EP0166655B1 - Process and apparatus for cooling a powder by means of a refrigerant fluid - Google Patents

Process and apparatus for cooling a powder by means of a refrigerant fluid Download PDF

Info

Publication number
EP0166655B1
EP0166655B1 EP85401219A EP85401219A EP0166655B1 EP 0166655 B1 EP0166655 B1 EP 0166655B1 EP 85401219 A EP85401219 A EP 85401219A EP 85401219 A EP85401219 A EP 85401219A EP 0166655 B1 EP0166655 B1 EP 0166655B1
Authority
EP
European Patent Office
Prior art keywords
powder
hopper
refrigerant fluid
towards
tubular framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85401219A
Other languages
German (de)
French (fr)
Other versions
EP0166655A1 (en
Inventor
Gérard Dubrulle
Alain Roullet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9305308&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0166655(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority to AT85401219T priority Critical patent/ATE34040T1/en
Publication of EP0166655A1 publication Critical patent/EP0166655A1/en
Application granted granted Critical
Publication of EP0166655B1 publication Critical patent/EP0166655B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D13/00Making of soap or soap solutions in general; Apparatus therefor
    • C11D13/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Definitions

  • the present invention relates to a method and an installation for cooling, by means of a refrigerant, a powder and in particular a detergent powder.
  • washing powder In the powder manufacturing industries, it is necessary to cool them for various reasons relating both to the particular constitution of the powders and to the requirements posed by the packaging operations. This is for example the case of so-called “economical” washing powders, which work at low temperature (30 to 60 ° C) instead of boiling and to which are added washing agents, surfactants or other specific additives which cannot withstand high conditioning temperatures.
  • washing powder is produced continuously, at tonnages ranging from 10 to 50 tonnes / h, on a single installation.
  • the raw materials (liquids and solids), after having been mixed and then dried (for example with hot air), are transported, by means of conveyor belts, in the form of a powder having an average particle size of 500 microns.
  • the powder then arrives at the bottom of a vertical or slightly inclined cylinder, while still being at a temperature of 70 to 90 ° C.
  • the powder is then sucked upwards, into this cylinder, with colder ambient air and it arrives at a point located 10 to 40 meters higher, point where it separates from the air by gravity.
  • the powder then falls into one or more receiving hoppers from where it is taken up to receive the specific additives, before being sent to the packaging workshop.
  • the desired temperature in the detergent hopper is about 25 to 40 ° C.
  • the cooling of the powder produced by heat exchange with this sucked air-turns out to be insufficient It was therefore necessary to implement additional cooling methods to allow the desired temperature to be reached in the receiving hopper.
  • a refrigerating group which cools either the powder alone (by means of a solid / liquid exchanger for example) or the air alone, or again at the same time air and powder.
  • This process has the disadvantage of having a low yield, of being very expensive, unreliable and of not being flexible.
  • liquid nitrogen spraying device can consist of a simple torus pierced with holes directed upwards or by a ramp of liquid nitrogen inlet tubes oriented upwards.
  • the exchange of frigories with the air and the powder sucked up is relatively homogeneous because of the Reynolds number and the height of the lift cylinder with air flow.
  • US patent 4222527 describes a cryo-grinding process in which a particulate product to be ground is first cooled in a cylindrical hopper using liquid nitrogen. This is sent by a cane pierced with openings facing upwards and placed at the base of the hopper. The product thus precooled is then ground under injection of liquid nitrogen, at low temperature.
  • the present invention aims to remedy these drawbacks by providing a method and an installation of remarkably simple design, of very easy implementation, making it possible to obtain selective cooling of the powder alone with a variable refrigerating contribution, and this, in the best security conditions.
  • this method of cooling a powder in which the powder is poured into a hopper through its upper opening, then cooled inside said hopper before being discharged through a lower opening thereof, this powder forming a mass of predetermined height inside said hopper, the powder being cooled using a refrigerant under pressure in the liquefied state, is characterized in that the fluid is injected in the form of elementary jets in the powder mass using a tubular frame provided with orifices, in particular slots, oriented towards the bottom of the hopper through which said jets exit, pointing towards the axis of the hopper, and in this that said tubular frame is placed in the hopper at a height, from the lower opening of the hopper, which is between half and a third of the height of the mass of powder.
  • the invention also relates to an installation for cooling, by means of a refrigerant, a powder, in particular a detergent powder comprising a hopper containing said powder, in which the powder falls in the hopper before its distribution towards a post located downstream, comprising, in the powder reception hopper, a device for injecting a liquefied refrigerant, connected to a reservoir of this pressurized fluid, said injection device consisting of a tubular frame of polygonal or circular shape in plan, extending horizontally across the hopper, pierced with orifices, in particular with slots, regularly distributed in the lower part of the wall of said tubular frame, each of these orifices allowing an elementary jet of refrigerant to escape directed downward and towards the vertical axis of the hopper, that is to say towards the zone where the pressure of the powder is the highest, the section and the number of these orifices depending on the desired refrigerant flow, the tubular frame ensuring the injection being placed at a distance from the bottom of the receiving hopper,
  • the installation also includes a regulation assembly comprising a temperature sensor for reading the temperature of the powder at the outlet of the hopper, and means for controlling the flow of the refrigerant towards the injection device, depending on the powder temperature recorded by the sensor.
  • the method and the installation according to the invention make it possible to cool the powder in the hopper without modifying its physicochemical characteristics and its particle size, whatever the flow rate of the powder at the outlet of the hopper.
  • the refrigerant used in the process and the installation according to the invention is chosen so as to be inert with respect to the powder and it can preferably be constituted by liquid nitrogen.
  • the method according to the invention offers the advantage of making it possible to achieve a very significant saving in liquid nitrogen. Furthermore, this process has a great flexibility of implementation because the flow rate of liquid nitrogen can be easily adapted to the conditions of production and in particular to the flow rate of the cooled powder at the outlet of the hopper.
  • the method according to the invention also makes it possible to make an additional saving on the heating energy of the air evacuated at the top of the lifting cylinder with air flow, with a view to using this air for drying, given that the air used for entraining the powder in the lifting cylinder is not cooled.
  • the process does not require the obligation to install an oxygen detection because the cooling is not carried out in the workshops.
  • the injection of the cryogenic fluid within the powder stored in the receiving hopper causes an inerting effect with respect to this powder, while in the conventional process the nitrogen gas is entrained outside with the air.
  • the cooling installation shown in FIG. 1 is intended to cool a mass of powder 1 contained in a reception hopper 2.
  • This reception hopper 2 of frustoconical or pyramidal shape, is located below the upper end of a vertical or slightly inclined lifting cylinder 3, into which the powder is aspirated with ambient air.
  • the powder separates from the air flow and falls into the hopper 2, as indicated by the arrow in solid line f, while the air continues to flow. outward movement, as indicated by the arrow f1 in dashes.
  • the powder is first of all precooled by the suction air (system called “air-lift” " ).
  • the receiving hopper 2 there is a dosing extractor device 4, for example of the rotary valve type, which ensures the distribution, on a conveyor belt, of an appropriate flow of powder 1 cooled to a determined temperature.
  • the cooling of the powder 1 is carried out within the powder itself, while it is contained in the receiving hopper 2, and this by means of a device for injecting a cryogenic fluid.
  • a cryogenic fluid for example liquid nitrogen.
  • This injection device 5 is advantageously constituted by a tubular frame of polygonal or circular shape in plan, extending horizontally across the hopper 2 and which is connected, externally, to a source of liquid nitrogen.
  • the shape of the tubular frame is adapted to the section of the hopper so as to be at a distance from the edges of the hopper sufficient to prevent liquid nitrogen from coming into contact with its walls before vaporization.
  • a sectional view fig.
  • the surface B between the edges of the hopper and the tubular frame is substantially equal to the surface A located inside the frame.
  • This tubular frame 5 is pierced with orifices, in particular with slots 6, regularly distributed over its wall.
  • the section and the number of these slots 6 depend on the desired flow rate of liquid nitrogen.
  • These slots generally have a section equal to about half that of the frame, with symmetry in the cutting plane (fig. 3) so as to inject the same amount of nitrogen towards surfaces A and B. (height D / 2 of a slot for a height D of the frame).
  • Liquid nitrogen is injected under pressure in order to be able to penetrate the powder.
  • the slots 6 are preferably formed in the lower part the inner wall of the tubular frame 5 so that each of these slots 6 lets out an elementary jet of liquid nitrogen directed downwards and towards the vertical axis of the hopper, that is to say towards the zone where the powder pressure is highest.
  • the tubular frame 5 ensuring the injection of liquid nitrogen must be at a height, starting from the bottom of the receiving hopper 2, which is between half and a third of the height of the mass of powder. 1.
  • the device 5 for injecting liquid nitrogen into the powder mass 1 makes it possible to obtain the desired liquid nitrogen flow rates, while avoiding the "filling or rising of cold liquid or gaseous nitrogen in cracks which are created. in the powder mass 1.
  • the injection device 5 must also be designed to allow good homogeneity of the distribution of the frigories provided, while not clogging, that is to say it must not be blocked by icing due to the 10 to 15% humidity of the powder 1 or by the powder itself.
  • the injection device 5 is connected, by means of an isolated cryogenic line 7, to a tank (or evaporator) of liquid nitrogen 8 under pressure, due to the height at which the injection is to be carried out liquid nitrogen in the powder 1.
  • the cooling installation according to the invention also comprises a set for regulating the flow rate of liquid nitrogen injected into the powder 1.
  • This set includes a regulator proper 9 which is connected to a temperature probe 10 engaged in the part lower of the hopper 2, to continuously measure the temperature of the powder 1 at the outlet of this hopper.
  • This regulator in turn acts on one or more valves connected to the cryogenic line 7.
  • the regulator 9 controls two valves 11 and 12 connected in parallel.
  • the cooling is carried out, by direct injection of liquid nitrogen, in a place where only the powder 1 is present, the temperature of this powder having already been lowered beforehand as a result of its passage through the air-flow lifting cylinder 3.
  • This direct injection of liquid nitrogen, via the injection device 5, within the powder mass 1 allows regulation of the cooling power over a very wide range.

Abstract

A device for injecting a liquefied refrigerating fluid directly into a mass of detergent powder within a hopper the device being connected to a tank storing this fluid under pressure.

Description

La présente invention concerne un procédé et une installation de refroidissement, au moyen d'un fluide frigorigène, d'une poudre et notamment d'une poudre de détergent.The present invention relates to a method and an installation for cooling, by means of a refrigerant, a powder and in particular a detergent powder.

Dans les industries de fabrication de poudres, il est nécessaire de refroidir celles-ci pour diverses raisons tenant aussi bien à la constitution particulière des poudres qu'aux exigences posées par les opérations de conditionnement. Tel est par exemple le cas des poudres de lessive dites « économiques •, qui travaillent à basse température (30 à 60 °C) au lieu de l'ébullition et auxquelles sont adjoints des agents lavants, tensio-actifs ou d'autres additifs spécifiques qui ne supportent pas des températures de conditionnement élevées. Généralement, une poudre de lessive est produite en continu, à des tonnages allant de 10 à 50 tonnes/h, sur une seule installation. Les matières premières (liquides et solides), après avoir été mélangées puis séchées (par exemple à l'air chaud), sont transportées, au moyen de bandes transporteuses, sous forme d'une poudre ayant une granulométrie moyenne de 500 microns. La poudre arrive ensuite en bas d'un cylindre vertical ou légèrement incliné, en étant encore à une température de 70 à 90 °C. La poudre est alors aspirée vers le haut, dans ce cylindre, avec de l'air ambiant plus froid et elle arrive en un point situé à 10 à 40 mètres plus haut, point où elle se sépare de l'air par gravité. La poudre tombe ensuite dans une ou plusieurs trémies de réception d'où elle est reprise pour recevoir les additifs spécifiques, avant d'être dirigée vers l'atelier de conditionnement.In the powder manufacturing industries, it is necessary to cool them for various reasons relating both to the particular constitution of the powders and to the requirements posed by the packaging operations. This is for example the case of so-called “economical” washing powders, which work at low temperature (30 to 60 ° C) instead of boiling and to which are added washing agents, surfactants or other specific additives which cannot withstand high conditioning temperatures. Generally, washing powder is produced continuously, at tonnages ranging from 10 to 50 tonnes / h, on a single installation. The raw materials (liquids and solids), after having been mixed and then dried (for example with hot air), are transported, by means of conveyor belts, in the form of a powder having an average particle size of 500 microns. The powder then arrives at the bottom of a vertical or slightly inclined cylinder, while still being at a temperature of 70 to 90 ° C. The powder is then sucked upwards, into this cylinder, with colder ambient air and it arrives at a point located 10 to 40 meters higher, point where it separates from the air by gravity. The powder then falls into one or more receiving hoppers from where it is taken up to receive the specific additives, before being sent to the packaging workshop.

La température désirée dans la trémie de réception de la poudre de lessive est de 25 à 40 °C environ. Or, dès que la température de l'air aspiré au bas du cylindre élévateur par courant d'air est relativement élevée (en été notamment), le refroidissement de la poudre réalisé par échange thermique avec cet air aspiré-se révèle insuffisant. On a donc été amené à mettre en oeuvre des procédés de refroidissement additionnels pour permettre d'atteindre la température désirée dans la trémie de réception.The desired temperature in the detergent hopper is about 25 to 40 ° C. However, as soon as the temperature of the air sucked in at the bottom of the lifting cylinder by air flow is relatively high (in summer in particular), the cooling of the powder produced by heat exchange with this sucked air-turns out to be insufficient. It was therefore necessary to implement additional cooling methods to allow the desired temperature to be reached in the receiving hopper.

Suivant un procédé connu dans lequel on assure le refroidissement par un groupe mécanique, on utilise un groupe frigorifique qui refroidit soit la poudre seule (au moyen d'un échangeur solide/liquide par exemple) soit l'air seul, soit encore à la fois l'air et la poudre. Ce procédé présente l'inconvénient d'avoir un faible rendement, d'être très onéreux, peu fiable et de ne pas être souple.According to a known method in which the cooling is carried out by a mechanical group, a refrigerating group is used which cools either the powder alone (by means of a solid / liquid exchanger for example) or the air alone, or again at the same time air and powder. This process has the disadvantage of having a low yield, of being very expensive, unreliable and of not being flexible.

Un autre procédé qui a été essayé, consiste à pulvériser de l'azote liquide au bas du cylindre élévateur par courant d'air. A cet effet, on détend et vaporise de l'azote liquide sous très faible pression, à la base du cylindre élévateur et à l'entrée de l'air aspiré. Le dispositif de pulvérisation d'azote liquide peut être constitué par un simple tore percé de trous dirigés vers le haut ou par une rampe de tubes d'arrivée d'azote liquide orientés vers le haut. L'échange des frigories avec l'air et la poudre aspirés vers le haut est relativement homogène du fait du nombre de Reynolds et de la hauteur du cylindre élévateur à courant d'air.Another method which has been tried is to spray liquid nitrogen at the bottom of the lifting cylinder by air flow. To this end, liquid nitrogen is relaxed and vaporized under very low pressure, at the base of the lifting cylinder and at the inlet of the aspirated air. The liquid nitrogen spraying device can consist of a simple torus pierced with holes directed upwards or by a ramp of liquid nitrogen inlet tubes oriented upwards. The exchange of frigories with the air and the powder sucked up is relatively homogeneous because of the Reynolds number and the height of the lift cylinder with air flow.

Ce dernier procédé présente toutefois l'inconvénient que l'on refroidit à la fois l'air et la poudre. Par ailleurs, toute fuite d'azote, par suite d'un arrêt ou d'une déficience quelconque du ventilateur, ou tout bouchage du dispositif d'injection d'azote liquide par des retombées d'agglomérat de poudre constituent un risque pour les utilisateurs. Il est donc impérativement nécessaire de prévoir des systèmes de sécurité.The latter method has the disadvantage, however, that both the air and the powder are cooled. Furthermore, any nitrogen leakage, as a result of any shutdown or deficiency of the fan, or any blockage of the liquid nitrogen injection device by fallout of powder agglomerate constitutes a risk for users. . It is therefore imperative to provide security systems.

Le brevet US 4222527 décrit un procédé de cryo-broyage dans lequel un produit particulaire à broyer est d'abord refroidi dans une trémie cylindrique à l'aide d'azote liquide. Celui-ci est envoyé par une canne percée d'ouvertures orientées vers le haut et placée à la base de la trémie. Le produit ainsi prérefroidi est ensuite broyé sous injection d'azote liquide, à basse température.US patent 4222527 describes a cryo-grinding process in which a particulate product to be ground is first cooled in a cylindrical hopper using liquid nitrogen. This is sent by a cane pierced with openings facing upwards and placed at the base of the hopper. The product thus precooled is then ground under injection of liquid nitrogen, at low temperature.

Un tel système comporte des inconvénients qui le rendent inapplicable à son utilisation dans le refroidissement des poudres détergentes. Placé dans une trémie contenant une épaisseur importante de poudre, la canne percée d'ouvertures se bouche rapidement. De plus, sa forme ne permet pas d'obtenir un refroidissement homogène de la poudre.Such a system has drawbacks which make it inapplicable to its use in the cooling of detergent powders. Placed in a hopper containing a significant thickness of powder, the cane pierced with openings becomes clogged quickly. Furthermore, its shape does not allow homogeneous cooling of the powder.

La présente invention vise à remédier à ces inconvénients en procurant un procédé et une installation de conception remarquablement simple, d'une mise en ceuvre très facile, permettant d'obtenir un refroidissement sélectif de la poudre seule avec un apport frigorifique variable, et ce, dans les meilleures conditions de sécurité.The present invention aims to remedy these drawbacks by providing a method and an installation of remarkably simple design, of very easy implementation, making it possible to obtain selective cooling of the powder alone with a variable refrigerating contribution, and this, in the best security conditions.

A cet effet, ce procédé de refroidissement d'une poudre, dans lequel la poudre est déversée dans une trémie par son ouverture supérieure, puis refroidie à l'intérieur de ladite trémie avant d'être évacuée par une ouverture inférieure de celle-ci, cette poudre formant une masse de hauteur prédéterminée à l'intérieur de ladite trémie, la poudre étant refroidie à l'aide d'un fluide frigorigène sous pression à l'état liquéfié, est caractérisé en ce que le fluide est injecté sous la forme de jets élémentaires dans la masse de poudre à l'aide d'un cadre tubulaire muni d'orifices, notamment de fentes, orientés vers le bas de la trémie par lesquels sortent lesdits jets se dirigeant vers l'axe de la trémie, et en ce que l'on dispose ledit cadre tubulaire dans la trémie à une hauteur, à partir de l'ouverture inférieure de la trémie, qui est comprise entre la moitié et le tiers de la hauteur de la masse de poudre.To this end, this method of cooling a powder, in which the powder is poured into a hopper through its upper opening, then cooled inside said hopper before being discharged through a lower opening thereof, this powder forming a mass of predetermined height inside said hopper, the powder being cooled using a refrigerant under pressure in the liquefied state, is characterized in that the fluid is injected in the form of elementary jets in the powder mass using a tubular frame provided with orifices, in particular slots, oriented towards the bottom of the hopper through which said jets exit, pointing towards the axis of the hopper, and in this that said tubular frame is placed in the hopper at a height, from the lower opening of the hopper, which is between half and a third of the height of the mass of powder.

L'invention a également pour objet une installation pour le refroidissement, au moyen d'un fluide frigorigène, d'une poudre, notamment d'une poudre de détergent comportant une trémie contenant ladite poudre, dans laquelle la poudre tombe dans la trémie avant sa distribution en direction d'un poste situé en aval, comprenant, dans la trémie de réception de la poudre, un dispositif d'injection d'un fluide frigorigène liquéfié, relié à un réservoir de ce fluide sous pression, ledit dispositif d'injection étant constitué par un cadre tubulaire de forme polygonale ou circulaire en plan, s'étendant horizontalement en travers de la trémie, percé d'orifices, notamment de fentes, régulièrement répartis dans la partie inférieure de la paroi dudit cadre tubulaire, chacun de ces orifices permettant un échappement d'un jet élémentaire de fluide frigorigène dirigé vers le bas et vers l'axe vertical de la trémie, c'est-à-dire vers la zone où la pression de la poudre est la plus élevée, la section et le nombre de ces orifices dépendant du débit de fluide frigorigène désiré, le cadre tubulaire assurant l'injection étant placé à une distance du bas de la trémie de réception, qui est comprise entre la moitié et le tiers de la hauteur de la masse de poudre dans la trémie.The invention also relates to an installation for cooling, by means of a refrigerant, a powder, in particular a detergent powder comprising a hopper containing said powder, in which the powder falls in the hopper before its distribution towards a post located downstream, comprising, in the powder reception hopper, a device for injecting a liquefied refrigerant, connected to a reservoir of this pressurized fluid, said injection device consisting of a tubular frame of polygonal or circular shape in plan, extending horizontally across the hopper, pierced with orifices, in particular with slots, regularly distributed in the lower part of the wall of said tubular frame, each of these orifices allowing an elementary jet of refrigerant to escape directed downward and towards the vertical axis of the hopper, that is to say towards the zone where the pressure of the powder is the highest, the section and the number of these orifices depending on the desired refrigerant flow, the tubular frame ensuring the injection being placed at a distance from the bottom of the receiving hopper, which is between half and a third of the height of the has mass of powder in the hopper.

L'installation comprend également un ensemble de régulation comprenant un capteur de température pour relever la température de la poudre à la sortie de la trémie, et des moyens de commande du débit du fluide frigorigène en direction du dispositif d'injection, en fonction de la température de la poudre relevée par le capteur.The installation also includes a regulation assembly comprising a temperature sensor for reading the temperature of the powder at the outlet of the hopper, and means for controlling the flow of the refrigerant towards the injection device, depending on the powder temperature recorded by the sensor.

Le procédé et l'installation suivant l'invention permettent de refroidir, dans la trémie, la poudre sans modifier ses caractéristiques physico-chimiques et sa granulométrie, et ce quel que soit le débit de la poudre à la sortie de la trémie.The method and the installation according to the invention make it possible to cool the powder in the hopper without modifying its physicochemical characteristics and its particle size, whatever the flow rate of the powder at the outlet of the hopper.

Le fluide frigorigène utilisé dans le procédé et l'installation suivant l'invention est choisi de manière à être inerte vis-à-vis de la poudre et il peut être constitué, de préférence, par de l'azote liquide.The refrigerant used in the process and the installation according to the invention is chosen so as to be inert with respect to the powder and it can preferably be constituted by liquid nitrogen.

Par rapport aux procédés de refroidissement connus, le procédé suivant l'invention offre l'avantage de permettre de réaliser une économie très importante d'azote liquide. Par ailleurs, ce procédé présente une très grande souplesse de mise en oeuvre du fait que le débit d'azote liquide peut être aisément adapté aux conditions de la production et notamment au débit de la poudre refroidie à la sortie de la trémie. Le procédé suivant l'invention permet également de réaliser une économie additionnelle sur l'énergie de réchauffage de l'air évacué en haut du cylindre élévateur à courant d'air, en vue d'une utilisation de cet air pour le séchage, étant donné que l'air utilisé pour l'entraînement de la poudre dans le cylindre élévateur n'est pas refroidi. Le procédé n'exige pas l'obligation d'installer une détection d'oxygène car le refroidissement n'est pas réalisé au niveau des ateliers. Enfin, l'injection du fluide cryogénique au sein même de la poudre stockée dans la trémie de réception entraîne un effet d'inertage à l'égard de cette poudre, alors que dans le procédé conventionnel l'azote gazeux est entraîné à l'extérieur avec l'air.Compared to known cooling methods, the method according to the invention offers the advantage of making it possible to achieve a very significant saving in liquid nitrogen. Furthermore, this process has a great flexibility of implementation because the flow rate of liquid nitrogen can be easily adapted to the conditions of production and in particular to the flow rate of the cooled powder at the outlet of the hopper. The method according to the invention also makes it possible to make an additional saving on the heating energy of the air evacuated at the top of the lifting cylinder with air flow, with a view to using this air for drying, given that the air used for entraining the powder in the lifting cylinder is not cooled. The process does not require the obligation to install an oxygen detection because the cooling is not carried out in the workshops. Finally, the injection of the cryogenic fluid within the powder stored in the receiving hopper causes an inerting effect with respect to this powder, while in the conventional process the nitrogen gas is entrained outside with the air.

On décrira, ci-après, à titre d'exemple non limitatif, une forme d'exécution de la présente invention, en référence au dessin annexé sur lequel :

  • La figure 1 est une vue en coupe verticale schématique d'une installation de refroidissement d'une poudre contenue dans une trémie de réception.
  • La figure 2 est une vue en plan d'un dispositif d'injection d'azote liquide dans la poudre.
  • La figure 3 est une vue en coupe verticale partielle, faite suivant la ligne III-III de la figure 2, du dispositif d'injection d'azote liquide.
An embodiment of the present invention will be described below, by way of non-limiting example, with reference to the appended drawing in which:
  • Figure 1 is a schematic vertical sectional view of an installation for cooling a powder contained in a receiving hopper.
  • Figure 2 is a plan view of a device for injecting liquid nitrogen into the powder.
  • Figure 3 is a partial vertical sectional view, taken along line III-III of Figure 2, of the liquid nitrogen injection device.

L'installation de refroidissement représentée sur la figure 1 est destinée à refroidir une masse de poudre 1 contenue dans une trémie de réception 2. Cette trémie de réception 2, de forme tronconique ou pyramidale, est située en dessous de l'extrémité supérieure d'un cylindre élévateur 3 vertical ou légèrement incliné, dans lequel la poudre est aspirée avec de l'air ambiant. A l'extrémité supérieure du cylindre élévateur à courant d'air 3, la poudre se sépare du courant d'air et tombe dans la trémie 2, comme il est indiqué par la flèche en trait plein f, tandis que l'air continue son mouvement vers l'extérieur, comme il est indiqué par la flèche f1 en tirets. Ainsi, dans une première phase du procédé (phase non nécessaire, le procédé selon l'invention pouvant débuter dans la phase suivante uniquement), la poudre est tout d'abord prérefroidie par l'air d'aspiration (système dit « air-lift "). A la base de la trémie de réception 2, se trouve un dispositif extracteur doseur 4, par exemple du type à vanne rotative, lequel assure la distribution, sur une bande transporteuse, d'un débit approprié de poudre 1 refroidie à une température déterminée.The cooling installation shown in FIG. 1 is intended to cool a mass of powder 1 contained in a reception hopper 2. This reception hopper 2, of frustoconical or pyramidal shape, is located below the upper end of a vertical or slightly inclined lifting cylinder 3, into which the powder is aspirated with ambient air. At the upper end of the air flow lifting cylinder 3, the powder separates from the air flow and falls into the hopper 2, as indicated by the arrow in solid line f, while the air continues to flow. outward movement, as indicated by the arrow f1 in dashes. Thus, in a first phase of the process (phase not necessary, the process according to the invention being able to start in the next phase only), the powder is first of all precooled by the suction air (system called “air-lift” " ). At the base of the receiving hopper 2, there is a dosing extractor device 4, for example of the rotary valve type, which ensures the distribution, on a conveyor belt, of an appropriate flow of powder 1 cooled to a determined temperature.

Suivant l'invention le refroidissement de la poudre 1 est réalisé au sein même de celle-ci, alors qu'elle se trouve contenue dans la trémie de réception 2, et ce au moyen d'un dispositif d'injection d'un fluide cryogénique liquéfié, par exemple d'azote liquide. Ce dispositif d'injection 5 est avantageusement constitué par un cadre tubulaire de forme polygonale ou circulaire en plan, s'étendant horizontalement en travers de la trémie 2 et qui est relié, à l'extérieur, à une source d'azote liquide. La forme du cadre tubulaire est adaptée à la section de la trémie de manière à se trouver à une distance des bords de la trémie suffisante pour éviter à l'azote liquide d'entrer en contact avec ses parois avant vaporisation. Dans une vue en coupe (fig. 2), la surface B entre les bords de la trémie et le cadre tubulaire est sensiblement égale à la surface A située à l'intérieur du cadre. Ce cadre tubulaire 5 est percé d'orifices, notamment de fentes 6, régulièrement répartis sur sa paroi. La section et le nombre de ces fentes 6 dépendent du débit d'azote liquide désiré. Ces fentes ont généralement une section égale environ à la moitié de celle du cadre, avec une symétrie dans le plan de coupe (fig. 3) de manière à injecter la même quantité d'azote vers les surfaces A et B. (hauteur D/2 d'une fente pour une hauteur D du cadre).According to the invention, the cooling of the powder 1 is carried out within the powder itself, while it is contained in the receiving hopper 2, and this by means of a device for injecting a cryogenic fluid. liquefied, for example liquid nitrogen. This injection device 5 is advantageously constituted by a tubular frame of polygonal or circular shape in plan, extending horizontally across the hopper 2 and which is connected, externally, to a source of liquid nitrogen. The shape of the tubular frame is adapted to the section of the hopper so as to be at a distance from the edges of the hopper sufficient to prevent liquid nitrogen from coming into contact with its walls before vaporization. In a sectional view (fig. 2), the surface B between the edges of the hopper and the tubular frame is substantially equal to the surface A located inside the frame. This tubular frame 5 is pierced with orifices, in particular with slots 6, regularly distributed over its wall. The section and the number of these slots 6 depend on the desired flow rate of liquid nitrogen. These slots generally have a section equal to about half that of the frame, with symmetry in the cutting plane (fig. 3) so as to inject the same amount of nitrogen towards surfaces A and B. (height D / 2 of a slot for a height D of the frame).

L'azote liquide est injecté sous pression afin de pouvoir pénétrer dans la poudre. Les fentes 6 sont de préférence formées dans la partie inférieure de la paroi interne du cadre tubulaire 5 de manière que chacune de ces fentes 6 laisse sortir un jet élémentaire d'azote liquide dirigé vers le bas et vers l'axe vertical de la trémie, c'est-à-dire vers la zone où la pression de la poudre est la plus élevée.Liquid nitrogen is injected under pressure in order to be able to penetrate the powder. The slots 6 are preferably formed in the lower part the inner wall of the tubular frame 5 so that each of these slots 6 lets out an elementary jet of liquid nitrogen directed downwards and towards the vertical axis of the hopper, that is to say towards the zone where the powder pressure is highest.

De préférence, le cadre tubulaire 5 assurant l'injection d'azote liquide doit se trouver à une hauteur, à partir du bas de la trémie de réception 2, qui est comprise entre la moitié et le tiers de la hauteur de la masse de poudre 1.Preferably, the tubular frame 5 ensuring the injection of liquid nitrogen must be at a height, starting from the bottom of the receiving hopper 2, which is between half and a third of the height of the mass of powder. 1.

Le dispositif 5 d'injection d'azote liquide au sein de la masse de poudre 1 permet d'obtenir les débits d'azote liquide souhaités, tout en évitant le « renardage ou remontée d'azote liquide ou gazeux froid dans des fissures se créant dans la masse de poudre 1. Le dispositif d'injection 5 doit être également conçu pour permettre une bonne homogénéité de la répartition des frigories apportées, tout en ne se bouchant pas, c'est-à-dire qu'il ne doit pas être obturé par suite d'un givrage dû aux 10 à 15 % d'humidité de la poudre 1 ou bien par la poudre elle-même.The device 5 for injecting liquid nitrogen into the powder mass 1 makes it possible to obtain the desired liquid nitrogen flow rates, while avoiding the "filling or rising of cold liquid or gaseous nitrogen in cracks which are created. in the powder mass 1. The injection device 5 must also be designed to allow good homogeneity of the distribution of the frigories provided, while not clogging, that is to say it must not be blocked by icing due to the 10 to 15% humidity of the powder 1 or by the powder itself.

Le dispositif d'injection 5 est relié, par l'intermédiaire d'une ligne cryogénique isolée 7, à un réservoir (ou évaporateur) d'azote liquide 8 sous pression, du fait de la hauteur à laquelle doit s'effectuer l'injection de l'azote liquide dans la poudre 1.The injection device 5 is connected, by means of an isolated cryogenic line 7, to a tank (or evaporator) of liquid nitrogen 8 under pressure, due to the height at which the injection is to be carried out liquid nitrogen in the powder 1.

L'installation de refroidissement suivant l'invention comprend par ailleurs un ensemble de régulation du débit de l'azote liquide injecté dans la poudre 1. Cet ensemble comprend un régulateur proprement dit 9 qui est connecté à une sonde de température 10 engagée dans la partie inférieure de la trémie 2, pour mesurer en permanence la température de la poudre 1 à la sortie de cette trémie. Ce régulateur agit à son tour sur une ou plusieurs vannes branchées sur la ligne cryogénique 7. Dans la forme d'exécution non limitative représentée sur le dessin, le régulateur 9 commande deux vannes 11 et 12 branchées en parallèle.The cooling installation according to the invention also comprises a set for regulating the flow rate of liquid nitrogen injected into the powder 1. This set includes a regulator proper 9 which is connected to a temperature probe 10 engaged in the part lower of the hopper 2, to continuously measure the temperature of the powder 1 at the outlet of this hopper. This regulator in turn acts on one or more valves connected to the cryogenic line 7. In the non-limiting embodiment shown in the drawing, the regulator 9 controls two valves 11 and 12 connected in parallel.

Le fait d'utiliser deux vannes 11, 12, permet de réaliser des régulations du type «tout, peu ou rien •. La régulation en « tout ou peu (ouverture de l'une des deux vannes 11 et 12 ou des deux vannes à la fois) garantit un moindre taux de diphasique, par suite d'un écoulement permanent de la phase gazeuse dans la ligne cryogénique 7. De plus, les à-coups et surpressions dans la poudre 1 sont limités, d'où une réduction très forte des envolées de « fines et des surpressions exercées sur le dispositif extracteur doseur 4. Cette envolée de fines est également évitée du fait de la forme tronconique pyramidale de la trémie, ce qui permet une diminution de la vitesse du gaz lors de son ascension, compte tenu de l'augmentation de surface de la trémie vers le haut.The fact of using two valves 11, 12 makes it possible to carry out regulations of the "all, little or nothing" type. The “all or little” regulation (opening of one of the two valves 11 and 12 or of the two valves at the same time) guarantees a lower diphasic rate, due to a permanent flow of the gas phase in the cryogenic line 7 In addition, the jolts and overpressures in the powder 1 are limited, resulting in a very strong reduction in the surges of “fines and the overpressures exerted on the extractor dosing device 4. This surge of fines is also avoided due to the frustoconical pyramidal shape of the hopper, which allows a decrease in the speed of the gas during its ascent, taking into account the increase in surface of the hopper upwards.

On voit, d'après la description qui précède, que le refroidissement est réalisé, par injection directe d'azote liquide, en un endroit où seule la poudre 1 est présente, la température de cette poudre ayant déjà été abaissée préalablement par suite de son passage à travers le cylindre élévateur à courant d'air 3. Cette injection directe d'azote liquide, par l'intermédiaire du dispositif d'injection 5, au sein même de la masse de poudre 1 permet une régulation de la puissance frigorifique sur une très large plage.It can be seen from the above description that the cooling is carried out, by direct injection of liquid nitrogen, in a place where only the powder 1 is present, the temperature of this powder having already been lowered beforehand as a result of its passage through the air-flow lifting cylinder 3. This direct injection of liquid nitrogen, via the injection device 5, within the powder mass 1 allows regulation of the cooling power over a very wide range.

On donnera, ci-après, à titre d'exemple, les résultats comparatifs obtenus par injection d'un fluide cryogénique à la base du cylindre élévateur par courant d'air, suivant le procédé conventionnel et par injection de ce fluide en partie haute, dans la trémie de réception 2 située à 30 mètres par rapport au sol. Pour un débit de poudre fixe de 30 000 kg/h, une température de poudre en partie basse de 80 °C, de l'air en partie basse de 28 °C et une température de poudre désirée de 35 °C, une chaleur spécifique de la poudre de 0,33 kcal/kg et une chaleur spécifique de l'air de 0,24 kcal/kg on consomme, suivant le procédé conventionnel consistant à injecter l'azote liquide à la base du cylindre élévateur à courant d'air, un débit horaire de 4 111 I/h alors qu'avec le procédé suivant l'invention, dans lequel l'injection d'azote liquide s'effectue en partie haute, dans la trémie 2, le débit horaire est seulement de 1 739 I/h. Autrement dit, le procédé suivant l'invention permet de réduire d'environ 58% la consommation horaire d'azote liquide nécessaire pour obtenir, à la sortie de la trémie de réception 2, une poudre ayant la température désirée de 35 °C.The comparative results obtained by injection of a cryogenic fluid at the base of the lifting cylinder by air flow, according to the conventional process and by injection of this fluid in the upper part, will be given by way of example by way of example. in the receiving hopper 2 located 30 meters above the ground. For a fixed powder flow rate of 30,000 kg / h, a powder temperature in the lower part of 80 ° C, air in the lower part of 28 ° C and a desired powder temperature of 35 ° C, a specific heat powder of 0.33 kcal / kg and a specific heat of the air of 0.24 kcal / kg is consumed, according to the conventional process consisting in injecting liquid nitrogen at the base of the lift cylinder with air flow , an hourly flow rate of 4,111 I / h whereas with the process according to the invention, in which the injection of liquid nitrogen takes place at the top, in the hopper 2, the hourly flow rate is only 1,739 I / h. In other words, the process according to the invention makes it possible to reduce by around 58% the hourly consumption of liquid nitrogen necessary to obtain, at the outlet of the receiving hopper 2, a powder having the desired temperature of 35 ° C.

Bien que l'on ait décrit, dans ce qui précède, l'application du procédé et de l'installation suivant l'invention au refroidissement d'une poudre de détergent, avant le conditionnement de celle-ci, il va de soi qu'ils peuvent également être employés dans d'autres domaines industriels, par exemple pour le conditionnement de poudres de colorants, autrement dit chaque fois que la température de la poudre doit être abaissée à une valeur désirée.Although the application of the process and the installation according to the invention to the cooling of a detergent powder has been described in the foregoing, before the packaging thereof, it goes without saying that they can also be used in other industrial fields, for example for the packaging of dye powders, in other words each time the temperature of the powder must be lowered to a desired value.

Claims (9)

1. Process for cooling a powder (1), in which the powder is poured into a hopper (2) via its upper opening, then cooled inside the said hopper before being discharged via a lower opening thereof, this powder forming a mass of predetermined height within the said hopper, the powder being cooled by means of a refrigerant fluid under pressure in the liquefied state, characterised in that the fluid is injected in the form of elementary jets into the mass of powder by means of tubular framework provided with orifices, particularly slots (6) facing towards the bottom of the hopper, through which emerge the said jets directed towards the axis of the hopper, and in that the said tubular framework is positioned in the hopper as a height from the lower opening of the hopper, which is comprised between a half and a third of the height of the mass of powder.
2. Process according to claim 1, characterised in that the edges of the tubular framework are placed at a sufficient distance from the walls of the hopper to prevent liquid nitrogen from coming into contact with these prior to vapourisation.
3. Process according to any one of the preceding claims, characterised in that a fluid which is inert regarding the powder, and preferably liquid nitrogen, is used as the liquefied refrigerant fluid.
4. Plant for the cooling, by means of a refrigerant fluid, of a powder (1), in particular of a detergent powder, comprising a hopper (2) containing the said powder, in which the powder falls into the hopper prior to its distribution in the direction towards a station situated downstream comprising within the hopper (2) for reception of the powder (1), a device (5) for injection of a liquefied refrigerant fluid, connected to a reservoir (8) of this fluid under pressure, characterised in that the said injection device (5) is constituted by a tubular framework of polygonal or circular shape in plan view, extending horizontally across the hopper (2) pierced by orifices, particularly slots (6), distributed evenly in the lower part of the wall of the said tubular framework (5), each of these orifices allowing a discharge of an elementary jet of refrigerant fluid directed downwards and towards the vertical axis of the hopper, that is to say towards the section in which the pressure of the powder is a maximum, the cross-section and the number of these orifices depending on the required flow rate of refrigerant fluid, the tubular framework (5) providing the injecting being positioned at a distance from the base of the reception hopper (2) which is comprised between half and a third of the height of the mass of powder (1) in the hopper.
5. Plant according to claim 4, characterised in that it equally comprises a governing assembly comprising a temperature sensor (10) for detecting the temperature of the powder (1) at the outlet of the hopper (2) and means (9, 11, 12) of controlling the flow rate of the refrigerant fluid in the direction towards the injection device, as a function of the temperature of the powder (1) detected by the sensor (10).
6. Plant according to claim 5, characterised in that the means of controlling the flow rate of refrigerant fluid comprise a regulator (9) acting on two valves (11, 12) connected in parallel.
7. Plant according to one of the claims 4 to 6, characterised in that the hopper (2) is preceded by suction means for the powder, which draw the powder by suction from the bottom towards the top of the hopper by means of an air flow which effects a preliminary cooling of this powder.
8. Plant according to one of the preceding claims, characterised in that the geometry of the tubular framework (5) with respect to the corresponding edges of the hopper (2) is such that the area (B) between the edges of the hopper (2) and the tubular framework (5) is substantially equal to the area (A) located within this framework (5).
9. Plant according to claim 8, characterised in that the orifices of the tubular framework (5) have a cross-section allowing the same quantity of nitrogen to be injected towards the areas (A) and (B).
EP85401219A 1984-06-22 1985-06-19 Process and apparatus for cooling a powder by means of a refrigerant fluid Expired EP0166655B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85401219T ATE34040T1 (en) 1984-06-22 1985-06-19 METHOD AND DEVICE FOR COOLING A POWDER BY MEANS OF REFRIGERATION FLUID.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8409810 1984-06-22
FR8409810A FR2566515B1 (en) 1984-06-22 1984-06-22 METHOD AND INSTALLATION FOR COOLING, USING A REFRIGERANT FLUID OF A POWDER

Publications (2)

Publication Number Publication Date
EP0166655A1 EP0166655A1 (en) 1986-01-02
EP0166655B1 true EP0166655B1 (en) 1988-05-04

Family

ID=9305308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85401219A Expired EP0166655B1 (en) 1984-06-22 1985-06-19 Process and apparatus for cooling a powder by means of a refrigerant fluid

Country Status (12)

Country Link
US (1) US4619113A (en)
EP (1) EP0166655B1 (en)
JP (1) JPS6117880A (en)
KR (1) KR860000367A (en)
AT (1) ATE34040T1 (en)
AU (1) AU573850B2 (en)
BR (1) BR8502986A (en)
CA (1) CA1272038A (en)
DE (1) DE3562527D1 (en)
ES (2) ES8606620A1 (en)
FR (1) FR2566515B1 (en)
ZA (1) ZA854709B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713321B1 (en) * 1993-12-06 1996-01-12 Air Liquide Apparatus for cooling a mass of liquid, or possibly pulverulent material.
GB2291885A (en) * 1994-07-29 1996-02-07 Procter & Gamble Comminuting detergent compositions
DE19717006A1 (en) * 1997-04-23 1998-10-29 Daimler Benz Ag Process for cooling lumpy or granular material and device for carrying out the process
FR2764366B1 (en) 1997-06-10 1999-07-16 Air Liquide METHOD AND INSTALLATION FOR COOLING THE CONTENT OF A SPEAKER
FR2782153B1 (en) 1998-08-05 2000-12-01 Air Liquide DEVICE AND METHOD FOR INJECTING A REFRIGERANT FLUID IN A PRODUCT MIXER
DE10132072C1 (en) * 2001-07-05 2002-10-10 Gerhard Auer Process for the steam jet grinding of pigments and subsequent decanting of the ground pigments into packaging or containers comprises directly cooling the pigments between grinding and decanting using a cooling medium
DE50208268D1 (en) 2001-07-05 2006-11-09 Kerr Mcgee Pigments Internat G METHOD FOR THE DIRECT COOLING OF FINE PARTICULAR SOLIDS
FR2892270B1 (en) * 2005-10-26 2008-02-01 Gervais Danone Sa MICROFOISONNEE FRUIT OR VEGETABLE PUREE AND PROCESS FOR PREPARING THE SAME
FR2924491B1 (en) * 2007-12-04 2009-12-18 Valeo Systemes Thermiques WIRELESS INTERCALIARY WITH PERSIANS FOR HEAT EXCHANGER
FR2949647B1 (en) * 2009-09-10 2011-10-21 Air Liquide METHOD AND INSTALLATION FOR COOLING THE CONTENT OF AN ENCLOSURE USING A FORCED CONVECTION SYSTEM IN THE UPPER PART OF THE ENCLOSURE
WO2019009939A1 (en) * 2017-07-07 2019-01-10 Linde Aktiengesellschaft Cryogenic and lco2 flour chilling system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2648206A (en) * 1950-03-11 1953-08-11 J Sparks Van Method and apparatus for cooling aggregates
US2919862A (en) * 1953-08-31 1960-01-05 Knapsack Ag Process and apparatus for comminuting solid viscous substances, with a liquefied gas as a precooling agent
US3150496A (en) * 1958-06-24 1964-09-29 John R Hightower Cooling concrete ingredients
US3036440A (en) * 1960-02-03 1962-05-29 United States Steel Corp Method of cooling briquettes of iron particles
US3410065A (en) * 1966-04-12 1968-11-12 John L. Martin Harvester for alfalfa and other forage crops
US3583172A (en) * 1969-06-30 1971-06-08 Union Carbide Corp Cryogenic cooling of concrete
US3672182A (en) * 1970-06-25 1972-06-27 Air Prod & Chem Water cooling method and apparatus employing liquid nitrogen
DE2659546A1 (en) * 1976-12-30 1978-07-13 Boehringer Mannheim Gmbh METHOD FOR PRODUCING FROZEN GRANULES
US4348867A (en) * 1977-01-21 1982-09-14 General Kinematics Corporation Method for treating moist pulverulent material
US4222527A (en) * 1979-02-22 1980-09-16 Union Carbide Corporation Cryopulverizing packed bed control system
US4250714A (en) * 1979-05-04 1981-02-17 Covy Allan P Method for cooling metal turnings
FR2456556A1 (en) * 1979-05-18 1980-12-12 Air Liquide Cryogenic grinding plant - uses cryogenic fluid e.g. liq. nitrogen to embrittle prod. being ground, with countercurrent and co-current gas recirculation
US4245478A (en) * 1979-08-17 1981-01-20 Covy Allan P Method for cooling metal turnings and other metals
FR2532821B1 (en) * 1982-09-13 1987-08-14 Carboxyque Francaise METHOD AND INSTALLATION FOR COOLING MEAT IN A MACHINE MIXER BY CARBON SNOW INJECTION
US4479362A (en) * 1982-12-10 1984-10-30 Air Products And Chemicals, Inc. Cryogenic cooling of pneumatically transported solids

Also Published As

Publication number Publication date
JPS6117880A (en) 1986-01-25
ES554233A0 (en) 1987-04-01
EP0166655A1 (en) 1986-01-02
DE3562527D1 (en) 1988-06-09
ATE34040T1 (en) 1988-05-15
AU4392285A (en) 1986-01-02
AU573850B2 (en) 1988-06-23
ES536599A0 (en) 1986-04-01
FR2566515B1 (en) 1987-03-27
KR860000367A (en) 1986-01-28
BR8502986A (en) 1986-03-04
ES8606620A1 (en) 1986-04-01
FR2566515A1 (en) 1985-12-27
CA1272038A (en) 1990-07-31
US4619113A (en) 1986-10-28
ES8704617A1 (en) 1987-04-01
ZA854709B (en) 1986-02-26

Similar Documents

Publication Publication Date Title
EP0166655B1 (en) Process and apparatus for cooling a powder by means of a refrigerant fluid
EP0488909B1 (en) Method for controlling the condition of a gas and device therefor
FR2608461A1 (en) IMPROVED PLANT AND METHOD FOR EXTRACTING OIL, GAS AND BY-PRODUCTS FROM OILS SHELLS AND OTHER HYDROCARBON IMPREGNATED MATERIALS
FR2903178A1 (en) METHOD AND DEVICE FOR CLEANING SURFACES OF RUNNING WATER IN AN AIR / WATER THERMAL EXCHANGER
EP0255526B1 (en) Method for accumulating and restoring cold and device for implementing such method
EP0703832B1 (en) Feed method and device for a powdered product projection plant
EP1688071B1 (en) System for cooking and cooling down of food-products by immersion in a liquid heat transfer medium
EP0318352B1 (en) Carbon dioxide lance for metallurgy
EP0807232B1 (en) Method and device for producing and separating solid particles
FR3026043A1 (en) VULCANIZATION DEVICE FOR TIRES
EP1117300B1 (en) Kneading trough with cooled or heating vat
FR2616683A1 (en) AUTOCLAVE OF STERILIZATION
FR2848892A1 (en) Combustion activated sealing tool comprises combustion chamber, piston guided in cylinder and ignition device, combustion chamber wall cooled by cooling device through which liquid cooling agent flows
CH563792A5 (en) Extracting volatile substances esp. aromas from ground coffee and tea - by gravity feeding particulate material thro. rising gas current
EP3039338B1 (en) Incineration furnace for pasty products, in particular sludge from purifying stations
FR2495295A1 (en) FREEZING OR COOLING INSTALLATION
EP1152183A1 (en) System for treatment of items with a cryogenic liquid
EP0198146A1 (en) Device for injecting exhaust gases into a cooling tower
LU100329B1 (en) Galvanized wire cooling device
LU81496A1 (en) INSTALLATION FOR CONCENTRATION BY EVAPORATION AND HOT AIR DRYING OF A LIQUID PRODUCT
FR2702931A1 (en) Installation for drying fruits such as walnuts, almonds, chesnuts and the like
BE658261A (en)
FR2468070A1 (en) Waste oil and paint incinerator - has combustion chamber with air entering one end and extracted between double wall and bottom outlet
FR3107637A1 (en) Device for the methanization of organic matter
BE360297A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850624

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19860910

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 34040

Country of ref document: AT

Date of ref document: 19880515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3562527

Country of ref document: DE

Date of ref document: 19880609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT, WIESBADEN

Effective date: 19890203

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900510

Year of fee payment: 6

Ref country code: AT

Payment date: 19900510

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900515

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900516

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900518

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900522

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900523

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900530

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900630

Year of fee payment: 6

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19900902

NLR2 Nl: decision of opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910619

Ref country code: AT

Effective date: 19910619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910630

Ref country code: CH

Effective date: 19910630

Ref country code: BE

Effective date: 19910630

BERE Be: lapsed

Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION

Effective date: 19910630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85401219.2

Effective date: 19920109