-07-04 Nichtgewobene Artikel aus thermotropischen flüssigen Kristall-Polymeren, und Verfahren zur Herstellung derselben

Publications (2)

Publication Number Publication Date
EP0166830A1 EP0166830A1 (de) 1986-01-08
EP0166830B1 true EP0166830B1 (de) 1989-10-04

Family

ID=8192684

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840304572 Expired EP0166830B1 (de) 1984-07-04 1984-07-04 Nichtgewobene Artikel aus thermotropischen flüssigen Kristall-Polymeren, und Verfahren zur Herstellung derselben

Country Status (2)

Country Link
EP (1) EP0166830B1 (de)
DE (1) DE3480010D1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245751A (ja) * 1985-08-26 1987-02-27 住友化学工業株式会社 防護材料
US4963298A (en) * 1989-02-01 1990-10-16 E. I. Du Pont De Nemours And Company Process for preparing fiber, rovings and mats from lyotropic liquid crystalline polymers
US5296286A (en) * 1989-02-01 1994-03-22 E. I. Du Pont De Nemours And Company Process for preparing subdenier fibers, pulp-like short fibers, fibrids, rovings and mats from isotropic polymer solutions
USH1502H (en) * 1993-08-17 1995-11-07 Fiberweb North America, Inc. Meltblown fibers and webs produced from liquid crystal polymers
CN112501954A (zh) * 2020-11-23 2021-03-16 江苏展宝新材料有限公司 一种lcp薄膜的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184996A (en) * 1977-09-12 1980-01-22 Celanese Corporation Melt processable thermotropic wholly aromatic polyester
US4238599A (en) * 1979-02-08 1980-12-09 Fiber Industries, Inc. Polyester of para-hydroxy benzoic acid, 1,2-bis(para-carboxy phenoxy)ethane, terephthalic acid and substituted hydroquinone capable of forming an anisotropic melt which readily undergoes melt processing
US4219461A (en) * 1979-04-23 1980-08-26 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid, para-hydroxy benzoic acid, aromatic diol, and aromatic diacid capable of readily undergoing melt processing
US4256624A (en) * 1979-07-02 1981-03-17 Celanese Corporation Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and aromatic diacid capable of undergoing melt processing
US4330457A (en) * 1980-12-09 1982-05-18 Celanese Corporation Poly(ester-amide) capable of forming an anisotropic melt phase derived from 6-hydroxy-2-naphthoic acid, dicarboxylic acid, and aromatic monomer capable of forming an amide linkage
US4395307A (en) * 1981-11-09 1983-07-26 Celanese Corporation Thermotropic liquid crystal polymer pulp and method of preparation thereof wherein said polymer comprises recurring units which contain a 2,6-dioxyanthraquinone moiety
US4381389A (en) * 1982-07-15 1983-04-26 E. I. Du Pont De Nemours And Company Optically anisotropic melt forming copolyesters

Also Published As

Publication number Publication date
EP0166830A1 (de) 1986-01-08
DE3480010D1 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
EP0072210B1 (de) Multiaxial orientierte Hochleistungslaminate aus einaxial orientierten Blättern thermotroper Flüssigkristall-Polymeren
EP0063880B1 (de) Von 6-hydroxy-2-naphthoesäure abgeleitetes Poly(esteramid)
US4256624A (en) Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and aromatic diacid capable of undergoing melt processing
CA1197979A (en) Method for the melt processing of thermotropic liquid crystal polymers
US4479999A (en) Fabric comprised of fusible and infusible fibers, the former comprising a polymer which is capable of forming an anisotropic melt phase
CA1169191A (en) Poly(ester-amide) capable of forming an anisotropic melt phase derived from p-hydroxybenzoic acid, 2,6- dihydroxynaphthalene, carbocyclic dicarboxylic acid, aromatic monomer capable of forming an amide linkage, and, optionally, additional aromatic diol
US4161470A (en) Polyester of 6-hydroxy-2-naphthoic acid and para-hydroxy benzoic acid capable of readily undergoing melt processing
US4219461A (en) Polyester of 6-hydroxy-2-naphthoic acid, para-hydroxy benzoic acid, aromatic diol, and aromatic diacid capable of readily undergoing melt processing
US4318842A (en) Polyester of 6-hydroxy-2-naphthoic acid, aromatic diol, and 1,4-cyclohexanedicarboxylic acid capable of undergoing melt processing
US4299756A (en) Polyester of phenyl-4-hydroxybenzoic acid, aromatic diol, and aromatic diacid capable of forming an anisotropic melt
US4439578A (en) Use of liquid crystal polymer particulates having a high aspect ratio in polymeric molding resins to suppress melt dripping
EP0001185A1 (de) Aus der Schmelze verarbeitbarer vollaromatischer thermotroper Polyester, welcher Para-oxybenzoyl- und Meta-oxybenzoylgruppen zusammen enthält; die erhaltenen Formmassen, Formkörper und Fasern
EP0063881A1 (de) Von p-Hydroxybenzoesäure, 2,6-Naphthalendicarbonsäure und einem eine Amidbindung bildenden aromatischen Monomer abgeleitetes Poly(ester-amid)
EP0044675A1 (de) Behandlung durch kontrollierten Schmelzverlauf von Flüssigkristall-Polymeren
US4238599A (en) Polyester of para-hydroxy benzoic acid, 1,2-bis(para-carboxy phenoxy)ethane, terephthalic acid and substituted hydroquinone capable of forming an anisotropic melt which readily undergoes melt processing
US4224433A (en) Thermotropic polyesters of 2,6-dihydroxyanthraquinone
US4265802A (en) Polyester of para-hydroxy benzoic acid, 1,4-bis(para-carboxyphenoxy) benzene, aromatic diol and aromatic diacid capable of undergoing melt processing
EP0166830B1 (de) Nichtgewobene Artikel aus thermotropischen flüssigen Kristall-Polymeren, und Verfahren zur Herstellung derselben
US4395307A (en) Thermotropic liquid crystal polymer pulp and method of preparation thereof wherein said polymer comprises recurring units which contain a 2,6-dioxyanthraquinone moiety
JPS6128059A (ja) サ−モトロピツク液晶ポリマ−繊維よりなる不織製品およびその製法
US4457962A (en) Molded article comprised of a thermotropic liquid crystal line polymer with an inherently weak weld line incorporated therein
JPH0633595B2 (ja) サ−モトロピツク液晶ポリマ−のフイブリルよりなる高性能紙
US4614791A (en) Melt processable optically anisotropic polyesters
US4614790A (en) Melt processable optically anisotropic polyesters
CA1246820A (en) Non-woven articles comprised of thermotropic liquid crystal polymer fibers and method of production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19860618

17Q First examination report despatched

Effective date: 19871221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3480010

Country of ref document: DE

Date of ref document: 19891109

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ENKA AG

Effective date: 19900126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900625

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900917

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910617

Year of fee payment: 8

27W Patent revoked

Effective date: 19910131

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state