EP0165304B1 - Systeme de codage analogique de phase avec compensation - Google Patents

Systeme de codage analogique de phase avec compensation Download PDF

Info

Publication number
EP0165304B1
EP0165304B1 EP19850900395 EP85900395A EP0165304B1 EP 0165304 B1 EP0165304 B1 EP 0165304B1 EP 19850900395 EP19850900395 EP 19850900395 EP 85900395 A EP85900395 A EP 85900395A EP 0165304 B1 EP0165304 B1 EP 0165304B1
Authority
EP
European Patent Office
Prior art keywords
resolver
phase shift
transducer
encoding
electrical phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850900395
Other languages
German (de)
English (en)
Other versions
EP0165304A4 (fr
EP0165304A1 (fr
Inventor
Paul F. Mcnally
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric USA Inc
Original Assignee
Modicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modicon Inc filed Critical Modicon Inc
Priority to AT85900395T priority Critical patent/ATE74458T1/de
Publication of EP0165304A1 publication Critical patent/EP0165304A1/fr
Publication of EP0165304A4 publication Critical patent/EP0165304A4/fr
Application granted granted Critical
Publication of EP0165304B1 publication Critical patent/EP0165304B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/38Electric signal transmission systems using dynamo-electric devices
    • G08C19/46Electric signal transmission systems using dynamo-electric devices of which both rotor and stator carry windings

Definitions

  • This invention relates to a phase analog encoding system with compensation, used in connection with a resolver position transducer and utilized in servo control or monitoring applications.
  • a resolver position transducer is a device which monitors the position of a rotatable shaft or a linearly displaceable member by measuring the angular displacement of the shaft or the linear displacement of the member with respect to a fixed reference point.
  • the resolver when excited with the proper electrical input will output an electrical signal whose phase is related to the position of the shaft or member.
  • the position of the shaft or member is encoded in an electrical signal in an analog manner.
  • the resolver position transducer is performing a servo-control function.
  • phase shift errors inherent in a resolver position transducer are of particular importance in applications where the resolver is part of a phase analog encoding system.
  • VR2 K1 COS ⁇ t (2)
  • VR1 is the voltage across the equivalent of a stator sine winding
  • VR2 is the voltage across the equivalent of a stator cosine winding
  • K1 is a constant. Feedback from the resolver is taken by measuring the voltage across the equivalent of a resolver rotor winding, VFB.
  • the typical phase analog encoder operates by measuring the relative phase difference (i.e. , phase shift) between one of the reference signals (1) or (2) and the feedback signal (3). This measured phase shift is equal to the sum of the mechanical displacement ⁇ and an offset value which is the electrical phase shift across the equivalent stator and rotor windings of the resolver ⁇ .
  • the above encoding technique for measuring the mechanical displacement ⁇ will be accurate as long as ⁇ remains constant. Usually does not vary by more than one or two degress. As a result, the overall phase analog encoding system utilizing this technique is low cost, easy to apply and very effective for applications where an accuracy of one or two degrees is acceptable.
  • One form involves mounting a temperature sensor in a network to compensate for the inherent electrical phase shift.
  • the second form involves the use of an additional winding in the resolver position transducer and a separate encoding circuit which is used to monitor the electrical phase shift across the additional winding so that a compensating signal can be generated which is then used to correct the primary encoding circuitry of the resolver position tranducer.
  • the object of the present invention is to provide an improved resolver based phase analog encoding system.
  • a resolver based phase analog encoding system is characterised in that: the resolver encoding means is electrically connected to said resolver transducer and said resolver reference means for measuring an inherent electrical phase shift a across said resolver transducer independent of the mechanical displacement ⁇ ; in that said reference switch is adapted and arranged for applying the correct reference signal in the correct orientation to the resolver transducer; and in that the calculating means, when the system is to measure the inherent electrical phase shift a , is adapted to send a feedback signal to the resolver reference means to activate the reference switch in the resolver reference means thereby applying a one of the correct reference signals in the correct orientation to the resolver transducer to compensate for the current value of the mechanical displacement ⁇ , thereby ensuring that the measurement of the inherent electrical phase shift a will be valid independent of the mechanical displacement ⁇ of the resolver.
  • the present invention overcomes disadvantages and objections associated with the prior art compensation for the electrical phase shift across the windings of a resolver position transducer.
  • the disclosed invention is for an encoding technique wherein the inherent electrical phase shift across the windings of a resolver position transducer (windings which are also part of the primary encoding circuit for determining the mechanical displacement of the position transducer) is measured in a time multiplexed fashion to correct for deviations due to all sources, including variations in temperature. It is to be understood that this invention can be applied to any sinusoidal position transducer. Where the term resolver transducer is used, it is intended to include: synchro, induction potentiometer resolver transmitter, control transfer transformer, differential control transformer and any other sinusoidal position transducer.
  • this invention can be used in connection with a rotary resolver position transducer or a linear resolver position transducer.
  • the mechanical displacement is an angular displacement and is equal to the rotor angle.
  • the mechanical displacement is linear.
  • a linear resolver has at least two windings which are the electrical equivalents of the stator windings, and at least one winding which is the electrical equivalent of the rotor winding.
  • the invention utilizes a resolver position transducer in a phase analog encoding system wherein the total phase shift of the resolver transducer is determined by measuring the time interval between the zero crossing of the resolver sine reference and the zero crossing of the resolver feedback taken from the equivalent of a rotor winding of the resolver position transducer.
  • the two stator windings of the resolver transducer are driven by highly accurate sinusoidal signals displaced in time by 90 electrical degrees. If the stator windings are excited by the above signals, the resolver rotor winding provides a phase analog feedback signal of the form indicated in equation (3).
  • the time interval between the zero crossings of two waveforms which have the same form as equations (1) and (3) is proportional to ( ⁇ + ⁇ ). This time interval can be used by a calculating means such as a computer or a microprocessor to determine ( ⁇ + ⁇ ), ⁇ , and many other useful variables by executing predetermined numerical manipulations.
  • the resolver transducer Periodically, at times selected by a calculating means and implemented by a reference switch in the resolver transducer encoding system, the resolver transducer is operated in a compensation mode.
  • the resolver reference voltages (the voltages applied to the stator windings) are electronically switched and applied to the appropriate resolver stator windings.
  • the appropriate windings are determined by the resolver encoding electronics to insure a large signal on the rotor windings.
  • either a resolver reference signal of K1SIN ⁇ t or - K1SIN ⁇ t is applied to one or the other of the resolver stator windings.
  • the resolver transducer behaves electrically like a transformer with the excited stator winding acting like a primary winding and the rotor winding acting like a secondary winding. As such, the voltage on the secondary winding will only differ in phase from the voltage on the primary winding by an amount equal to the inherent electrical phase shift across the resolver windings.
  • the resolver encoder measures the time interval between the zero crossing of the resolver sine reference and the zero crossing of the resolver feedback signal
  • the encoded value of ⁇ is then utilized by the calculating means to correct for any changes in the inherent electrical phase shift with respect to previous measurements. Once a proper value for the inherent electrical phase shift across the resolver windings ⁇ is determined, the calculating means can determine the exact mechanical displacement ⁇ by subtracting the value of ⁇ from the measured quantity obtained during the normal measurement cycle, ( ⁇ + ⁇ ).
  • the duty cycle between the normal measurement cycle (measurement of ⁇ + ⁇ ) and the compensation cycle (measurement of ⁇ only) is determined by the calculating means and can be either a strict function of time and/or a function of other variables as deemed appropriate to the application of the resolver encoding system.
  • the phase analog encoding system with compensation for the phase shift error inherent in a resolver position transducer described by this invention has the additional feature of being self-calibrating.
  • the calculating means uses the measured value of the inherent phase shift error in the encoding circuitry ⁇ to compensate for the presence of this error during the normal measurement mode of operation and the compensation mode of operation.
  • the phase analog encoding system described by this invention can be operated in a normal measurement mode, a compensation mode or a calibration mode of operation.
  • the compensation mode of operation the inherent electrical phase shift of the resolver transducer is measured. This value is used during the normal measurement mode of operation to compensate the measurement of the mechanical displacement ⁇ .
  • the calibration mode of operation the inherent phase shift error in the circuitry of the encoding means ⁇ is measured. This measured phase shift error is used to compensate the measurements made during the compensation mode and the normal measurement mode of operation so that they are independent of any phase shift error inherent in the encoding circuitry.
  • the inherent phase shift error in the circuitry of the encoding means ⁇ is measured in a time multiplexed fashion with the inherent electrical phase shift across the windings of the position transducer and the sum ( ⁇ + ⁇ ) of the mechanical displacement of the position transducer ⁇ and the inherent, electrical phase shift across the windings of the position transducer ⁇ .
  • the circuitry of the encoding means Periodically, at times selected by a calculating means and implemented by control electronics, the circuitry of the encoding means is operated in a calibration mode. During the calibration mode, the signal K1SIN ⁇ t is fed to the encoding circuitry instead of the feedback signal from the resolver transducer. This signal, K1SIN ⁇ t is the same as the reference signal that is being fed to the encoding circuitry.
  • the time period representing the phase shift between an input signal of K1SIN ⁇ t and a reference signal of K1SIN ⁇ t should be Zero.
  • this phase shift may not be zero because of an inherent error within the encoding circuitry due to such things as the electronic drift of component values over time and changes in temperature. If a value for the inherent phase shift error in the encoding circuitry ⁇ other than zero is measured, this value can be utilized by the calculating means to compensate the measurements made during the calibration and normal measurement modes of operation.
  • the duty cycle between the normal measurement cycle (measurement of ⁇ + ⁇ ), the compensation cycle (measurement of ⁇ only) and the calibration cycle (measurement of ⁇ only) is determined by the calculating means and can be either a strict function of time and/or a function of other variables deemed to be appropriate to the application of the resolver encoding system.
  • the general theory for the measurement of the inherent phase shift error in the encoding circuitry ⁇ is the same as for the measurement of the inherent phase shift error across the resolver windings ⁇ except that only K1SIN ⁇ t is needed as a reference signal and can be used by the encoding means whereas in the meansurement of ⁇ , K1SIN ⁇ t or - K1SIN ⁇ t is applied to either the stator sine winding or the stator cosine winding and the rotor feedback signal is used by the encoding means.
  • the invention is used in connection with a rotary resolver position transducer.
  • the mechanical displacement ⁇ in a rotary resolver position transducer is the mechanical rotor angle representing the angular displacement of the rotor with respect to the stator windings.
  • a rotary resolver transducer 2 is basically an angle transducer and is well known in the art.
  • a rotary resolver transducer includes a rotor 5 having one or more sets of spaced apart windings and a stator 6 having two or more sets of spaced apart windings. These windings are called a rotor winding 10, and stator windings 20, respectively.
  • the resolver stator sine winding 21 is excited by a reference signal 25 of the form K1SIN ⁇ t and the resolver stator cosine winding 22 is excited by a reference signal 26 of the form K1COS ⁇ t.
  • the signal 27 on the feedback rotor winding 10 takes the form K2SIN ( ⁇ t + ⁇ + ⁇ ) where the mechanical displacement ⁇ is the mechanical rotor angle measuring the position of the rotor 5 with respect to the stator windings 20 and ⁇ is the inherent electrical phase shift across the resolver transducer 2.
  • FIGURE 2 shows a typical phase analog encoding system consisting of a resolver transducer 2, as shown in FIGURE 1, a resolver encoding means and a resolver reference means, described hereinafter.
  • a typical resolver encoding means consists of two zero crossing detectors 41 and 42 and a digital counter 43.
  • the input to the first zero crossing detector 41 is from the sine reference signal 25, and the output is connected to the start switch of the digital counter 43.
  • the input to the second zero crossing detector 42 is from the feedback rotor winding 10 and the output is connected to the stop switch of the digital counter 43.
  • the encoding system operates by starting the digital counter 43 when the first zero crossing detector 41 determines that the sine reference signal 25 crosses zero voltage.
  • the digital counter 43 then counts the reference frequency 44 until a zero voltage crossing on the feedback rotor winding 10 is detected by the second zero crossing detector 42.
  • the digital counter 43 is then stopped.
  • the accumulated value 28 in the digital counter 43 is equal to the sum of the mechanical rotor angle and the inherent electrical phase shift of the resolver transducer ( ⁇ + ⁇ ).
  • the resolution of the encoding system is determined by the reference frequency 44 which the digital counter 43 counts.
  • the reference frequency 44 is generated by the resolver reference means which also generates the reference signals 25 and 26 which are applied to the resolver stator windings 20.
  • a typical resolver reference means as shown in FIGURE 2, consists of a reference signal generator 51 and two amplifiers 47 and 48 which are used to increase the strength of the reference signals 25 and 26 before they are applied to the resolver stator windings 20.
  • the reference signal generator 51 as shown in FIGURE 3, consists of an oscillator 52, a divider 53 and a 900 phase shifter 54.
  • the oscillator 52 generates the reference frequency 44 that is counted by the digital counter 43.
  • the output of the oscillator 52 is divided by a value N in a divider 53.
  • the value of N can be pre-set or can be varied by the calculating means.
  • the reference frequency 44 is equal to N times the frequency of the reference signals 25 or 26 applied to the stator windings 20. The larger the value of N, the greater the resolution of the encoding system.
  • the output of divider 53 is fed through amplifier 48 before being applied to the stator sine winding 21.
  • the output of divider 52 must be fed through a 900 phase shifter 54. This phase shifted reference signal is then amplified by amplifier 47 before being applied to the stator cosine winding 22.
  • FIGURE 4 The timing diagram for the phase analog encoding system of FIGURE 2 is shown in FIGURE 4.
  • the reference signal 25 to the stator sine winding 21 is depicted by waveform 71.
  • the voltage on the feedback rotor winding 10 is depicted by waveform 74.
  • Waveforms 72 and 75 show the output of the first zero crossing detector 41 and the second zero crossing detector 42, respectively.
  • Waveform 73 is the output 28 of the digital counter 43.
  • the first zero crossing detector 41 When the stator sine reference waveform 71 crosses zero, the first zero crossing detector 41 is activated as indicated by waveform 72 and this starts the digital counter 43 counting. The digital counter 43 continues to count the reference frequency 44 until it receives a signal to stop. When the feedback rotor winding waveform 74 crosses zero, the second zero crossing detector 42 is activated, as indicated by waveform 75 and this sends a stop counting signal to the digital counter 43.
  • the time interval that the digital counter 43 has counted is equal to the sum of the mechanical rotor angle and the inherent electrical phase shift of the resolver transducer ( ⁇ + ⁇ ). Typically the digital counter 43 is reset after the phase angle number is read in preparation for the next start/stop sequence.
  • the present invention discloses a novel and unique system for compensating for the inherent electrical phase shift error of a resolver position transducer in a time multiplexed fashion. Additionally, the invention has a self-calibrating feature.
  • FIGURE 5 shows the overall phase analog encoding system with compensation as described by the invention.
  • the resolver reference means 50 generates reference signals 25 and 26 which are fed to the resolver transducer 2 and reference signal 44 which is used by the digital counter 43 in the resolver encoding means 40.
  • the rotor feedback signal 27 from the resolver transducer 2 is used by the resolver encoding means 40 along with the stator sine reference signal 25 and the reference signal 44 to measure the sum of the mechanical displacement ⁇ and the inherent electrical phase shift across the resolver ⁇ .
  • the calculating means 80 uses the output 28 from the encoding means 40 along with any input control signals 84 to generate the reset signal 81 for the digital counter 43 and the system output signals 83 such as mechanical displacement, mechanical velocity, etc.
  • the calculating means 80 also determines through control signal 82 which reference signals 25 and 26 of the resolver reference means 50 are applied to the resolver transducer 2.
  • Control signal 82 determines whether the entire encoding system is measuring the sum ( ⁇ + ⁇ ) of the mechanical displacement ⁇ and the electrical phase shift of the resolver ⁇ or just the electrical phase shift of the resolver ⁇ . If control signal 82 has the encoding system in the normal measurement mode of operation the output 28 of the resolver encoding means 40 is the sum ( ⁇ + ⁇ ) of the mechanical displacement ⁇ and the inherent electrical phase shift of the resolver ⁇ . If the control signal 82 has the encoding system in the compensation mode of operation the output 28 of the resolver encoding means 40 is the inherent electrical phase shift of the resolver, ⁇ .
  • This measured value of ⁇ is then compared with an old value of ⁇ by the calculating means 80 and a new value of ⁇ is calculated.
  • the new value of ⁇ is then used by the calculating means 80 along with the output 28 of the resolver encoding means 40 under the normal measurement mode of operation to obtain a value for the mechanical displacement ⁇ , which is independent of the inherent electrical phase shift of the resolver ⁇ .
  • the calculating means 80 through control signal 119, also determines whether the entire encoding system is operating in the calibration mode or in the other modes of operation, i.e. , the normal meansurement mode or the compensation mode. As will be described in detail infra , control signal 119 takes priority over control signal 82.
  • FIGURE 6 shows the invention depicted by the block diagram in FIGURE 5 as applied to a rotary resolver position transducer.
  • the calculating means 80 in the preferred embodiment is a microprocessor unit. However, it does not have to be so limited. It can be any type of computer, arithimetic logic unit, or appropriate control circuitry and software which is capable of: processing the output 28 of the resolver encoding means 40; generating a control signal 82 for the resolver reference means which determines whether the encoding system is in the normal measurement mode of operation or in the compensation mode of operation; and generating a control signal 119 for the resolver encoding means which determines whether the encoding system is in the calibration mode of operation or in the other modes of operation, i.e. , the normal measurement mode or the compensation mode.
  • the encoding system cannot be in all three modes of operation at once. It can only be in one mode of operation at a time. That is one of the advantages of this invention. It utilizes the same physical measuring circuit in a time sharing fashion to calculate the mechanical displacement ⁇ , the inherent electrical phase shift of the resolver transducer ⁇ , and the inherent phase shift across the circuitry of the encoding means ⁇ .
  • the duty cycle between the measurement cycle (measurement of ⁇ + ⁇ ) and the compensation cycle (measurement of ⁇ only) is determined by the software of the microprocessor unit and can be either a strict function of time and/or a function of other variables deemed to be appropriate, depending on the specific use of the encoding system. If the duty cycle is a strict function of time, the measurement cycle occurs on the order of 1000 times a second and the compenstaion cycle occurs on the order of once every second.
  • the duty cycle between the combination of the normal measurement cycle (measurement of ⁇ + ⁇ ), the compensation cycle (measurement of ⁇ only), and the calibration cycle (measurement of ⁇ only) is determined by the microprocessor and the control circuitry.
  • Reference switch 87 which implements control signal 82, is shown in FIGURE 7. In the normal measurement mode of operation, switch 95 is closed connecting the sine reference signal 25 to the stator sine winding 21 and switch 96 is closed connecting the cosine reference signal 26 to the stator cosine winding 22.
  • the reference signal K1SIN ⁇ t or -K1SIN ⁇ t is applied to either the stator sine winding 21 or the stator cosine winding 22 depending upon the position of the resolver rotor 5 (i.e. , the mechanical rotor angle of the resolver ⁇ ).
  • the reference signal 25, K1SIN ⁇ t is put through a signal inverter 88.
  • the reason for applying the different reference signal (either K1SIN ⁇ t or -K1SIN ⁇ t) to either the stator sine winding 21 or the stator cosine winding 22 is to ensure that there is a large signal output on the resolver rotor winding 10 and that the measurement of ⁇ will be valid independent of the rotor position ⁇ .
  • the microprocessor unit determines what the value of ⁇ is at any given point in time during the normal measurement cycle. This value of ⁇ is then encoded into a binary number which determines which switch is closed and correspondingly which configuration of reference voltages is applied to the resolver stator windings.
  • the table in FIGURE 7 shows which binary number corresponds to which range of values of ⁇ and what the reference switch position will be for that binary number.
  • FIGURE 8 shows an example of the control electronics 120 necessary to implement control signal 119.
  • the control electronics 120 is composed of an electronic switch 121.
  • Control electronics 120 can be more elaborate, although it does not have to be. It can be as simple as a relay that moves electronic switch 121 from pole 125 to 126 when a control signal 119 is received.
  • electronic switch 121 In the normal, measurement mode of operation, or in the compensation mode of operation, electronic switch 121 is connected to pole 125 such that the feedback signal 27 is inputted into the second zero crossing detector 42 of the resolver encoding means 40. In the calibration mode of operation, the electronic switch 121 is connected to pole 126 such that the sine reference signal 25 is inputted into the second zero crossing detector 42 of the resolver encoding means 40.
  • the resolver encoding means measures the electrical phase shift between the signal at pole 126, K1SIN ⁇ t, and the reference signal, K1SIN ⁇ t, inputted into the first zero crossing detector 41. If the resolver encoding means is working perfectly, the output 28 of the resolver encoding means 40 will be zero since there is no phase shift between two signals of the form K1SIN ⁇ t. If, however, the output 28 of the resolver encoding means 40 is a value other than zero, this value can be utliized by the calculating means 80 to compensate for this measured phase shift error when the encoding system is operating in the normal, measurement mode of operation or the compensation mode of operation.
  • Calculating means 80 sends a control signal 119 to the control electronics 120 to determine whether the entire encoding system is operating in the calibration mode or in the other modes of operation, i.e. , the normal measurement mode or the compensation mode.
  • Control signal 119 takes priority over control signal 82 since electronic switch 121 must be connected to pole 125 before control signal 82 can have an effect on the resolver encoding means 40.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Système de codage analogique de phase avec compensation de l'erreur de déphasage inhérent dans un transducteur de position de résolveur (2). L'erreur de déphasage inhérent dans un transducteur de position de résolveur est compensée d'une manière multiplexée dans le temps en appliquant périodiquement un signal de référence connu (50) au résolveur et en mesurant le déphasage électrique à travers le résolveur uniquement. La valeur nouvellement mesurée du déphasage électrique inhérent est comparée avec la dernière valeur mesurée du déphasage électrique inhérent, en calculant tout écart. Cet écart est utilisé pour déterminer la valeur appropriée de compensation pour le déphasage électrique inhérent. La valeur de compensation est soustraite du déphasage du résolveur pendant le fonctionnement normal, produisant ainsi un signal de sortie qui est indépendant de l'erreur de déphasage électrique inhérent dans le transducteur de position du résolveur.

Claims (8)

  1. Un système de codage analogique de phase à résolveur pour indiquer la position comportant une compensation du déphasage électrique propre aux bornes dudit résolveur comportant :
    a) un transducteur à résolveur (2) ;
    b) un moyen de référence de résolveur (50) électriquement relié par l'intermédiaire d'un commutateur de référence (87) audit transducteur à résolveur (2) pour former et appliquer plusieurs signaux de référence (25, 26) audit transducteur à résolveur (2) ;
    c) un moyen de codage de résolveur (40) électriquement relié audit transducteur à résolveur (2) et audit moyen de référence de résolveur (50) pour mesurer une somme (φ + a) d'un déplacement mécanique φ et d'un déphasage électrique propre a aux bornes dudit transducteur à résolveur ou un déphase électrique propre a aux bornes dudit transducteur à résolveur, ou un déphasage électrique propre y dû audit moyen de codage ; et
    d) un moyen de calcul (80) électriquement connecté audit moyen de codage de résolveur (40) et audit moyen de référence de résolveur (50) pour compenser ladite somme mesurée (φ + a) au moyen dudit déphasage électrique propre mesuré a afin d'obtenir une valeur dudit déplacement mécanique φ, ledit moyen de calcul (80) compensant aussi le déphasage électrique propre y dû audit moyen de codage, ledit moyen de calcul étant adapté pour commander ledit moyen de référence de résolveur (50) et ledit moyen de codage de résolveur (40) de telle sorte que ladite somme (φ + a), ledit déphasage électrique propre a aux bornes dudit transducteur à résolveur, et ledit déphasage électrique propre y créé par ledit moyen de codage soient mesurés en multiplex dans le temps,
    caractérisé en ce que :

    le moyen de codage de résolveur (40) est électriquement connecté audit transducteur à résolveur (2) et audit moyen de référence de résolveur (50) pour mesurer un déphasage électrique propre a aux bornes dudit transducteur à résolveur (2) indépendamment du déplacement mécanique φ; en ce que

    ledit commutateur de référence (87) est adapté et agencé pour appliquer le signal de référence correct (25, 26) avec l'orientation correcte au transducteur à résolveur (2) ; et en ce que

    le moyen de calcul (80), lorsque le système doit mesurer le déphasage électrique propre a, est adapté à transmettre un signal de contre-réaction (82) audit moyen de référence de résolveur (50) pour actionner le commutateur de référence (87) monté dans le moyen de référence de résolveur (50) de façon à appliquer l'un des signaux de référence (25, 26) corrects avec l'orientation correcte au transducteur à résolveur (2) pour compenser la valeur actuelle du déplacement mécanique φ, en garantissant ainsi que la mesure du déphasage électrique propre a sera valable indépendamment du déplacement mécanique φ du résolveur (2).
  2. Un système de codage analogique à résolveur comme revendiqué dans la revendication 1, caractérisé en ce que ledit transducteur à résolveur (2) comporte :
    a) un enroulement sinusoïdal de stator (21) placé sur un stator (6) ;
    b) un enroulement co-sinusoïdal de stator (22) placé sur ledit stator (6) ; et
    c) un enroulement de rotor (10) placé sur un rotor (5) ; ledit rotor (5) étant situé à l'intérieur dudit stator (6).
  3. Un système de codage analogique à résolveur comme revendiqué dans la revendication 1 ou la revendication 2, caractérisé en ce que ledit moyen de référence de résolveur (50) comprend en outre :
    a) un générateur (51) de signaux de référence pour créer ledit ensemble de signaux de référence (25, 26) ; et
    b) un moyen amplificateur (47, 48) électriquement situé entre ledit générateur de signaux de référence (51) et ledit transducteur à résolveur (2) pour augmenter l'amplitude desdits signaux de référence (25, 26) avant de les appliquer audit transducteur à résolveur (2).
  4. Un système de codage analogique à résolveur comme revendiqué dans la revendication 3 lorsqu'elle dépend de la revendication 2, caractérisé en ce que ledit commutateur de signaux de référence (87) est adapté à connecter la sortie dudit générateur de signaux de référence (51) auxdits enroulements sinusoïdal et co-sinusoïdal (21, 22) de telle façon que la position dudit commutateur de référence (87) aide à déterminer si ledit moyen de codage de résolveur (40) mesure (φ + a), a ou y.
  5. Un système de codage analogique à résolveur comme revendiqué dans une revendication précédente quelconque, caractérisé en ce que ledit moyen de codage de résolveur (40) comprend :
    a) un moyen de comptage numérique (43), la sortie dudit moyen de comptage (43) étant proportionnelle à (φ + a), a ou y ;
    b) un détecteur de passage par zéro (41) électriquement relié audit moyen de comptage numérique (43) pour démarrer ledit moyen de comptage numérique, ledit détecteur de passage par zéro (41) mesurant à quel moment un (25) des signaux de référence est zéro ;
    c) un second détecteur de passage par zéro (42) électriquement relié audit moyen de comptage numérique (43) pour arrêter ledit moyen de comptage numérique (43), ledit second détecteur de passage par zéro (42) mesurant à quel moment l'un ou l'autre parmi la sortie dudit transducteur à résolveur (2) ou le premier signal de référence (25) est zéro ; et
    d) une électronique de commande (120) pour connecter électriquement soit la sortie (27) dudit transducteur à résolveur (2), soit le premier signal de référence (25) audit second détecteur de passage par zéro (42).
  6. Un système de codage analogique à résolveur comme revendiqué dans une revendication précédente quelconque, caractérisé en ce que ledit moyen de calcul (80) est un ordinateur.
  7. Un système de codage analogique à résolveur comme revendiqué dans une revendication précédente quelconque, caractérisé en ce que ledit moyen de calcul (80) est un microprocesseur.
  8. Un système de codage analogique à résolveur comme revendiqué dans une revendication précédente quelconque, caractérisé en ce que ledit moyen de calcul est adapté pour commander ledit moyen de référence de résolveur (50) et ledit moyen de codage de résolveur (40) afin de faire fonctionner ledit système de codage (40) soit en mode de mesure normale, soit en mode de compensation, soit en mode d'étalonnage avec la valeur mesurée de a en mode de compensation, employé pour compenser ladite somme φ + a) mesurée pendant ledit mode de mesure normale et avec la valeur de y mesurée pendant ledit mode d'étalonnage employée pour compenser à la fois ladite somme (φ + a) et a.
EP19850900395 1983-12-12 1984-12-10 Systeme de codage analogique de phase avec compensation Expired EP0165304B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85900395T ATE74458T1 (de) 1983-12-12 1984-12-10 Phasenanalogisches kodierungssystem mit ausgleich.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56065883A 1983-12-12 1983-12-12
US560658 1990-07-31

Publications (3)

Publication Number Publication Date
EP0165304A1 EP0165304A1 (fr) 1985-12-27
EP0165304A4 EP0165304A4 (fr) 1988-04-27
EP0165304B1 true EP0165304B1 (fr) 1992-04-01

Family

ID=24238760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850900395 Expired EP0165304B1 (fr) 1983-12-12 1984-12-10 Systeme de codage analogique de phase avec compensation

Country Status (4)

Country Link
EP (1) EP0165304B1 (fr)
CA (1) CA1217866A (fr)
DE (1) DE3485632D1 (fr)
WO (1) WO1985002702A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3537099A (en) * 1966-03-08 1970-10-27 Int Standard Electric Corp Phase shift compensating arrangement
GB1298669A (en) * 1969-04-16 1972-12-06 British Aircraft Corp Ltd Improvements in apparatus for signalling angular displacement
GB1318697A (en) * 1969-11-05 1973-05-31 British Aircraft Corp Ltd Apparatus for signalling an angular displacement of a body about an axis
US3803567A (en) * 1973-02-23 1974-04-09 Chandler Evans Inc Resolver to pulse width converter
DE2847779C3 (de) * 1978-11-03 1982-01-14 Siemens AG, 1000 Berlin und 8000 München Einrichtung zur Positionserfassung bei numerisch gesteuerten Werkzeugmaschinen
US4486845A (en) * 1982-07-23 1984-12-04 The Singer Company Resolver to incremental shaft encoder converter
US4472669A (en) * 1982-12-23 1984-09-18 General Electric Company Compensated resolver feedback

Also Published As

Publication number Publication date
WO1985002702A1 (fr) 1985-06-20
EP0165304A4 (fr) 1988-04-27
DE3485632D1 (de) 1992-05-07
EP0165304A1 (fr) 1985-12-27
CA1217866A (fr) 1987-02-10

Similar Documents

Publication Publication Date Title
US4712106A (en) Phase analog encoding system with compensation
US4318617A (en) DC Shift error correction for electro-optical measuring system
US4134065A (en) Transducer for directly converting mechanical displacement to phase information
US4358723A (en) Method and apparatus for measuring the rotation of a work table
CA1286385C (fr) Transmetteur de position a reluctance variable
US4779075A (en) Device for absolute displacement determination
US4618940A (en) Error correction system for digital length or angle measuring instrument
JPS62249008A (ja) 軸の角度位置を求めるとともに整流信号を供給するための方法および装置
EP1331470B1 (fr) Système et procédé de traitement d'un signal
GB2141235A (en) Position measurement
US4268786A (en) Position pickup for numerically controlled machine tools
US5014058A (en) Method and arrangement for evaluating a measurable analog electrical quantity
US3984831A (en) Tracking digital angle encoder
JPS614919A (ja) 位置エンコーダ補償装置
EP0165304B1 (fr) Systeme de codage analogique de phase avec compensation
US6571194B2 (en) Position detection data generating method and apparatus based on phase shift principle
US4594579A (en) Apparatus for digitally subdividing analog periodic signals
US3626247A (en) Angular velocity measurement apparatus
US3139572A (en) Means for increasing the accuracy of synchros or the like
US4988936A (en) Correlated coarse position error processor
US5136226A (en) Correlated coarse position error processor
JPS60239618A (ja) 回転体の回転量をアブソリユ−ト値で検知する方法およびその装置
Sente et al. From smart sensors to smart actuators: application of digital encoders for position and speed measurements in numerical control systems
EP4215878A1 (fr) Système de capteur de position et procédé de détection d'une erreur d'un système de capteur de position
Tian et al. Design and implementation of ISA card for rotary inductosyn signal processing based on AD2S1210 and CPLD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850805

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19880427

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MODICON, INC.

17Q First examination report despatched

Effective date: 19900418

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI LU NL SE

REF Corresponds to:

Ref document number: 74458

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3485632

Country of ref document: DE

Date of ref document: 19920507

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921210

Ref country code: AT

Effective date: 19921210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921231

Ref country code: LI

Effective date: 19921231

Ref country code: CH

Effective date: 19921231

Ref country code: BE

Effective date: 19921231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: MODICON INC.

Effective date: 19921231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921210

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85900395.6

Effective date: 19930709