EP0163004B1 - Electrical-resistance composition and method of making electrical-resistance elements - Google Patents

Electrical-resistance composition and method of making electrical-resistance elements Download PDF

Info

Publication number
EP0163004B1
EP0163004B1 EP85101524A EP85101524A EP0163004B1 EP 0163004 B1 EP0163004 B1 EP 0163004B1 EP 85101524 A EP85101524 A EP 85101524A EP 85101524 A EP85101524 A EP 85101524A EP 0163004 B1 EP0163004 B1 EP 0163004B1
Authority
EP
European Patent Office
Prior art keywords
weight
elements
paste
srru
binder component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85101524A
Other languages
German (de)
French (fr)
Other versions
EP0163004A1 (en
Inventor
Dana L. Dr. Hankey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of EP0163004A1 publication Critical patent/EP0163004A1/en
Application granted granted Critical
Publication of EP0163004B1 publication Critical patent/EP0163004B1/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06573Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
    • H01C17/0658Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • H01C17/0654Oxides of the platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base

Definitions

  • the present invention relates to compositions for producing electrical resistance elements and methods for producing the resistance elements.
  • Electrical resistance elements made from certain compositions are particularly useful for creating micro-miniature circuits for the electronics industry, where the electronic elements (or pastes) are screen printed onto substrates.
  • US Pat. No. 3,304,199 describes an electrical resistance element which is composed of a mixture of Ru0 2 or 1r0 2 and lead borosilicate glass.
  • the mixture is combined with a carrier, for example an organic screen printing agent, such as ethyl cellulose dissolved in acetone-toluene.
  • a carrier for example an organic screen printing agent, such as ethyl cellulose dissolved in acetone-toluene.
  • the resulting mixture which contains the carrier, is applied to an electrically non-conductive substrate and then baked in air.
  • US Pat. No. 3,324,049 describes a cermet resistance material which contains 40 to 99% by weight of a lead borosilicate glass, 0.5 to 20% by weight of a noble metal such as Ag, Au, Pd, Pt, Rh, Ir, Os or Ru and 0.5 to 40 wt .-% Mn0 2 or Cu0 contains. The resulting resistance material is then burned in air.
  • U.S. Patent 3,655,440 relates to a resistance composition containing Ru0 2 , lr0 2 or PdO, a glassy lead borosilicate binder and an electrically non-conductive crystal growth control agent, such as A10 3 , which contains submicron small inert particles.
  • a resistance composition containing Ru0 2 , lr0 2 or PdO, a glassy lead borosilicate binder and an electrically non-conductive crystal growth control agent, such as A10 3 , which contains submicron small inert particles.
  • Such a resistance composition is baked in air at 975 to 1025 ° C for 45 minutes to 1 hour.
  • the US Patent 3,682,840 relates to electrical resistance compositions containing lead ruthenate and mixtures thereof with Ru0 2 in conjunction with lead borosilicate binder.
  • U.S. Patent 4,065,743 relates to a glassy enamel resistor containing a glass frit and electrically conductive particles.
  • Such electrically conductive particles contain tin oxide and tantalum oxide.
  • U.S. Patent 4,101,708 is directed to a printable composition of finely divided powder in an inert liquid vehicle for making film resistors that adhere to a dielectric substrate; such compositions contain Ru0 2 , a glass containing Pb0, Nb 2 0 5 , CaF 2 and an inert carrier.
  • German patent 2115814 relates to a resistance paste for baking on ceramics in air.
  • This resistance paste contains BaRu0 3 , SrRu0 3 and CaRu0 3 in a lead borosilicate glass.
  • Resistance compositions were also made using Ag-Pd and / or PdO, Ru0 2 , 1r0 2 and the so-called "du Pont" pyrochlore compounds.
  • the pyrochlore structures are complex oxides of the general formula A 2 B 2 0 6 - 7 , the large cation A being in eightfold coordination and the small cation B being in octahedral coordination. Their success is mainly due to their stability in changeable atmospheres (reducing) and their ability to change their electrical properties through multiple substitution of elements.
  • Examples of pyrochlore compounds specifically used in these compositions and discussed in U.S. Patents 3,553,109, 3,560,410 and 3,583,931 (all of which patents include lead borosilicate binders) contain B! 2 R U2 0 7 and Pb 2 Ru 2 O 7-x, where 0 ⁇ x ⁇ 1.
  • the perovskite crystal structure was described by UM Goldsmith, Skrifter Norske Videnskaps - Akad., Oslo., I: Mat. Naturv. Cl. 2: 8 (1926).
  • the A cation is in twelve-fold coordination with oxygen and the smaller B-cation is in octahedral coordination.
  • the perovskite structure has high lattice energy and is generally a very stable structure.
  • Resistance compositions were applied using the screen printing process, which require baking in an oxidizing atmosphere (air), which necessitates the use of expensive precious metals such as Au, Ag, Pt and Pd.
  • the less expensive copper could not be used because copper oxidizes easily. Accordingly, there is a need for a stable copper compatible resistor composition that could be baked in a non-oxidizing atmosphere such as nitrogen.
  • Typical resistance compositions used previously use lead borosilicate glass binders. After burning in air, decomposes in the resistance compositions, e.g. Strontium ruthenate contained in a lead borosilicate binder, the strontium ruthenate to strontium oxide, which dissolves in the binder, and ruthenium oxide.
  • strontium ruthenate is stoved in a strontium borosilicate binder under nitrogen, there is no decomposition of the electrically conductive component, i.e. the strontium ruthenate remains unchanged.
  • Another object of the present invention is to provide a thick film resistor system which has property reproducibility and reduced processing sensitivity.
  • the present invention relates to a composition for producing an electrical resistance element, which is composed of an electrically conductive component and a binder.
  • the present invention also relates to a method for producing an electrical resistance element by producing the above-described composition, pasting this composition with an organic carrier, applying the paste to a substrate by screen printing and baking.
  • the binder component can also contain 0.1 to 2.5% by weight of Al 2 O 3 .
  • the binder component can also still contain 0.1 to 1.5% by weight of TiO 2 or NaF. If appropriate, the binder component can also contain 5 to 15% by weight of CaO.
  • composition for manufacturing electrical resistance elements contains an electrically conductive metal oxide perovskite component and a glass binder component.
  • B ' 1-y B " y include Ruo, sTio, z and Ru 0.9 Ti 0.1 .
  • Preferred electrically conductive components include SrRu o , 8 , Ti 0.2 O 3, SrRu0 3 and SrRu 0.9 Ti 0.1 O 3 . Combinations of these components can also be used, such as SrRu0 3 + SrRu o , s / Tio, z0 3 or SrRu0 3 + SrRu 0.9 Ti 0.1 O 3 .
  • the conductive components include SrRu 0.95 Cd 0.05 O 3, Sr 0.90 Na 0.10 RuO 3, Sr 0.90 Y 0.10 RuO 3, Sr 0.80 Na 0 , 10 / La 0.10 RuO 3 and SrRu o , 8 Ti o , 2 0 3 SrRu0 3 , SrRuo, s / Zro, 2 0 3 , SrRu 0.9 Zr 0.1 O 3, SrRu 0.75 V 0 , 25 O 3 and SrRu 0.8 CO 0.2 O 3 .
  • substitutions based on ionic radii and valency of A and B are as follows:
  • the main components of the binder component of the present invention are C ', ie Sr0 or Ba0 or Sr0 + BaO, and B 2 0 3 , Si0 2 and Zn0 in the following amounts:
  • binder component can also comprise one or more of the following constituents:
  • Nonlimiting examples of preferred compositions of the binder component include the following:
  • compositions of the binder component include the following:
  • the weight% ratio of binder component / electrically conductive component can vary from 25 to 75% by weight of binder component / 75 to 25% by weight of electrically conductive component, i.e. the binder component can e.g. 30, 35, 40, 50, 60, 65 or 70 wt .-%.
  • the binder component and the electrically conductive component are mixed with a suitable “organic carrier”.
  • An organic vehicle is a medium that volatilizes at a relatively low temperature (approximately 400 to 500 ° C) without causing a reduction in other paste components.
  • An organic carrier serves as a transfer medium for screen printing.
  • An organic vehicle for use in the present invention is preferably a resin, e.g. an acrylic acid ester resin, preferably an isobutyl methacrylate, and a solvent, e.g. an alcohol, preferably tridecyl alcohol ("TDA").
  • TDA tridecyl alcohol
  • the resin can be any polymer that depolymerizes in nitrogen at or below 400 ° C.
  • solvents that can be used are Terpineol or "TE-XANOL" from Eastman Kodak.
  • the solvent for use in the present invention may be any solvent which dissolves the resin in question and which has an appropriate vapor pressure consistent with the subsequent milling and screen printing.
  • the organic carrier consists of 10 to 30% by weight of isobutyl methacrylate and 90 to 70% by weight of TDA.
  • the binder component, the electrically conductive component and the organic carrier are mixed and applied in a screen printing process to the copper connection on a suitable substrate, for example made of 96% Al 2 0 3 , in a screen printing process and then in a nitrogen atmosphere at a temperature of 900 ° C, for example suitable time, e.g. 7 minutes, baked.
  • a suitable substrate for example made of 96% Al 2 0 3
  • suitable time e.g. 7 minutes
  • the binder component (glass matrix) of the present invention prevents decomposition of the electrically conductive component during baking, i.e. the crystal structure (physical) and the chemical composition of the electrically conductive component remain stable and unchanged during baking.
  • the binder is synthesized using analytical grade materials, each in the oxide form except for the strontium, barium and copper compounds which are present as carbonates.
  • the individual components are weighed out and homogenized for 1 hour in a V-mixer (which is a dry mixing process). After mixing is complete, the homogenized powders are placed in a cyanite crucible, in which they are then melted.
  • the binders are preheated at 600 ° C for 1 hour and then transferred to another furnace where they are then melted in a temperature range of 1100 to 1300 ° C for a period of 1 to 1.5 hours. The molten material is removed from the furnace at the melting temperature and poured into a stainless steel tub filled with deionized water.
  • the electrically conductive components are prepared by attaching the appropriate connection (eg SrRu0 3 ), calculating the equimolar amount of eg SrC0 3 and Ru0 2 that have to be weighed to ensure the stoichiometry and ultimately weighing the individual components. Correction factors for the Ru metal content, water content and other volatile components that are lost when annealing at 600 ° C are also included in the calculation. A similar correction factor for the loss on ignition was also included in the calculation for the weights of the other components, if necessary.
  • the Ru0 2 has a surface area of more than 70 m 2 / g, while the other components have a surface area of less than 5 m 2 / g.
  • the weighed starting materials are ground in a ceramic ball mill with aluminum oxide grinding devices for 2 hours together with deionized water, that is to say subjected to a wet grinding process. After 2 hours, the homogenized slurry is poured into stainless steel troughs and dried at 80 ° C for 24 hours. The dried mixture is sieved through an 80 mesh screen before calcination.
  • the sieved powders are calcined in crucibles made of high-purity aluminum oxide (purity 99.8%), this step being carried out precisely with microprocessor control.
  • the heating and cooling rates are not critical per se, they concern general 500 ° C / h
  • the holding times at the relevant temperatures vary between 1 and 2 hours.
  • the powders are ground in a Sweeco vibratory mill for 2 hours. This is a high energy milling process using alumina milling media and isopropyl alcohol.
  • the Peroswkite are sieved wet (200 mesh) at the end of the grinding stage, dried at room temperature in a convection oven (explosion-proof) and prepared for characterization and incorporation in the resistance paste.
  • the electrically conductive components which were produced according to the above-described method, contain the following:
  • Example 3 Combination of binder components of electrically conductive components
  • the binder components made in accordance with Example 1 are combined with electrically conductive components made in Example 2 together with an organic carrier.
  • “ACRYLOID” B67 a resin (an isobutyl methacrylate) from Rohm & Haas, Philadelphia, Pennsylvania, and tridecyl alcohol (“TDA”) in a weight ratio of 30:70 is used as the organic carrier.
  • the relevant binder components, the electrically conductive components and the organic carrier are weighed to produce the desired paste mixture.
  • the solids content (binder + electrically conductive phase) is kept at 70% by weight, based on the total paste weight.
  • the paste is ground in a three-roller mill to a fineness of 10 ⁇ m. Resistance test samples are screen printed with the following printing thicknesses: wet 29 to 32 ⁇ m; fired 10 to 13 ⁇ m.
  • the pastes are then pressed either through a 325 mesh screen with a 0.6 mil emulsion or through a 280 mesh screen with a 0.5 mil emulsion.
  • the moist prints are dried for 5 to 10 minutes at 150 ° C before baking.
  • the stoving profile was dependent on the composition of the binder component, e.g. pastes containing Composition I were baked at 850 ° C, while pastes containing Composition II or III were baked at 900 ° C.
  • the 850 ° C profile length was 58 minutes from 100 ° C to 100 ° C, i.e. from the furnace entrance to the furnace exit.
  • the heating rate was 45 ° C per minute, the cooling rate 60 ° C per minute, and the residence time at the maximum temperature was 10 minutes.
  • the 900 ° C profile had a duration of 55 minutes and 100 ° C to 100 ° C, a heating rate of 50 ° C per minute and a cooling rate of 60 ° C per minute, the residence time at the maximum temperature varied between 5 and 14 minutes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Description

Die vorliegende Erfindung betrifft Zusammensetzungen zur Herstellung elektrischer Widerstandselemente und Verfahren zur Herstellung der Widerstandselemente.The present invention relates to compositions for producing electrical resistance elements and methods for producing the resistance elements.

Elektrische Widerstandselemente, die aus bestimmten Zusammensetzungen hergestellt sind, sind besonders nützlich zur Erzeugung von Mikrominiatur-Schaltkreisen für die elektronische Industrie, wobei die elektronischen Elemente (oder Pasten) im Siebdruckverfahren auf Substrate gedruckt werden.Electrical resistance elements made from certain compositions are particularly useful for creating micro-miniature circuits for the electronics industry, where the electronic elements (or pastes) are screen printed onto substrates.

Das US-Patent 3 304 199 beschreibt ein elektrisches Widerstandselement, das zusammengesetzt ist aus einer Mischung von Ru02 oder 1r02 und Bleiborosilikatglas. Die Mischung wird vereinigt mit einem Trägermittel, z.B. einem organischen Siebdruckmittel, wie in Aceton-Toluol gelöste Äthylcellulose. Die resultierende Mischung, die das Trägermittel enthält, wird auf ein elektrisch nichtleitendes Substrat aufgebracht und dann in Luft eingebrannt.US Pat. No. 3,304,199 describes an electrical resistance element which is composed of a mixture of Ru0 2 or 1r0 2 and lead borosilicate glass. The mixture is combined with a carrier, for example an organic screen printing agent, such as ethyl cellulose dissolved in acetone-toluene. The resulting mixture, which contains the carrier, is applied to an electrically non-conductive substrate and then baked in air.

Das US-Patent 3 324 049 beschreibt ein Cermet-Widerstandsmaterial, das 40 bis 99 Gew.-% eines Bleiborosilikatglases, 0,5 bis 20 Gew.-% eines Edelmetalls, wie Ag, Au, Pd, Pt, Rh, Ir, Os oder Ru und 0,5 bis 40 Gew.-% Mn02 oder Cu0 enthält. Das resultierende Widerstandsmaterial wird dann in Luft eingebrannt.US Pat. No. 3,324,049 describes a cermet resistance material which contains 40 to 99% by weight of a lead borosilicate glass, 0.5 to 20% by weight of a noble metal such as Ag, Au, Pd, Pt, Rh, Ir, Os or Ru and 0.5 to 40 wt .-% Mn0 2 or Cu0 contains. The resulting resistance material is then burned in air.

Das US-Patent 3 655 440 betrifft eine Widerstandszusammensetzung, die Ru02, lr02 oder PdO, ein glasiges Bleiborosilikat-Bindemittel und ein elektrisch nichtleitendes, Kristallwachstum steuerndes Mittel enthält, z.B. A103, das submikron kleine Inertteilchen enthält. Eine solche Widerstandszusammensetzung wird in Luft bei 975 bis 1025°C während einer Zeit von 45 Minuten bis 1 Stunde eingebrannt.U.S. Patent 3,655,440 relates to a resistance composition containing Ru0 2 , lr0 2 or PdO, a glassy lead borosilicate binder and an electrically non-conductive crystal growth control agent, such as A10 3 , which contains submicron small inert particles. Such a resistance composition is baked in air at 975 to 1025 ° C for 45 minutes to 1 hour.

Das US-Patent 3 682 840 betrifft elektrische Widerstandszusammensetzungen, enthaltend Bleiruthenat und Mischungen daraus mit Ru02 in Verbindung mit Bleiborosilikat-Bindemittel.The US Patent 3,682,840 relates to electrical resistance compositions containing lead ruthenate and mixtures thereof with Ru0 2 in conjunction with lead borosilicate binder.

Das US-Patent 4 065 743 betrifft einen glasigen Schmelz(Enamel)-Widerstand, der eine Glasfritte und elektrisch leitfähige Teilchen enthält. Solche elektrisch leitfähigen Teilchen enthalten Zinnoxid und Tantaloxid.U.S. Patent 4,065,743 relates to a glassy enamel resistor containing a glass frit and electrically conductive particles. Such electrically conductive particles contain tin oxide and tantalum oxide.

Das US-Patent 4 101 708 ist auf eine druckbare Zusammensetzung aus feinteiligem Pulver in einem inerten flüssigen Trägermittel gerichtet zur Herstellung von Filmwiderständen, die auf einem dielektrischen Substrat haften; solche Zusammensetzungen enthalten Ru02, ein Pb0 enthaltendes Glas, Nb205, CaF2 und ein inertes Trägermittel.U.S. Patent 4,101,708 is directed to a printable composition of finely divided powder in an inert liquid vehicle for making film resistors that adhere to a dielectric substrate; such compositions contain Ru0 2 , a glass containing Pb0, Nb 2 0 5 , CaF 2 and an inert carrier.

Die deutsche Patentschrift 2115814 betrifft eine Widerstandspaste zum Einbrennen auf Keramik in Luft. Diese Widerstandspaste enthält BaRu03, SrRu03 und CaRu03 in einem Bleiborosilikatglas.German patent 2115814 relates to a resistance paste for baking on ceramics in air. This resistance paste contains BaRu0 3 , SrRu0 3 and CaRu0 3 in a lead borosilicate glass.

Es wurden auch Widerstandszusammensetzungen hergestellt, die Ag-Pd und/oder PdO, Ru02, 1r02 und die sogenannten «du Pont»-Pyrochlor-Verbindungen benutzen. Die Pyrochlor-Strukturen sind komplexe Oxide der allgemeinen Formel A2B206-7, wobei das grosse Kation A in achtfacher Koordination und das kleine Kation B in oktaedrischer Koordination vorliegen. Ihr Erfolg beruht hauptsächlich auf ihrer Stabilität in veränderbaren Atmosphären (reduzierend) und ihrer Fähigkeit, durch Vielfachsubstitution von Elementen ihre elektrischen Eigenschaften zu ändern. Beispiele von Pyrochlor-Verbindungen, die speziell in diesen Zusammensetzungen benutzt werden und in den US-Patenten 3 553 109, 3 560 410 und 3 583 931 (alle diese Patente umfassen Bleiborosilikat-Bindemittel) diskutiert wurden, enthalten B!2RU207 und Pb2Ru2O7-x, wobei 0 < x < 1 ist.Resistance compositions were also made using Ag-Pd and / or PdO, Ru0 2 , 1r0 2 and the so-called "du Pont" pyrochlore compounds. The pyrochlore structures are complex oxides of the general formula A 2 B 2 0 6 - 7 , the large cation A being in eightfold coordination and the small cation B being in octahedral coordination. Their success is mainly due to their stability in changeable atmospheres (reducing) and their ability to change their electrical properties through multiple substitution of elements. Examples of pyrochlore compounds specifically used in these compositions and discussed in U.S. Patents 3,553,109, 3,560,410 and 3,583,931 (all of which patents include lead borosilicate binders) contain B! 2 R U2 0 7 and Pb 2 Ru 2 O 7-x, where 0 <x <1.

Die spezifischen Widerstände von verschiedenen Edelmetall-Oxiden (primär Pyrochlor-Verbindungen und einige Perowskite) wurden von K. Bube in Proceedings of Inter. Microel. Symp., Okt. 30./Nov. 1., 1972, Washington, D. C., ISHM, tabellarisch wie folgt zusammengesetzt:

Figure imgb0001
The specific resistances of various noble metal oxides (primarily pyrochlore compounds and some perovskites) were described by K. Bube in Proceedings of Inter. Microel. Symp., Oct. 30th / Nov. 1st, 1972, Washington, DC, ISHM, tabulated as follows:
Figure imgb0001

Die Perowskit-Kristallstruktur wurde beschrieben von U. M. Goldsmith, Skrifter Norske Videnskaps - Akad., Oslo., I: Mat. Naturv. Kl. 2:8 (1926). In der Perowskit-Zusammensetzung AB03 liegt das A-Kation in zwölffacher Koordination mit Sauerstoff und das kleinere B-Kation in oktaedrischer Koordination vor. Die Perowskit-Struktur besitzt hohe Gitter-Energie und ist im allgemeinen eine sehr stabile Struktur.The perovskite crystal structure was described by UM Goldsmith, Skrifter Norske Videnskaps - Akad., Oslo., I: Mat. Naturv. Cl. 2: 8 (1926). In the perovskite composition AB0 3 , the A cation is in twelve-fold coordination with oxygen and the smaller B-cation is in octahedral coordination. The perovskite structure has high lattice energy and is generally a very stable structure.

Widerstandszusammensetzungen wurden im Siebdruck-Verfahren aufgebracht, die ein Einbrennen in oxidierender Atmosphäre (Luft) erfordern, welches die Benutzung von teuren Edelmetallen, wie Au, Ag, Pt und Pd notwendig macht. Das weniger teure Kupfer konnte nicht verwendet werden, weil Kupfer leicht oxidiert. Dementsprechend besteht eine Notwendigkeit für eine stabile kupferkompatible Widerstandszusammensetzung, die in einer nicht oxidierenden Atmosphäre, wie z.B. Stickstoff, aufgebrannt werden könnte.Resistance compositions were applied using the screen printing process, which require baking in an oxidizing atmosphere (air), which necessitates the use of expensive precious metals such as Au, Ag, Pt and Pd. The less expensive copper could not be used because copper oxidizes easily. Accordingly, there is a need for a stable copper compatible resistor composition that could be baked in a non-oxidizing atmosphere such as nitrogen.

Typische, früher verwendete Widerstandszusammensetzungen benutzen Bleiborosilikatglas-Bindemittel. Nach dem Einbrennen in Luft zersetzt sich in den Widerstandszusammensetzungen, die z.B. Strontiumruthenat in einem Bleiborosilikat-Bindemittel enthalten, das Strontiumruthenat zu Strontiumoxid, welches sich in dem Bindemittel löst, und Rutheniumoxid. Bei der vorliegenden Erfindung, wenn z.B. Strontiumruthenat in einem Strontiumborosilikat-Bindemittel unter Stickstoff eingebrannt wird, findet keine Zersetzung der elektrisch leitfähigen Komponente statt, d.h. das Strontiumruthenat bleibt unverändert.Typical resistance compositions used previously use lead borosilicate glass binders. After burning in air, decomposes in the resistance compositions, e.g. Strontium ruthenate contained in a lead borosilicate binder, the strontium ruthenate to strontium oxide, which dissolves in the binder, and ruthenium oxide. In the present invention, e.g. If strontium ruthenate is stoved in a strontium borosilicate binder under nitrogen, there is no decomposition of the electrically conductive component, i.e. the strontium ruthenate remains unchanged.

Zusammenfassung der ErfindungSummary of the invention

Es ist eine Aufgabe der vorliegenden Erfindung, eine stabile kupferkompatible Widerstandszusammensetzung bereitzustellen, die in nicht oxidierender Atmosphäre eingebrannt werden kann.It is an object of the present invention to provide a stable copper compatible resistor composition that can be baked in a non-oxidizing atmosphere.

Eine andere Aufgabe der vorliegenden Erfindung ist es, ein Dickfilm-Widerstandssystem bereitzustellen, welches eine Reproduzierbarkeit der Eigenschaften und eine verminderte Verarbeitungsempfindlichkeit besitzt.Another object of the present invention is to provide a thick film resistor system which has property reproducibility and reduced processing sensitivity.

Die vorliegende Erfindung betrifft eine Zusammensetzung zur Herstellung eines elektrischen Widerstandselementes, die aus einer elektrisch leitfähigen Komponente und einem Bindemittel zusammengesetzt ist.The present invention relates to a composition for producing an electrical resistance element, which is composed of an electrically conductive component and a binder.

Die elektrisch leitende Komponente enthält ein Edelmetalloxid der Formel A'1-xA"xB'1-yB"yO3, wobei

  • A' = Sr oder Ba mit der Massgabe, dass wenn A' = Sr, dann ist A" ein oder mehrere Elemente aus der Gruppe Ba, La, Y, Ca und Na und wenn A' = Ba, dann ist A" ein oder mehrere Elemente aus der Gruppe Sr, La, Y, Ca und Na
  • B' = Ru
  • B" = eines oder mehrere der Elemente aus der Gruppe Ti, Cd, Zr, V und Co und
  • 0≤x<0,2 und
  • 0≤y<0,2 ist
The electrically conductive component contains a noble metal oxide of the formula A ' 1-x A " x B' 1-y B" y O 3, where
  • A '= Sr or Ba with the proviso that if A' = Sr, then A "is one or more elements from the group Ba, La, Y, Ca and Na and if A '= Ba, then A" is one or several elements from the group Sr, La, Y, Ca and Na
  • B '= Ru
  • B "= one or more of the elements from the group Ti, Cd, Zr, V and Co and
  • 0≤x <0.2 and
  • 0≤y <0.2

Die Bindemittelkomponente enthält:

  • (i) 40 bis 75 Gew.-% C', wobei C' = Sr0 ist, wenn
    • A' = Sr ist;
    • C' = BaO, wenn A' = Ba ist und C' = Sr0 + BaO, wenn A' = Sr ist und A" = Ba ist oder wenn A' = Ba und A" = Sr ist
  • (ii) 20 bis 35 Gew.-% B203
  • (iii) 2 bis 15 Gew.-% Si02 und
  • (iv) 0,5 bis 6,5 Gew.-% ZnO.
The binder component contains:
  • (i) 40 to 75 wt% C ', where C' = Sr0 if
    • A '= Sr;
    • C '= BaO when A' = Ba and C '= Sr0 + BaO when A' = Sr and A "= Ba or when A '= Ba and A" = Sr
  • (ii) 20 to 35% by weight of B 2 0 3
  • (iii) 2 to 15 wt .-% Si0 2 and
  • (iv) 0.5 to 6.5 wt% ZnO.

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines elektrischen Widerstandselementes durch Erzeugung der vorbeschriebenen Zusammensetzung, Anpasten dieser Zusammensetzung mit einem organischen Trägermittel, Aufbringen der Paste im Siebdruckverfahren auf ein Substrat und Einbrennen.The present invention also relates to a method for producing an electrical resistance element by producing the above-described composition, pasting this composition with an organic carrier, applying the paste to a substrate by screen printing and baking.

Dabei kann die Bindemittelkomponente auch 0,1 bis 2,5 Gew.-% Al2O3 enthalten.The binder component can also contain 0.1 to 2.5% by weight of Al 2 O 3 .

Die Bindemittelkomponente kann weiterhin 0,1 bis 1,5 Gew.-% eines oder mehrerer der folgenden Oxide enthalten:

  • Bi2O3, CuO, MgO, Nb205.
The binder component may further contain 0.1 to 1.5% by weight of one or more of the following oxides:
  • Bi 2 O 3, CuO, MgO, Nb 2 0 5 .

Die Bindemittelkomponente kann auch noch weiterhin 0,1 bis 1,5 Gew.-% Ti02 oder NaF enthalten. Gegebenenfalls kann die Bindemittelkomponente auch noch 5 bis 15 Gew.-% Ca0 enthalten.The binder component can also still contain 0.1 to 1.5% by weight of TiO 2 or NaF. If appropriate, the binder component can also contain 5 to 15% by weight of CaO.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Die Zusammensetzung zur Herstellung elektrischer Widerstandselemente gemäss der vorliegenden Erfindung enthält eine elektrisch leitfähige Metalloxid-Perowskitkomponente und eine Glasbindemittelkomponente.The composition for manufacturing electrical resistance elements according to the present invention contains an electrically conductive metal oxide perovskite component and a glass binder component.

Die elektrisch leitfähige Komponente wird durch die Formel

  • A'1-xA"xB'1-yB"yO3 dargestellt, wobei
The electrically conductive component is represented by the formula
  • A ' 1-x A " x B' 1-y B" y O 3 , where

A' = Sr oder Ba mit der Massgabe, dass wenn A' = Sr, dann ist A" ein oder mehrere Elemente aus der Gruppe Ba, La, Y, Ca und Na und wenn A' = Ba, dann ist A" ein oder mehrere Elemente aus der Gruppe Sr, La, Y, Ca und Na,

  • B' = Ru
  • B" = eines oder mehrere der Elemente aus der Gruppe Ti, Cd, Zr, V und Co und
  • 0≤x<0,2 und
  • 0 ≤ y < 0,2 ist.
A '= Sr or Ba with the proviso that if A' = Sr, then A "is one or more elements from the group Ba, La, Y, Ca and Na and if A '= Ba, then A" is one or several elements from the group Sr, La, Y, Ca and Na,
  • B '= R u
  • B "= one or more of the elements from the group Ti, Cd, Zr, V and Co and
  • 0≤x <0.2 and
  • 0 ≤ y <0.2.

Bevorzugte Kombinationen von B'1-yB"y umfassen Ruo,sTio,z und Ru0,9Ti0,1.Preferred combinations of B ' 1-y B " y include Ruo, sTio, z and Ru 0.9 Ti 0.1 .

Bevorzugte elektrisch leitfähige Komponenten umfassen SrRuo,8, Ti0,2O3, SrRu03 und SrRu0,9Ti0,1O3. Kombinationen dieser Komponenten können ebenfalls benutzt werden, wie z.B. SrRu03 + SrRuo,s/ Tio,z03 oder SrRu03 + SrRu0,9Ti0,1O3. Andere nicht einschränkend zu behandelnde Beispiele für die leitfähigen Komponenten umfassen SrRu0,95Cd0,05O3, Sr0,90Na0,10RuO3, Sr0,90Y0,10RuO3, Sr0,80Na0,10/ La0,10RuO3 und SrRuo,8Tio,203SrRu03, SrRuo,s/ Zro,203, SrRu0,9Zr0,1O3, SrRu0,75V0,25O3 und SrRu0,8CO0,2O3.Preferred electrically conductive components include SrRu o , 8 , Ti 0.2 O 3, SrRu0 3 and SrRu 0.9 Ti 0.1 O 3 . Combinations of these components can also be used, such as SrRu0 3 + SrRu o , s / Tio, z0 3 or SrRu0 3 + SrRu 0.9 Ti 0.1 O 3 . Other non-limiting examples of the conductive components include SrRu 0.95 Cd 0.05 O 3, Sr 0.90 Na 0.10 RuO 3, Sr 0.90 Y 0.10 RuO 3, Sr 0.80 Na 0 , 10 / La 0.10 RuO 3 and SrRu o , 8 Ti o , 2 0 3 SrRu0 3 , SrRuo, s / Zro, 2 0 3 , SrRu 0.9 Zr 0.1 O 3, SrRu 0.75 V 0 , 25 O 3 and SrRu 0.8 CO 0.2 O 3 .

Die Formel A'1-xA"xB'1-yB"yO3 kann durch teilweise Substitution von A, B oder A und B (A = A' +A"; B = B' + B") geändert werden, wie oben beschrieben und durch Benutzung anderer Substitutionen. Nicht einschränkende Beispiele von Substitutionen (basierend auf den lonenradien und der Wertigkeit) von A und B sind folgende:The formula A ' 1-x A " x B' 1-y B" y O 3 can be changed by partial substitution of A, B or A and B (A = A '+ A "; B = B' + B") as described above and using other substitutions. Non-limiting examples of substitutions (based on ionic radii and valency) of A and B are as follows:

Figure imgb0002
Figure imgb0002
Figure imgb0003
Figure imgb0003

Die Bindemittelkomponente der vorliegenden Erfindung besitzt als Hauptbestandteile C', d.h. Sr0 oder Ba0 oder Sr0 + BaO, und B203, Si02 und Zn0 in den folgenden Mengen:

Figure imgb0004
The main components of the binder component of the present invention are C ', ie Sr0 or Ba0 or Sr0 + BaO, and B 2 0 3 , Si0 2 and Zn0 in the following amounts:
Figure imgb0004

Zusätzlich kann die Bindemittelkomponente noch ein oder mehrere der folgenden Bestandteile umfassen:

Figure imgb0005
In addition, the binder component can also comprise one or more of the following constituents:
Figure imgb0005

Nicht einschränkende Beispiele von bevorzugten Zusammensetzungen der Bindemittelkomponente umfassen die folgenden:

Figure imgb0006
Nonlimiting examples of preferred compositions of the binder component include the following:
Figure imgb0006

Beispiele anderer, nicht einschränkender Zusammensetzungen der Bindemittelkomponente umfassen die folgenden:

Figure imgb0007
Examples of other, non-limiting compositions of the binder component include the following:
Figure imgb0007

Das Gewichts-%-Verhältnis von Bindemittelkomponente / elektrisch leitfähiger Komponente kann variieren von 25 bis 75 Gew.-% Bindemittelkomponente / 75 bis 25 Gew.-% elektrisch leitfähige Komponente, d.h. die Bindemittelkomponente kann z.B. 30, 35, 40, 50, 60, 65 oder 70 Gew.-% betragen.The weight% ratio of binder component / electrically conductive component can vary from 25 to 75% by weight of binder component / 75 to 25% by weight of electrically conductive component, i.e. the binder component can e.g. 30, 35, 40, 50, 60, 65 or 70 wt .-%.

Die Bindemittelkomponente und die elektrisch leitfähige Komponente werden mit einem geeigneten «organischen Trägermittel» vermischt. Ein organisches Trägermittel ist ein Medium, welches sich bei einer relativ niedrigen Temperatur (ungefähr 400 bis 500°C) verflüchtigt, ohne eine Reduktion anderer Pastenkomponenten zu verursachen. Ein organisches Trägermittel dient als Übertragungsmittel für das Siebdrucken. Ein organisches Trägermittel für die Benutzung in der vorliegenden Erfindung ist vorzugsweise ein Harz, z.B. ein Acrylsäureesterharz, vorzugsweise ein Isobutylmethacrylat, und ein Lösungsmittel, z.B. ein Alkohol, vorzugsweise Tridecylalkohol («TDA»). Das Harz kann irgendein Polymer sein, welches bei oder unterhalb 400°C in Stickstoff depolymerisiert. Andere Lösungsmittel, die verwendet werden können, sind Terpineol oder «TE-XANOL» der Firma Eastman Kodak. Das Lösungsmittel zur Benutzung der vorliegenden Erfindung kann irgendein Lösungsmittel sein, welches das betreffende Harz löst und welches einen geeigneten Dampfdruck aufweist, der im Einklang mit dem nachfolgenden Mahlen und Siebdrucken steht. In bevorzugter Ausführungsform besteht das organische Trägermittel aus 10 bis 30 Gew.-% Isobutylmethacrylat und 90 bis 70 Gew.-% TDA.The binder component and the electrically conductive component are mixed with a suitable “organic carrier”. An organic vehicle is a medium that volatilizes at a relatively low temperature (approximately 400 to 500 ° C) without causing a reduction in other paste components. An organic carrier serves as a transfer medium for screen printing. An organic vehicle for use in the present invention is preferably a resin, e.g. an acrylic acid ester resin, preferably an isobutyl methacrylate, and a solvent, e.g. an alcohol, preferably tridecyl alcohol ("TDA"). The resin can be any polymer that depolymerizes in nitrogen at or below 400 ° C. Other solvents that can be used are Terpineol or "TE-XANOL" from Eastman Kodak. The solvent for use in the present invention may be any solvent which dissolves the resin in question and which has an appropriate vapor pressure consistent with the subsequent milling and screen printing. In a preferred embodiment, the organic carrier consists of 10 to 30% by weight of isobutyl methacrylate and 90 to 70% by weight of TDA.

Die Bindemittelkomponente, die elektrisch leitfähige Komponente und das organische Trägermittel werden gemischt und im Siebdruckverfahren auf den Kupferanschluss auf ein geeignetes Substrat, z.B. aus 96% AI203, im Siebdruckverfahren aufgebracht und dann in einer Stickstoffatmosphäre bei einer Temperatur von z.B. 900°C eine geeignete Zeit, z.B. 7 Minuten, eingebrannt. Zur Bereitung der Zusammensetzung für die Herstellung elektrischer Widerstandselemente gemäss der vorliegenden Erfindung werden die elektrisch leitfähige Komponente, die Bindemittelkomponente und das organische Trägermittel zusammengebracht zur Bildung einer Paste. Die Paste wird dann zu der für die Siebdrucktechnik erforderlichen Feinheit gemahlen.The binder component, the electrically conductive component and the organic carrier are mixed and applied in a screen printing process to the copper connection on a suitable substrate, for example made of 96% Al 2 0 3 , in a screen printing process and then in a nitrogen atmosphere at a temperature of 900 ° C, for example suitable time, e.g. 7 minutes, baked. To prepare the composition for the production of electrical resistance elements according to the present invention the electrically conductive component, the binder component and the organic carrier are brought together to form a paste. The paste is then ground to the fineness required for the screen printing technique.

Es wird angenommen, dass die Bindemittelkomponente (Glasmatrix) der vorliegenden Erfindung die Zersetzung der elektrisch leitfähigen Komponente während des Einbrennens verhindert, d.h. die Kristallstruktur (physikalisch) und die chemische Zusammensetzung der elektrisch leitfähigen Komponente bleiben stabil und unverändert während des Einbrennens.It is believed that the binder component (glass matrix) of the present invention prevents decomposition of the electrically conductive component during baking, i.e. the crystal structure (physical) and the chemical composition of the electrically conductive component remain stable and unchanged during baking.

BeispieleExamples Beispiel 1: Bindemittel-HerstellungExample 1: Binder production

Das Bindemittel wird synthetisiert unter Benutzung von analysenreinen Materialien, wobei jedes in Oxidform vorliegt mit Ausnahme der Strontium-, Barium- und Kupfer-Verbindungen, die als Carbonate vorliegen. Wenn die Zusammensetzung angesetzt wird, dann werden die einzelnen Komponenten eingewogen und 1 Stunde lang homogenisiert in einem V-Mischer (welches ein Trockenmischverfahren ist). Nachdem das Mischen fertig ist, werden die homogenisierten Pulver in einen Cyanit-Tiegel gebracht, in dem sie dann anschliessend geschmolzen werden. Die Bindemittel werden 1 Stunde lang bei 600°C vorerhitzt und dann in einen anderen Ofen überführt, in dem sie dann geschmolzen werden in einem Temperaturbereich von 1100 bis 1300°C während einer Zeit von 1 bis 1, 5 Stunden. Das geschmolzene Material wird bei Schmelztemperatur aus dem Ofen genommen und in eine Wanne aus rostfreiem Stahl, die mit deionisiertem Wasser gefüllt ist, abgegossen. Sobald die Schmelze mit dem Wasser in Berührung kommt, findet eine Verfestigung und ein Zerfall in Glasbröckchen statt (wobei die Grösse oder die thermische Spannung vorgegeben wird). Das deionisierte Wasser wird dekantiert und das Glas danach in eine keramische Kugelmühle mit Mahlzylindern aus Aluminiumoxid unter Zusatz von Isobutylalkohol gegeben. Die Gläser werden 24 Stunden gemahlen und dann nass gesiebt durch ein 200 mesh-Sieb. Nach dem Trocknen in einem explosionssicheren Konvektionsofen bei Raumtemperatur sind die Pulver fertig zur Charakterisierung und zum Einbringen in die Widerstandspaste. Die Teilchengrösse der Pulver beträgt 1 bis 2 µm. Die so hergestellten Bindemittelkomponenten sind dann solche, wie sie oben als Zusammensetzungen 1, 11 und III angegeben sind. Die Erweichungspunkte für die Zusammensetzungen 1, 11 und 111 wurden mit 625°C, 635°C und 660°C ermittelt. Andere Zusammensetzungen der Bindemittelkomponente, die entsprechend dem Beispiel 1 hergestellt sind, sind folgende:The binder is synthesized using analytical grade materials, each in the oxide form except for the strontium, barium and copper compounds which are present as carbonates. When the composition is made up, the individual components are weighed out and homogenized for 1 hour in a V-mixer (which is a dry mixing process). After mixing is complete, the homogenized powders are placed in a cyanite crucible, in which they are then melted. The binders are preheated at 600 ° C for 1 hour and then transferred to another furnace where they are then melted in a temperature range of 1100 to 1300 ° C for a period of 1 to 1.5 hours. The molten material is removed from the furnace at the melting temperature and poured into a stainless steel tub filled with deionized water. As soon as the melt comes into contact with the water, it solidifies and disintegrates into glass fragments (the size or the thermal stress being specified). The deionized water is decanted and the glass is then placed in a ceramic ball mill with grinding cylinders made of aluminum oxide with the addition of isobutyl alcohol. The jars are milled for 24 hours and then wet sieved through a 200 mesh screen. After drying in an explosion-proof convection oven at room temperature, the powders are ready for characterization and for incorporation into the resistance paste. The particle size of the powder is 1 to 2 µm. The binder components thus produced are then those as indicated above as compositions 1, 11 and III. The softening points for compositions 1, 11 and 111 were determined to be 625 ° C, 635 ° C and 660 ° C. Other binder component compositions made according to Example 1 are as follows:

Figure imgb0008
Figure imgb0008

Beispiel 2: Herstellung der elektrisch leitfähigen KomponenteExample 2: Production of the electrically conductive component

Die elektrisch leitfähigen Komponenten werden bereitet durch Ansetzen der entsprechenden Verbindung (z.B. SrRu03), Berechnen der äquimolaren Menge von z.B. SrC03 und Ru02, die gewogen werden müssen, um die Stöchiometrie sicherzustellen und letztendlich Wiegen der einzelnen Komponenten. Korrekturfaktoren für den Ru-Metallgehalt, den Wassergehalt und andere flüchtige Komponenten, die beim Glühen bei 600°C verlorengehen, sind ebenfalls in die Berechnung eingeschlossen. Ein ähnlicher Korrekturfaktor für den Glühverlust wurde ebenfalls in die Berechnung für die Gewichte der anderen Komponenten einbezogen, sofern notwendig. Das Ru02 hat eine Oberfläche von mehr als 70 m2/g, während die anderen Bestandteile eine Oberfläche von weniger als 5 m2/g haben. Die gewogenen Ausgangsmaterialien werden in einer Keramikkugelmühle mit Aluminiumoxid-Mahl-Einrichtungen 2 Stunden lang zusammen mit deionisiertem Wasser gemahlen, also einem Nass-Mahlverfahren unterworfen. Nach 2 Stunden wird die homogenisierte Aufschlämmung in Tröge aus rostfreiem Stahl gegossen und 24 Stunden bei 80°C getrocknet. Die getrocknete Mischung wird vor Kalzinierung durch ein 80 mesh-Sieb gesiebt.The electrically conductive components are prepared by attaching the appropriate connection (eg SrRu0 3 ), calculating the equimolar amount of eg SrC0 3 and Ru0 2 that have to be weighed to ensure the stoichiometry and ultimately weighing the individual components. Correction factors for the Ru metal content, water content and other volatile components that are lost when annealing at 600 ° C are also included in the calculation. A similar correction factor for the loss on ignition was also included in the calculation for the weights of the other components, if necessary. The Ru0 2 has a surface area of more than 70 m 2 / g, while the other components have a surface area of less than 5 m 2 / g. The weighed starting materials are ground in a ceramic ball mill with aluminum oxide grinding devices for 2 hours together with deionized water, that is to say subjected to a wet grinding process. After 2 hours, the homogenized slurry is poured into stainless steel troughs and dried at 80 ° C for 24 hours. The dried mixture is sieved through an 80 mesh screen before calcination.

Die gesiebten Pulver werden in Tiegel aus hochreinem Aluminiumoxid (Reinheit 99,8%) kalziniert, wobei dieser Schritt genau mikroprozessorgeregelt durchgeführt wird. Die Aufheiz- und Abkühlungsgeschwindigkeiten sind an sich nicht kritisch, sie betragen allgemein 500°C/Std. Die Haltezeiten bei den betreffenden Temperaturen (von 800 bis 1200°C, abhängend von der Verbindung) variieren zwischen 1 und 2 Stunden. Nach Beendigung der Kalzinierung werden die Pulver in einer Sweeco-Schwingmühle 2 Stunden gemahlen. Dies ist ein Hochenergie-Mahlverfahren, bei dem Aluminiumoxid-Mahlmittel und Isopropylalkohol benutzt werden. Die Peroswkite werden nass gesiebt (200 mesh) am Ende der Mahlstufe, bei Zimmertemperatur in einem Konvektionsofen (explosionssicher) getrocknet und für die Charakterisierung und die Einbringung in die Widerstandspaste vorbereitet.The sieved powders are calcined in crucibles made of high-purity aluminum oxide (purity 99.8%), this step being carried out precisely with microprocessor control. The heating and cooling rates are not critical per se, they concern general 500 ° C / h The holding times at the relevant temperatures (from 800 to 1200 ° C, depending on the connection) vary between 1 and 2 hours. After the calcination is complete, the powders are ground in a Sweeco vibratory mill for 2 hours. This is a high energy milling process using alumina milling media and isopropyl alcohol. The Peroswkite are sieved wet (200 mesh) at the end of the grinding stage, dried at room temperature in a convection oven (explosion-proof) and prepared for characterization and incorporation in the resistance paste.

Die elektrisch leitfähigen Komponenten, die nach dem vorbeschriebenen Verfahren hergestellt wurden, enthalten folgendes:

Figure imgb0009
The electrically conductive components, which were produced according to the above-described method, contain the following:
Figure imgb0009

Beispiel 3: Kombination von Bindemittelkomponenten elektrisch leitfähigen KomponentenExample 3: Combination of binder components of electrically conductive components

Die Bindemittelkomponenten, die in Übereinstimmung mit dem Beispiel 1 hergestellt werden, werden mit elektrisch leitfähigen Komponenten, die nach Beispiel 2 hergestellt werden, kombiniert zusammen mit einem organischen Trägermittel. Als organisches Trägermittel wird «ACRYLOID» B67, ein Harz (ein Isobutylmethacrylat) der Firma Rohm & Haas, Philadelphia, Pennsylvania, und Tridecylalkohol («TDA») im Gewichtsverhältnis 30 : 70 verwendet.The binder components made in accordance with Example 1 are combined with electrically conductive components made in Example 2 together with an organic carrier. “ACRYLOID” B67, a resin (an isobutyl methacrylate) from Rohm & Haas, Philadelphia, Pennsylvania, and tridecyl alcohol (“TDA”) in a weight ratio of 30:70 is used as the organic carrier.

Die betreffenden Bindemittelkomponenten, die elektrisch leitfähigen Komponenten und das organische Trägermittel werden gewogen, um die gewünschte Pastenmischung herzustellen. Der Gehalt an Feststoffen (Bindemittel + elektrisch leitfähige Phase) wird bei 70 Gew.-%, bezogen auf das Gesamt-Pastengewicht, gehalten. Die Paste wird in einer Drei-Rollen-Mühle zu einer Feinheit von 10 µm gemahlen. Widerstandsprüfmuster werden im Siebdruckverfahren mit den folgenden Druck-Dicken aufgebracht: nass 29 bis 32 µm; gebrannt 10 bis 13 µm. Die Pasten werden dann entweder durch ein 325 mesh-Sieb mit 0,6 mil-emulsion oder durch ein 280 mesh-Sieb mit einer 0,5 mil-emulsion gedrückt. Die feuchten Drucke werden 5 bis 10 Minuten bei 150°C vor dem Einbrennen getrocknet.The relevant binder components, the electrically conductive components and the organic carrier are weighed to produce the desired paste mixture. The solids content (binder + electrically conductive phase) is kept at 70% by weight, based on the total paste weight. The paste is ground in a three-roller mill to a fineness of 10 µm. Resistance test samples are screen printed with the following printing thicknesses: wet 29 to 32 µm; fired 10 to 13 µm. The pastes are then pressed either through a 325 mesh screen with a 0.6 mil emulsion or through a 280 mesh screen with a 0.5 mil emulsion. The moist prints are dried for 5 to 10 minutes at 150 ° C before baking.

Das Einbrennprofil war abhängig von der Zusammensetzung der Bindemittelkomponente, z.B. wurden Pasten, die die Zusammensetzung I enthielten, bei 850°C eingebrannt, während Pasten, die die Zusammensetzung II oder III enthielten, bei 900°C eingebrannt wurden. Die 850°C-Profillänge betrug 58 Minuten von 100°C zu 100°C, d.h. vom Ofeneingang bis zum Ofenausgang. Die Aufheizgeschwindigkeit betrug 45°C pro Minute, die Abkühlgeschwindigkeit 60°C pro Minute, und die Verweilzeit bei der Höchsttemperatur betrug 10 Minuten. Das 900°C-Profil hatte eine Dauer von 55 Minuten und 100°C zu 100°C, eine Aufheizgeschwindigkeit von 50°C pro Minute und eine Abkühlgeschwindigkeit von 60°C pro Minute, die Verweilzeit bei der Höchsttemperatur variierte zwischen 5 und 14 Minuten.The stoving profile was dependent on the composition of the binder component, e.g. pastes containing Composition I were baked at 850 ° C, while pastes containing Composition II or III were baked at 900 ° C. The 850 ° C profile length was 58 minutes from 100 ° C to 100 ° C, i.e. from the furnace entrance to the furnace exit. The heating rate was 45 ° C per minute, the cooling rate 60 ° C per minute, and the residence time at the maximum temperature was 10 minutes. The 900 ° C profile had a duration of 55 minutes and 100 ° C to 100 ° C, a heating rate of 50 ° C per minute and a cooling rate of 60 ° C per minute, the residence time at the maximum temperature varied between 5 and 14 minutes .

Verschiedene Kombinationen der oben beschriebenen Bindemittelkomponenten und elektrisch leitfähigen Komponenten zur Herstellung von Widerstandselementen und die resultierenden Eigenschaften nach dem Einbrennen in Stickstoff werden in den nachfolgenden Tabellen 9 und 10 wiedergegeben. Für Tabelle 9 wurde ein Einbrennen bei 850°C unter Stickstoff verwendet.Various combinations of the binder components described above and electrically conductive components for the production of resistance elements and the resulting properties after baking in nitrogen are given in Tables 9 and 10 below. For Table 9, baking at 850 ° C under nitrogen was used.

Besonders bewährt haben sich die nachfolgend aufgeführten drei Zusammensetzungen bei der Bindemittelkomponente, die durch die angegebenen Gewichtsprozente gekennzeichnet sind:

  • 1. Bindemittelkomponente aus 51,7 Gew.-% SrO, 30,0 Gew.-% B205, 10,5 Gew.-% Si02, 1,1 Gew.-% A1203, 3,4 Gew.-% ZnO, 0,5 Gew.-% BJ203, 0,6 Gew.-% CuO, 0,7 Gew.-% MgO, 0,5 Gew.-% Nb205, 0,5 Gew.-% Ti02 und 0,5 Gew.-% NaF,
  • 2. Bindemittelkomponente aus 55,2 Gew.-% SrO, 30 Gew.-% B203, 7,0 Gew.-% Si02, 1,1 Gew.- % Al2O3, 3,4 Gew.-% ZnO, 0,5 Gew.-% Bi203, 0,6 Gew.-% CuO, 0,7 Gew.-% MgO, 0,5 Gew.- % Nb205, 0,5 Gew.-% Ti02 und 0,5 Gew.-% NaF,
  • 3. Bindemittelkomponente aus 56,6 Gew.-% SrO, 30,1 Gew.-% B203, 7,1 Gew.-% Si02, 0,5 Gew.-% A1203, 3,4 Gew.-% ZnO, 0,5 Gew.-% Bi203, 0,6 Gew.-% CuO, 0,7 Gew.-% Mg0 und 0,5 Gew.-% Nb203.
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
The three compositions listed below, which are characterized by the stated weight percentages, have proven particularly useful for the binder component:
  • 1. Binder component composed of 51.7% by weight of SrO, 30.0% by weight of B 2 0 5 , 10.5% by weight of SiO 2 , 1.1% by weight of A1 2 0 3 , 3.4 % By weight ZnO, 0.5% by weight BJ 2 0 3 , 0.6% by weight CuO, 0.7% by weight MgO, 0.5% by weight Nb 2 0 5 , 0, 5% by weight Ti0 2 and 0.5% by weight NaF,
  • 2. Binder component composed of 55.2% by weight of SrO, 30% by weight of B 2 0 3 , 7.0% by weight of SiO 2 , 1.1% by weight of Al 2 O 3, 3.4% by weight. -% ZnO, 0.5% by weight Bi 2 0 3 , 0.6% by weight CuO, 0.7% by weight MgO, 0.5% by weight Nb 2 0 5 , 0.5% by weight .-% Ti0 2 and 0.5 wt .-% NaF,
  • 3. Binder component composed of 56.6% by weight of SrO, 30.1% by weight of B 2 0 3 , 7.1% by weight of SiO 2 , 0.5% by weight of A1 2 0 3 , 3.4 % By weight ZnO, 0.5% by weight Bi 2 0 3 , 0.6% by weight CuO, 0.7% by weight Mg0 and 0.5% by weight Nb 2 0 3 .
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012

Claims (13)

1. Composition for the production of electrical resistance elements, which comprises an electrically conductive component (a) and a binder component (b), characterised in that the electrically conductive component (a) is a precious metal oxide of the general formula
Figure imgb0013
in which
A' = Sr or Ba, with the proviso that if A' = Sr, then A" is one or more of the elements from the group Ba, La, Y, Ca and Na and
if A' = Ba then A" is one or more of the elements from the group Sr, La, Y, Ca and Na
B' = Ru
B" = one or more of the elements from the group Ti, Cd, Zr, V and Co, and
0 ≤ x < 0.2 and
0 ≤ y < 0.2,

and that the binder component (b) contains
(i) 40 to 75 weight % of C', wherein
C' = SrO, if A' = Sr
C' = BaO if A' = Ba and
C' = SrO + BaO if A' = Sr and A" = Ba or if A' = Ba and A" = Sr
(ii) 20 to 35 weight % of B203
(iii) 2 to 15 weight % of SiOz, and
(iv) 0.5 to 6.5 weight % of ZnO.
2. Composition according to claim 1, characterised in that the binder component additionally contains 0.1 to 2.5 weight % of AI203.
3. Composition according to claim 1, characterised in that C' amounts to 42 to 58 weight % pon- deral, B203 is contained in a quantity of 27 to 31 weight %, Si02 is contained in a quantity of 7 to 11 weight % and ZnO is contained in a quantity of 2 to 4 weight %.
4. Composition according to claim 1, characterised in that the binder component additionally contains 0.1 to 1.5% of one or more of the oxides of the group Bi303, CuO, MgO and Nbz05.
5. Composition according to claim 1, characterised in that the binder component additionally contains 0.1 to 1.5 weight % of Ti02 or NaF.
6. Composition according to claim 1, characterised in that the binder component additionally contains 5 to 15 weight % of CaO.
7. Composition according to claim 1, characterised in that the electrically conductive component is composed of one of the following oxides: SrRu03, SrRu0,8Ti0,2O3, SrRu0,9Ti0,1O3, SrRu0,95Cd0,05O3, Sr0,9Ba0,1RuO3, Sr0,9Y0,1RuO3, Sr0,8Na0,1La0,1RuO3, SrRu0,8Zr0,2O3, SrRuo,gZro,103, SrRu0,75V0,25O3, SrRu0,8CO0,2O3 und SrRu0,8Ti0,1Zr0,1O3-
8. Composition according to claim 1, characterised in that it contains an organic carrier medium, preferably a mixture of an acrylic acid ester resin and an alcohol, especially isobutylmethacrylate and tridecyl alcohol.
9. Process for the production of an electrical resistance element by imprinting of a paste and firing this paste on a substrate, characterised in that an electrically conductive component (a) which is a precious metal oxide having the general formula
Figure imgb0014
in which
A' = Sr or Ba, with the proviso that when A' = Sr, A" is then one or more of the elements from the group Ba, La, Y, Ca and Na and when
A' = Ba, A" is then one or more of the elements from the group Sr, La, Y, Ca and Na,
B' = Ru
B" = one or more of the elements from the group Ti, Cd, Zr, V and Co,
0≤x<0.2 and
0 ≤ y < 0.2

and a binder component (b) which contains
(i) 40 to 75 weight % of C', in which
C' = SrO if A' = Sr,
C' = BaO if A' = Ba and
C' = SrO + BaO if A' = Sr and A" = Ba or if A' = Ba and A" = Sr
(ii) 20 to 35 weight % of B203
(iii) 2 to 15 weight % of Si02, and
(iv) 0.5 to 6.5 weight % of ZnO,

are mixed into a paste with an organic carrier medium, this paste being applied on a substrate by the screen printing process and fired to form a conductor.
10. Process according to claim 9, characterised in that the paste is milled prior to being printed on by the screen printing process.
11. Process according to claim 9, characterised in that the paste is printed on to a copper connector.
12. Process according to claim or 11, characterised in that an A1203 substrate is utilised as the substrate.
13. Process according to one or more of the claims 1 to 1 2, characterised in that the paste is fired in a nitrogen atmosphere.
EP85101524A 1984-05-30 1985-02-13 Electrical-resistance composition and method of making electrical-resistance elements Expired EP0163004B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US615204 1984-05-30
US06/615,204 US4536328A (en) 1984-05-30 1984-05-30 Electrical resistance compositions and methods of making the same

Publications (2)

Publication Number Publication Date
EP0163004A1 EP0163004A1 (en) 1985-12-04
EP0163004B1 true EP0163004B1 (en) 1988-01-07

Family

ID=24464435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85101524A Expired EP0163004B1 (en) 1984-05-30 1985-02-13 Electrical-resistance composition and method of making electrical-resistance elements

Country Status (5)

Country Link
US (1) US4536328A (en)
EP (1) EP0163004B1 (en)
JP (1) JPH0620001B2 (en)
CA (1) CA1243196A (en)
DE (1) DE3561369D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073442A1 (en) * 2002-02-28 2003-09-04 Kojima Chemical Co., Ltd. Resistor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720418A (en) * 1985-07-01 1988-01-19 Cts Corporation Pre-reacted resistor paint, and resistors made therefrom
US4636332A (en) * 1985-11-01 1987-01-13 E. I. Du Pont De Nemours And Company Thick film conductor composition
US4814107A (en) * 1988-02-12 1989-03-21 Heraeus Incorporated Cermalloy Division Nitrogen fireable resistor compositions
US4906406A (en) * 1988-07-21 1990-03-06 E. I. Du Pont De Nemours And Company Thermistor composition
US4961999A (en) * 1988-07-21 1990-10-09 E. I. Du Pont De Nemours And Company Thermistor composition
US4970195A (en) * 1988-09-27 1990-11-13 Alfred University Process of making a superconducting glass-ceramic composition
DE3941283C1 (en) * 1989-12-14 1991-01-31 W.C. Heraeus Gmbh, 6450 Hanau, De
JPH05198356A (en) * 1991-02-26 1993-08-06 Lapin Demin Gmbh Plane heating element and manufacture thereof
US5608373A (en) * 1994-06-01 1997-03-04 Cts Corporation Glass frit compositions and electrical conductor compositions made therefrom compatible with reducing materials
JPH08186004A (en) * 1994-12-30 1996-07-16 Murata Mfg Co Ltd Resistor material, resistor paste and resistor using the same
JP3246245B2 (en) * 1994-12-30 2002-01-15 株式会社村田製作所 Resistor
JP2937072B2 (en) * 1995-04-18 1999-08-23 株式会社村田製作所 Resistance material composition, resistance paste and resistor
JP2937073B2 (en) * 1995-04-18 1999-08-23 株式会社村田製作所 Resistance material composition, resistance paste and resistor
DE19832843A1 (en) * 1998-07-21 2000-02-10 Heraeus Electro Nite Int Thermistor
JP3630144B2 (en) * 2002-02-28 2005-03-16 小島化学薬品株式会社 Resistor
JP3579836B2 (en) * 2002-02-28 2004-10-20 小島化学薬品株式会社 Fixed resistor
JP2004192853A (en) * 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Oxide conductive paste
JP2007103594A (en) * 2005-10-03 2007-04-19 Shoei Chem Ind Co Resistor composition and thick film resistor
JP2017045906A (en) * 2015-08-28 2017-03-02 住友金属鉱山株式会社 Thick film resistor paste

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304199A (en) * 1963-11-12 1967-02-14 Cts Corp Electrical resistance element
DE1471445B (en) * 1964-08-07 1970-08-20
US3324049A (en) * 1966-02-18 1967-06-06 Cts Corp Precision resistance element and method of making the same
FR2000816A1 (en) * 1968-01-26 1969-09-12 Du Pont
US3655440A (en) * 1969-03-03 1972-04-11 Cts Corp Electrical resistance elements, their composition and method of manufacture
US3682840A (en) * 1970-10-19 1972-08-08 Air Reduction Electrical resistor containing lead ruthenate
DE2115814C3 (en) * 1971-04-01 1975-10-30 W.C. Heraeus Gmbh, 6450 Hanau Resistance paste and process for the production of an electrical thick-film resistor
US3932315A (en) * 1974-09-24 1976-01-13 E. I. Du Pont De Nemours & Company Superconductive barium-lead-bismuth oxides
US4372037A (en) * 1975-03-03 1983-02-08 Hughes Aircraft Company Large area hybrid microcircuit assembly
US4065743A (en) * 1975-03-21 1977-12-27 Trw, Inc. Resistor material, resistor made therefrom and method of making the same
US4101708A (en) * 1977-03-25 1978-07-18 E. I. Du Pont De Nemours And Company Resistor compositions
US4163706A (en) * 1977-12-02 1979-08-07 Exxon Research & Engineering Co. Bi2 [M2-x Bix ]O7-y compounds wherein M is Ru, Ir or mixtures thereof, and electrochemical devices containing same (Bat-24)
US4332081A (en) * 1978-06-22 1982-06-01 North American Philips Corporation Temperature sensor
US4311980A (en) * 1978-10-12 1982-01-19 Fabrica Italiana Magneti Marelli, S.P.A. Device for pressure measurement using a resistor strain gauge
US4225469A (en) * 1978-11-01 1980-09-30 Exxon Research & Engineering Co. Method of making lead and bismuth pyrochlore compounds using an alkaline medium and at least one solid reactant source
US4320165A (en) * 1978-11-15 1982-03-16 Honeywell Inc. Thick film resistor
US4302362A (en) * 1979-01-23 1981-11-24 E. I. Du Pont De Nemours And Company Stable pyrochlore resistor compositions
GB2050327B (en) * 1979-03-21 1983-05-25 Plessey Inc Thick film circuits
JPS55130198A (en) * 1979-03-30 1980-10-08 Hitachi Ltd Hybrid integrated circuit board for tuner
US4343833A (en) * 1979-06-26 1982-08-10 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing thermal head
US4312770A (en) * 1979-07-09 1982-01-26 General Motors Corporation Thick film resistor paste and resistors therefrom
US4390784A (en) * 1979-10-01 1983-06-28 The Bendix Corporation One piece ion accelerator for ion mobility detector cells
JPS5688297A (en) * 1979-12-20 1981-07-17 Mitsubishi Electric Corp Device for firing fluorescent lamp
US4377944A (en) * 1979-12-27 1983-03-29 Nippon Electric Co., Ltd. Integrated gas sensitive unit comprising a gas sensitive semiconductor element and a resistor for gas concentration measurement
US4312332A (en) * 1980-04-25 1982-01-26 Cordis Corporation Oxygen sensing
FR2485246A1 (en) * 1980-06-19 1981-12-24 Sev Marchal METHOD FOR ADJUSTING THE VALUE OF A THICK LAYER RESISTANCE AND CORRESPONDING RESISTANCE
US4316920A (en) * 1980-07-03 1982-02-23 Bell Telephone Laboratories, Incorporated Thick film resistor circuits
JPS5729185U (en) * 1980-07-28 1982-02-16
US4316942A (en) * 1980-10-06 1982-02-23 Cts Corporation Thick film copper conductor circuits
US4377642A (en) * 1980-10-17 1983-03-22 Rca Corporation Overglaze inks
US4355692A (en) * 1980-11-24 1982-10-26 General Electric Company Thick film resistor force transducers and weighing scales
US4414143A (en) * 1981-05-06 1983-11-08 E. I. Du Pont De Nemours & Co. Conductor compositions
US4373018A (en) * 1981-06-05 1983-02-08 Bell Telephone Laboratories, Incorporated Multiple exposure microlithography patterning method
US4415624A (en) * 1981-07-06 1983-11-15 Rca Corporation Air-fireable thick film inks
US4362656A (en) * 1981-07-24 1982-12-07 E. I. Du Pont De Nemours And Company Thick film resistor compositions
US4436829A (en) * 1982-02-04 1984-03-13 Corning Glass Works Glass frits containing WO3 or MoO3 in RuO2 -based resistors
US4435691A (en) * 1982-03-22 1984-03-06 Cts Corporation Dual track resistor element having nonlinear output

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073442A1 (en) * 2002-02-28 2003-09-04 Kojima Chemical Co., Ltd. Resistor

Also Published As

Publication number Publication date
JPS60262401A (en) 1985-12-25
JPH0620001B2 (en) 1994-03-16
US4536328A (en) 1985-08-20
CA1243196A (en) 1988-10-18
DE3561369D1 (en) 1988-02-11
EP0163004A1 (en) 1985-12-04

Similar Documents

Publication Publication Date Title
EP0163004B1 (en) Electrical-resistance composition and method of making electrical-resistance elements
DE2746320C2 (en) Copper-glass composition of matter and its uses
US7740899B2 (en) Electronic device having lead and cadmium free electronic overglaze applied thereto
DE1771503C3 (en) Thermally crystallizable glass and glass ceramics based on SiO2-PbO-BaO-Al2O3-TiO2 and their use
DE3151206C2 (en) Glazed, ceramic carrier material
DE2347709C3 (en) Dielectric ground
EP0071190B1 (en) Thick film resistor compositions
EP0115798B1 (en) Stain-resistant ruthenium oxide-based resistors
DE1194539B (en) Resistance glaze compound
EP0327828B1 (en) Resistance masses for firing under nitrogen
DE102013009241B4 (en) Copper paste composition and its use in a method of forming copper conductors on substrates
DE2403667C3 (en) Electrical resistance compound made of electrically conductive, bismuth-containing, polynary oxides with a pyrochlore-related crystal structure and a dielectric solid and its use for the production of electrical resistances
EP0124943B1 (en) Dielectric glass for multilayered circuits, and thick-film circuits using it
DE1646606C3 (en) Compound for metallizing ceramic workpieces
DE3914844C2 (en)
EP0529195B1 (en) Resistant paste for manufacturing thick-film resistors
EP0185322B1 (en) Resistor compositions
EP0432353A2 (en) Resistor paste and its use
DE2449036A1 (en) COMPOSITION OF SUBSTANCE SUITABLE FOR FILM VARISTORS
DE2946679A1 (en) RESISTANCE MATERIAL, ELECTRICAL RESISTANCE AND METHOD FOR PRODUCING THE SAME
US4652397A (en) Resistor compositions
DE3134584C2 (en)
DD295825A5 (en) CELSIAN-CONTAINING GLASS-CRYSTALLINE INSULATION AND COATING LAYERS AND METHOD FOR THE PRODUCTION THEREOF
DE1665366C3 (en) Use of glaze compounds for encapsulating electrical resistors with a resistor body based on palladium metal and / or palladium oxide
DE2506261C3 (en) Powder masses from a solid solution of Bi2 Ru2 O7 with other pyrochloride-related oxides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850301

AK Designated contracting states

Designated state(s): DE FR GB IT NL

ITCL It: translation for ep claims filed

Representative=s name: SOCIETA' ITALIANA BREVETTI S.P.A.

EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19870512

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3561369

Country of ref document: DE

Date of ref document: 19880211

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990121

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990205

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990226

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990228

Year of fee payment: 15

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: W.C. HERAEUS GMBH & CO. KG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST