EP0154797A2 - Manufacturing process for multichannel plates, and their use - Google Patents
Manufacturing process for multichannel plates, and their use Download PDFInfo
- Publication number
- EP0154797A2 EP0154797A2 EP85101038A EP85101038A EP0154797A2 EP 0154797 A2 EP0154797 A2 EP 0154797A2 EP 85101038 A EP85101038 A EP 85101038A EP 85101038 A EP85101038 A EP 85101038A EP 0154797 A2 EP0154797 A2 EP 0154797A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- produced
- mold
- channel
- channels
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 11
- 230000005855 radiation Effects 0.000 claims abstract description 6
- 230000003287 optical effect Effects 0.000 claims abstract description 5
- 238000000465 moulding Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract description 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 14
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910000464 lead oxide Inorganic materials 0.000 description 3
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000005469 synchrotron radiation Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000005355 lead glass Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical group OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/18—Electrode arrangements using essentially more than one dynode
- H01J43/24—Dynodes having potential gradient along their surfaces
- H01J43/246—Microchannel plates [MCP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/12—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
- H01J9/125—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/32—Secondary emission electrodes
Definitions
- the invention relates to a method for producing multi-channel plates for amplifying optical images or other areal signal distributions by means of secondary electron multiplication, and to the use of a stack of multi-channel plates produced by this method.
- multi-channel image intensifier plate also name: channel multiplier plate, multi- or micro-channel plate. It consists of an approximately 1 mm thick glass plate enclosed in an evacuated vessel, which is penetrated perpendicularly or obliquely to the surface by many closely adjacent channels of approximately 30 micrometers in diameter. Through the use of glasses containing lead oxide and a post-treatment with reducing gases at elevated temperature, the inner surfaces of the channels are rendered weakly electrically conductive. By applying a voltage of approximately 1000 volts between the metal-coated surfaces of the plate, a potential gradient is generated in the channels, whereby each channel is given the properties of a secondary electron multiplier.
- An inclination of the channels favors the collision of the primary particles with the channel walls and thus the desired electron release.
- it enables the construction of a plate stack with a zigzag-shaped channel structure, which increases the unwanted acceleration of parasitic Ions suppressed.
- a similar effect can be achieved by a weak curvature of the channels.
- metal core process a fine, uniform wire is coated with heated glass and wrapped around a polygonal drum. Individual blocks are cut out of the winding and the glass coatings of the wires are melted together. The block is then cut into thin slices, from which the wire cores are removed by etching.
- a major disadvantage of the metal core process described is seen in the fact that the metal cores and thus the channels have uniform diameters, but their distances differ greatly from one another.
- fine parallel grooves are etched into the surfaces of thin glass plates by photolithography.
- the plates are stacked so that the grooves of plates lying on top of one another together form the desired channels.
- the plates are melted into blocks from which the multi-channel plates are then cut.
- the distance der'Rillen can be regulated exactly at the p hotolithographischen etching. You can also use this method to make the channels relatively slightly curved or zigzag.
- the width and depth of the grooves can hardly be controlled during the etching and the melting process. The result is that the multi-channel plates the picture distorted so much during amplification that the method was eventually abandoned.
- multi-channel plates are usually manufactured using the so-called double-drawing process: hollow glass cylinders or glass cylinders filled with a more soluble glass are drawn out into glass threads, which are bundled, fused and further drawn out, after which the processes of bundling and fusing are repeated. The final bundle is cut into approximately 1 mm thick plates, from which are dissolved out to a diameter of about 30 / um pulled cores made of light soluble glass. Due to the manufacturing principle, certain variations in the cross-sections and positions of the ducts must also be accepted in the double drawing process.
- the scatter in the cross sections and positions of the channels in the known multi-channel plates prevents or complicates the exact assignment of other optical and / or electrical components produced using methods of microfabrication to individual channels or channel groups of the image intensifier. However, such an assignment is important, for example, for the separate electrical further processing of the electrical currents supplied by the individual channels or channel groups.
- the scatter in the cross sections and positions of the channels in the previously known multi-channel plates is also responsible for the fact that in the construction of a plate stack mentioned at the outset zigzag-shaped channel structure result in significant losses in resolution.
- Layered multi-channel plates for image intensifiers with dynodes in the form of perforated dynode plates are known from DE-OS 31 50 257 and DE-PS 24 14 658, in which photo-etching technology is proposed as the preferred method for producing the channel system.
- the dynode material e.g. a BeCu alloy, etched.
- This technique good results are achieved in practice if the diameter of the channels and the thickness of the dynode are approximately the same (see column 3, lines 5 to 10 of DE-PS 24 14 658).
- the photoetching technique can no longer be used with the desired success. (see also Spectrum of Science, Jan. 1982, left column, lines 26ff).
- the object of the invention is to demonstrate a method for producing multi-channel plates of the generic type and their use, in which the thickness of the plates is a multiple of the channel diameter given precisely specified cross sections and positions of the individual channels can.
- the cross-sectional shapes and the positions of the individual channels can be specified with a tolerance of the order of magnitude of one micrometer even in the case of relatively thick multi-channel plates.
- the method also has the advantage that it has a particularly large ratio of the sum of the channel cross-sectional areas to the total area the plate ie a particularly high transparency of the multi-channel plates can be achieved.
- Both corpuscular rays and electromagnetic waves in particular the X-rays (synchrotron radiation) generated by an electron synchrotron, can be considered as high-energy radiation. While one uses masks in a known manner when using electromagnetic waves to produce the desired structures, the structure can also be generated by electromagnetic control when using corpuscular beams.
- the material for the production of the multichannel positive molds according to claim 1 or the primary multichannel positive molds according to claim 2 depends on the type of high-energy radiation, corresponding regulations being, for example, DE-PS 29 22 642 and DE-OS 32 21 981 can be removed.
- the metallic multi-channel negative mold is produced by galvanic molding of the multi-channel positive mold connected to a metal electrode.
- the metal electrode can be used as the base plate of the metallic multi-channel negative mold.
- it is also possible to continue the galvanic deposition of metal until the multichannel positive form is covered by a continuous metal layer which, optionally after smoothing its surface, is used as the base plate of the metallic multichannel negative form.
- a suitable choice of the electrode material possibly in connection with a passivation of its surface, can prevent the electroplating from adhering to the electrode in a known manner. It is then possible to Separate positive form together with the electrode connected to it from the generated multichannel negative form without damage, which makes repeated use of the multichannel positive form possible.
- the glass containing lead oxide used to manufacture the previously known multi-channel plates can be used to fill the metallic multi-channel negative mold.
- the glass can be melted or sintered in using glass powder.
- other electrically non-conductive or only weakly conductive ones are used for filling
- Materials for example A1203 powder, in question, which can also be sintered together at a higher temperature to a shape-retaining body.
- the aftertreatment with H 2 which is customary in the case of lead oxide-containing glasses may have to be replaced by another aftertreatment, for example using the known CVD method ("chemical vapor deposition").
- the method of the invention can be modified in accordance with claim 2, details of which can be found, for example, in DE-PS 32 06 820.4.
- Non-adhesive reactive resins are particularly suitable as impression materials.
- multi-channel plates produced according to the invention can be inclined to the plate surface Channels are also stacked together so that there are zigzag channel structures. While in the case of stacking of known multichannel plates, losses in spatial resolution have to be accepted due to the inevitable scatter in the cross sections and positions of the channels, the stacking in the multichannel plates produced according to the invention can be carried out by mutually aligning the channel openings while largely avoiding this disadvantage.
- a 0.5 mm thick plate 1 made of polymethyl methacrylate (PMMA) serves as the starting material for the production of the multi-channel positive mold, which is firmly adhered to a metallic base plate 2 made of an iron-nickel alloy and serving as an electrode.
- the PMMA plate 1 is irradiated with synchrotron radiation 3 via an X-ray mask, which is directed obliquely to the surfaces of the PMMA plate and the X-ray mask.
- the X-ray mask consists of a carrier 4, which only weakly absorbs the X-ray radiation, and a grid-like absorber 5, which strongly absorbs the X-radiation, by means of which the cross-sectional shapes and the positions of the channels are specified.
- the PMMA in the regions 6 not covered by the absorber is chemically changed.
- the irradiated areas 6 are removed by introducing the PMMA into a developer solution, so that a multi-channel positive mold 7 with channel-shaped openings 8 according to FIG. 3 is produced.
- a mixture of a substance from the glycol ether group, a substance from the primary amines, is used as the developer solution and water and a substance of the azine group according to DE-OS 30 39 110 used.
- the channel-shaped openings 8 have a hexagonal cross-sectional shape with a width of approximately 30 ⁇ m, the thickness of the walls 8a is approximately 3 ⁇ m.
- an iron-nickel alloy is electrodeposited into the channel-shaped openings 8, column-like structures 9 being formed from this alloy on the electrically conductive base plate 2 in the grid-shaped multi-channel positive form 7.
- the multichannel positive form is then removed by dissolving in a solvent, so that a metallic negative form of the multichannel plate according to FIG. 5 is exposed.
- the spaces 10 between the columnar structures 9 of the metallic negative form are filled with a lead glass melt 11 under vacuum (FIG. 6).
- a lead glass melt 11 under vacuum FOG. 6
- the iron-nickel alloy mentioned above it can be ensured that the lead glass and the alloy have approximately the same thermal expansion coefficient; so that the stresses that occur during cooling do not lead to cracking in the glass.
- the structure consisting of glass 11 and metal 9 is finally ground and the metal 9 is removed by dissolving it in a selective etching.
- the multi-channel plate provided with the openings 12 is finally covered in a known manner by sputtering metal on both sides with thin conductive layers 13, while the inner surfaces of the channels are made electrically weakly conductive by heating in hydrogen (FIG. 7).
- the primary metallic negative shape which corresponds to the shape shown in FIG. 5, is filled with a reaction resin which does not adhere to the metal as an impression material beyond the columnar structures of the metallic negative shapes.
- the reaction resin has hardened, the secondary multichannel positive form formed therefrom and the primary metallic negative form are separated from one another, whereupon the secondary multichannel positive form is firmly attached with the side having the openings to a metallic base plate serving as an electrode.
- the secondary multi-channel positive form closed on the top is then removed to such an extent that the channel openings are exposed.
- Subsequent galvanic molding produces secondary metallic negative shapes, which in turn correspond to the shape shown in FIG. 5.
- the production of the multi-channel plate is continued in accordance with the production steps already explained with reference to FIGS. 6 and 7.
- the secondary multichannel positive molds made from the reaction resin can also be repeatedly electroplated.
- a thin release agent film is applied in a known manner by immersion in a release agent solution.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electron Tubes For Measurement (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Paper (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Vielkanalplatten für die Verstärkung von optischen Bildern oder anderen flächenhaften Signalverteilungen mittels Sekundärelektronenvervielfachung sowie die Verwendung eines nach diesem Verfahren hergestellten Stapels von Vielkanalplatten.The invention relates to a method for producing multi-channel plates for amplifying optical images or other areal signal distributions by means of secondary electron multiplication, and to the use of a stack of multi-channel plates produced by this method.
Es ist bekannt, optische Bilder oder andere flächenhafte Signalverteilungen mit einer sogenannten Vielkanal-Bildverstärkerplatte (andere Bezeichnung: Kanal-Vervielfacherplatte, Multi- bzw. Micro-Channel-Plate) zu verstärken. Sie besteht aus einer etwa 1 mm dicken in einem evakuierten Gefäß eingeschlossenen Glasplatte, die senkrecht oder schräg zur Oberfläche von vielen eng benachbarten Kanälen von etwa 30 Mikrometer Durchmesser durchsetzt ist. Durch Verwendung Bleioxyd-haltiger Gläser und eine Nachbehandlung mit reduzierenden Gasen bei erhöhter Temperatur sind die inneren Oberflächen der Kanäle schwach elektrisch leitend gemacht. Durch Anlegen einer Spannung von etwa 1000 Volt zwischen den mit Metallüberzügen versehenen Oberflächen der Platte wird in den Kanälen ein Potentialgefälle erzeugt, wodurch jeder Kanal die Eigenschaften eines Sekundärelektronenvervielfachers erhält. Eine Schrägstellung der Kanäle begünstigt die Kollision der Primärteilchen mit den Kanalwänden und damit die gewünschte Elektronenauslösung. Daneben ermöglicht sie den Aufbau eines Plattenstapels mit zick-zack-förmiger Kanalstruktur, die die unerwünschte Beschleunigung parasitärer Ionen unterdrückt. Eine ähnliche Wirkung kann durch eine schwache Krümmung der Kanäle erreicht werden.It is known to amplify optical images or other areal signal distributions with a so-called multi-channel image intensifier plate (other name: channel multiplier plate, multi- or micro-channel plate). It consists of an approximately 1 mm thick glass plate enclosed in an evacuated vessel, which is penetrated perpendicularly or obliquely to the surface by many closely adjacent channels of approximately 30 micrometers in diameter. Through the use of glasses containing lead oxide and a post-treatment with reducing gases at elevated temperature, the inner surfaces of the channels are rendered weakly electrically conductive. By applying a voltage of approximately 1000 volts between the metal-coated surfaces of the plate, a potential gradient is generated in the channels, whereby each channel is given the properties of a secondary electron multiplier. An inclination of the channels favors the collision of the primary particles with the channel walls and thus the desired electron release. In addition, it enables the construction of a plate stack with a zigzag-shaped channel structure, which increases the unwanted acceleration of parasitic Ions suppressed. A similar effect can be achieved by a weak curvature of the channels.
Für die Vielkanalplatten sind mehrere Herstellungsverfahren bekannt: vgl. z.B. Michael Lampton, Spektrum der Wissenschaften, Januar 1982, S.44-55, aus Scientific American, November 1981 .Auch die Verwendung von solchen Vielkanalplatten ist aus dieser Literaturstelle bekannt.Several manufacturing processes are known for the multi-channel plates: cf. e.g. Michael Lampton, Spectrum of Sciences, January 1982, pp. 44-55, from Scientific American, November 1981. The use of such multi-channel plates is also known from this reference.
Beim sog. Metallkernverfahren wird ein feiner, gleichmäßiger Draht mit erhitztem Glas beschichtet und um eine polygonale Trommel gewickelt. Aus der Wicklung schneidet man einzelne Blöcke heraus und verschmilzt die Glasüberzüge der Drähte miteinander. Anschließend wird der Block in dünne Scheiben zerschnitten, aus denen man die Drahtkerne durch Ätzen entfernt. Ein wesentlicher Nachteil des beschriebenen Metallkernverfahrens wird in der Tatsache gesehen, daß die Metallkerne und damit die Kanäle zwar einheitliche Durchmesser haben, ihre Abstände aber stark voneinander abweichen.In the so-called metal core process, a fine, uniform wire is coated with heated glass and wrapped around a polygonal drum. Individual blocks are cut out of the winding and the glass coatings of the wires are melted together. The block is then cut into thin slices, from which the wire cores are removed by etching. A major disadvantage of the metal core process described is seen in the fact that the metal cores and thus the channels have uniform diameters, but their distances differ greatly from one another.
Bei einem anderen Herstellungsverfahren ätzt man auf photolithographischem Weg feine parallele Rillen in die Oberflächen dünner Glasplatten. Die Platten werden so gestapelt, daß die Rillen aufeinanderliegender Platten gemeinsam die gewünschten Kanäle bilden. Danach werden die Platten zu Blöcken zusammengeschmolzen aus denen dann die Vielkanalplatten geschnitten werden. Für diese Methode spricht, daß sich der Abstand der'Rillen bei der photolithographischen Ätzung genau regulieren läßt. Auch kann man nach dieser Methode die Kanäle relativ leicht gekrümmt oder zickzackförmig herstellen. Allerdings zeigte sich, daß Breite und Tiefe der Rillen während der Ätzung und des Schmelzprozesses kaum zu kontrollieren sind. Die Folge ist, daß die Vielkanalplatten das Bild bei der Verstärkung so stark verzerren, daß man das Verfahren schließlich aufgeben mußte.In another manufacturing process, fine parallel grooves are etched into the surfaces of thin glass plates by photolithography. The plates are stacked so that the grooves of plates lying on top of one another together form the desired channels. Then the plates are melted into blocks from which the multi-channel plates are then cut. In favor of this method is that the distance der'Rillen can be regulated exactly at the p hotolithographischen etching. You can also use this method to make the channels relatively slightly curved or zigzag. However, it was found that the width and depth of the grooves can hardly be controlled during the etching and the melting process. The result is that the multi-channel plates the picture distorted so much during amplification that the method was eventually abandoned.
Heute werden Vielkanalplatten gewöhnlich nach dem sogenannten Doppelziehverfahren hergestellt: Dabei werden hohle oder mit einem leichter löslichen Glas gefüllte Glaszylinder zu Glasfäden ausgezogen, die gebündelt, verschmolzen und weiter ausgezogen werden, wonach die Vorgänge des Bündelns .und Verschmelzens wiederholt werden. Das endgültige Bündel wird in etwa 1 mm dicke Platten zerschnitten, aus denen die auf einen Durchmesser von etwa 30/um heruntergezogenenKerne aus leichter löslichem Glas herausgelöst werden. Auch beim Doppelziehverfahren müssen aufgrund des Herstellungsprinzips gewisse Streuungen in den Querschnitten und Positionen der Kanäle in Kauf genommen werden.Today, multi-channel plates are usually manufactured using the so-called double-drawing process: hollow glass cylinders or glass cylinders filled with a more soluble glass are drawn out into glass threads, which are bundled, fused and further drawn out, after which the processes of bundling and fusing are repeated. The final bundle is cut into approximately 1 mm thick plates, from which are dissolved out to a diameter of about 30 / um pulled cores made of light soluble glass. Due to the manufacturing principle, certain variations in the cross-sections and positions of the ducts must also be accepted in the double drawing process.
Die Streuung in den Querschnitten und Positionen der Kanäle bei den vorbekannten Vielkanalplatten verhindert oder erschwert die genaue Zuordnung von anderen mit Methoden der Mikrofertigung hergestellten optischen und/oder elektrischen Bauteilen zu einzelnen Kanälen oder Kanalgruppen des Bildverstärkers. Eine solche Zuordnung ist aber beispielsweise für die getrennte elektrische Weiterverarbeitung der von den einzelnen Kanälen oder Kanalgruppen gelieferten elektrischen Ströme von Bedeutung. Die Streuung in den Querschnitten und Positionen der Kanäle bei den vorbekannten Vielkanalplatten ist auch dafür verantwortlich, daß sich bei dem eingangs erwähnten Aufbau eines Plattenstapels mit zick-zack-förmiger Kanalstruktur erhebliche Verluste im Auflösungsvermögen ergeben.The scatter in the cross sections and positions of the channels in the known multi-channel plates prevents or complicates the exact assignment of other optical and / or electrical components produced using methods of microfabrication to individual channels or channel groups of the image intensifier. However, such an assignment is important, for example, for the separate electrical further processing of the electrical currents supplied by the individual channels or channel groups. The scatter in the cross sections and positions of the channels in the previously known multi-channel plates is also responsible for the fact that in the construction of a plate stack mentioned at the outset zigzag-shaped channel structure result in significant losses in resolution.
Aus der DE-OS 31 50 257 und der DE-PS 24 14 658 sind geschichtete Vielkanalplatten für Bildverstärker mit Dynoden in Form von perforierten Dynodenplatten bekannt, bei denen als bevorzugtes Verfahren für die Herstellung des Kanalsystems die Photoätztechnik vorgeschlagen wird. Dabei wird durch belichtete und entwickelte Photolackmasken hindurch das Dynodenmaterial,z.B. eine BeCu-Legierung, geätzt. Mit dieser Technik werden in der Praxis gute Ergebnisse erzielt, wenn die Durchmesser der Kanäle und die Dicke der Dynode ungefähr gleich sind (s. Spalte 3, Zeilen 5 bis 10 der DE-PS 24 14 658). Bei Vielkanalplatten, deren Dicke erheblich größer ist als der Durchmesser der einzuarbeitenden Kanäle, läßt sich die Photoätztechnik nicht mehr mit dem gewünschten Erfolg anwenden. (s.a. Spektrum der Wissenschaft, Jan. 1982,linke Spalte, Zeilen 26ff).Layered multi-channel plates for image intensifiers with dynodes in the form of perforated dynode plates are known from DE-OS 31 50 257 and DE-PS 24 14 658, in which photo-etching technology is proposed as the preferred method for producing the channel system. The dynode material, e.g. a BeCu alloy, etched. With this technique, good results are achieved in practice if the diameter of the channels and the thickness of the dynode are approximately the same (see
Ausgehend von dem zuletzt erörterten Stande der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung von Vielkanalplatten der gattungsgemäßen Art sowie-deren Verwendung aufzuzeigen, bei dem bei genau vorgegebenen Querschnitten und Positionen der einzelnen Kanäle die Dicke der Platten ein vielfaches der Kanaldurchmesser betragen kann.Starting from the last discussed prior art, the object of the invention is to demonstrate a method for producing multi-channel plates of the generic type and their use, in which the thickness of the plates is a multiple of the channel diameter given precisely specified cross sections and positions of the individual channels can.
Diese Aufgabe wird durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of
Mit dem erfindungsgemäßen Herstellungsverfahren lassen sich auch bei relativ dicken Vielkanalplatten die Querschnittsformen und die Positionen der einzelnen Kanäle mit einer Toleranz in der Größenordnung von einem Mikrometer vorgeben. Das Verfahren hat darüber hinaus den Vorteil, daß mit ihm ein besonders großes Verhältnis von Summe der Kanalquerschnittsflächen zur Gesamtfläche der Platte d.h. eine besonders hohe Transparenz der Vielkanalplaate erreicht werden kann.With the manufacturing method according to the invention, the cross-sectional shapes and the positions of the individual channels can be specified with a tolerance of the order of magnitude of one micrometer even in the case of relatively thick multi-channel plates. The method also has the advantage that it has a particularly large ratio of the sum of the channel cross-sectional areas to the total area the plate ie a particularly high transparency of the multi-channel plates can be achieved.
Als energiereiche Strahlung kommen sowohl Korpuskularstrahlen als auch elektromagnetische Wellen, insbesondere die von einem Elektronensynchrotron erzeugte Röntgenstrahlung (Synchrotronstrahlung), in Frage. Während man bei der Verwendung elektromagnetischer Wellen zur Erzeugung der gewünschten Strukturen in bekannter Weise mit Masken arbeitet, kann man bei Verwendung von Korpuskularstrahlen die Struktur auch durch elektromagnetische Steuerung erzeugen.Both corpuscular rays and electromagnetic waves, in particular the X-rays (synchrotron radiation) generated by an electron synchrotron, can be considered as high-energy radiation. While one uses masks in a known manner when using electromagnetic waves to produce the desired structures, the structure can also be generated by electromagnetic control when using corpuscular beams.
Das Material für die Herstellung der Vielkanal-Positiv-formen gemäß Anspruch 1 bzw. der primären Vielkanalpositivformen gemäß Anspruch 2 richtet sich nach der Art der energiereichen Strahlung, wobei entsprechende Vorschriften beispeilsweise der DE-PS 29 22 642 und der DE-OS 32 21 981 entnommen werden können.The material for the production of the multichannel positive molds according to
Die Herstellung der metallischen Vielkanal-Negativ-Form erfolgt durch galvanische Abformung der mit einer Metallelektrode verbundenen Vielkanal-Positiv-Form. Dabei kann die Metallelektrode als Grundplatte der metallischen Vielkanal-Negativ-Form verwendet werden. Es ist aber .auch möglich, die galvanische Abscheidung von Metall solange fortzusetzen, bis die Vielkanal-Positiv-Form von einer durchgehenden Metallschicht bedeckt ist, die, gegebenenfalls nach einer Glättung ihrer Oberfläche, als Grundplatte der metallischen Vielkanal-Negativ-Form verwendet wird. Durch geeignete Wahl des Elektrodenmaterials, gegebenenfalls in Verbindung mit einer Passivierung seiner Oberfläche, kann in diesem Fall ein Haften der Galvanik an der Elektrode in bekannter Weise verhindert werden. Es ist dann möglich, die Vielkanal- Positiv-Form samt der mit ihr verbundenen Elektrode ohne Beschädigung von der erzeugten Vielkanal-Negativ-Form zu trennen, was eine wiederholte Benutzung der Vielkanal- Positiv-Form möglich macht.The metallic multi-channel negative mold is produced by galvanic molding of the multi-channel positive mold connected to a metal electrode. The metal electrode can be used as the base plate of the metallic multi-channel negative mold. However, it is also possible to continue the galvanic deposition of metal until the multichannel positive form is covered by a continuous metal layer which, optionally after smoothing its surface, is used as the base plate of the metallic multichannel negative form. In this case, a suitable choice of the electrode material, possibly in connection with a passivation of its surface, can prevent the electroplating from adhering to the electrode in a known manner. It is then possible to Separate positive form together with the electrode connected to it from the generated multichannel negative form without damage, which makes repeated use of the multichannel positive form possible.
Zur Fixierung der Positionen der metallischen Negativ-Formen der Kanäle kann es vorteilhaft sein, die freien Enden der säulenförmigen Negativ-Formen durch Metallbrücken miteinander zu verbinden.To fix the positions of the metallic negative shapes of the channels, it can be advantageous to connect the free ends of the columnar negative shapes to one another by means of metal bridges.
Zum Auffüllen der metallischen Vielkanal-Negativ-Form kann das zu Herstellung der vorbekannten Vielkanalplatten verwendete Bleioxyd enthaltende Glas benutzt werden. Das Glas kann eingeschmolzen oder, unter Verwendung von Glaspulver, eingesintert werden. Für das Auffüllen kommen aber auch andere elektrisch nicht oder nur schwach leitendeThe glass containing lead oxide used to manufacture the previously known multi-channel plates can be used to fill the metallic multi-channel negative mold. The glass can be melted or sintered in using glass powder. However, other electrically non-conductive or only weakly conductive ones are used for filling
Materialien beispielsweise A1203-pulver,in Frage, das sich bei höherer Temperatur ebenfalls zu einem formbebeständigen Körper zusammensintern läßt. Zur Erzielung einer ausreichenden elektrischen Leitfähigkeit muß dabei gegebenenfalls die bei den bleioxydhaltigen Gläsern übliche Nachbehandlung mit H2 durch eine andere Nachbehandlung z.B. nach der bekannten CVD-Methode ("Chemical vapor deposition") ersetzt werden.Materials, for example A1203 powder, in question, which can also be sintered together at a higher temperature to a shape-retaining body. In order to achieve sufficient electrical conductivity, the aftertreatment with H 2 which is customary in the case of lead oxide-containing glasses may have to be replaced by another aftertreatment, for example using the known CVD method ("chemical vapor deposition").
Zur Verbilligung der Massenfertigung von Vielkanalplatten der im Oberbegriff von Anspruch 1 beschriebenen Art kann das Verfahren der Erfindung entsprechend Anspruch 2 abgewandelt werden, wobei Einzelheiten in bezug auf die Abformung beispielsweise der DE-PS 32 06 820.4 zu entnehmen sind. Als Abformmasse sind besonders nichthaftende Reaktionsharze geeignet.To reduce the cost of mass production of multi-channel plates of the type described in the preamble of
Zur Unterdrückung der unerwünschten Beschleunigung parasitärer Ionen können erfindungsgemäß hergestellte Vielkanalplatten mit zur Plattenoberfläche schrägen Kanälen auch stapelartig so zusammengesetzt werden, daß sich zick-zack-förmige Kanalstrukturen ergeben. Während beim Stapeln vorbekannter Vielkanalplatten aufgrund der unvermeidlichen Streuung in den Querschnitten und Positionen der Kanäle Einbußen im räumlichen Auflösungsvermögen in Kauf genommen werden müssen, kann das Stapeln bei den erfindungsgemäß hergestellten Vielkanalplatten durch gegenseitiges Ausrichten der Kanalöffnungen unter weitgehender Vermeidung dieses Nachteils erfolgen.To suppress the undesired acceleration of parasitic ions, multi-channel plates produced according to the invention can be inclined to the plate surface Channels are also stacked together so that there are zigzag channel structures. While in the case of stacking of known multichannel plates, losses in spatial resolution have to be accepted due to the inevitable scatter in the cross sections and positions of the channels, the stacking in the multichannel plates produced according to the invention can be carried out by mutually aligning the channel openings while largely avoiding this disadvantage.
Das erfindungsgemäße Verfahren wird im folgenden anhand der Zeichnungen beispielhaft erläutert:
- Die
Figuren 1 bis 7 zeigen schematisch die einzelnen Schritte der Herstellung einer Vielkanalplatte; dieFigur 8 zeigt in perspektivischer Darstellung schematisch den Aufbau eines Stapels von Vielkanalplatten.
- Figures 1 to 7 schematically show the individual steps in the manufacture of a multi-channel plate; FIG. 8 schematically shows in perspective the structure of a stack of multi-channel plates.
Als Ausgangsmaterial für die Herstellung der Vielkanal- positiv-Form dient gemäß Fig. 1 eine O,5 mm starke Platte 1 aus Polymethylmethacrylat (PMMA), die festhaftend auf einer als Elektrode dienenden metallischen Grundplatte 2 aus einer Eisen-Nickel-Legierung aufgebracht ist. Die PMMA-Platte 1 wird gemäß Fig. 2 über eine Röntgenmaske mit Synchrotronstrahlung 3 bestrahlt, die schräg zu den Oberflächen der PMMA-Platte und der Röntgenmaske gerichtet ist. Die Röntgenmaske besteht aus einem die Röntgenstrahlung nur schwach absorbierenden,Träger 4 und einem die Röntgenstrahlung stark absorbierenden, gitterartigen Absorber 5, durch den die Qerschnittsformen und die Positionen der Kanäle vorgegeben werden. Durch die hochintensive parallele Synchrotonstrahlung wird das PMMA in den nicht vom Absorber abgedeckten Bereichen 6 strahlenchemisch verändert. Die bestrahlten Bereiche 6 werden durch Einbringen des PMMA in eine Entwicklerlösung entfernt, so daß eine Vielkanalpositiv-Form 7 mit kanalförmigen Durchbrüchen 8 gemäß Fig. 3 entsteht. Als Entwicklerlösung wird ein Gemisch aus einem Stoff der Glykoläther-Gruppe, einem Stoff der Primär-Amine sowie Wasser und einem Stoff der Azingruppe gemäß DE-OS 30 39 110 verwendet. Die kanalförmigen Durchbrüche 8 haben eine sechseckige Querschnittsform mit einer Weite von ca. 30 pm, die Stärke der Wände 8a beträgt ca. 3 um.According to FIG. 1, a 0.5 mm
Im nächsten Fertigungsschritt wird gemäß Fig. 4 eine Eisen-Nickel-Legierung galvanisch in die kanalförmigen Durchbrüche 8 abgeschieden, wobei säulenartige Strukturen 9 aus dieser Legierung auf der elektrisch leitenden Grundplatte 2 in der gitterförmigen Vielkanalpositiv-Form 7 ausgebildet werden. Die Vielkanalpositiv-Form wird dann durch Auflösen in einem Lösungsmittel entfernt, so daß eine metallische Negativ-Form der Vielkanalplatte gemäß Fig. 5 freigelegt wird.4, an iron-nickel alloy is electrodeposited into the channel-shaped
In den weiteren Fertigungsschritten werden die Zwischenräume 10 zwischen den säulenartigen Strukturen 9 der metallischen Negativ-Form mit einer Bleiglasschmelze 11 unter Vakuum aufgefüllt (Fig. 6). Durch die Verwendung der oben erwähnten Eisen-Nickel-Legierung kann dabei sichergestellt werden, daß das Bleiglas und die Legierung annähernd gleiche thermische Ausdehnungskoeffizienten besitzen; so daß die beim Abkühlen auftretenden Spannungen nicht zu einer Rißbildung im Glas führen. Die aus Glas 11 und Metall 9 bestehende Struktur wird schließlich überschliffenf und das Metall 9 wird durch Auflösen in einer selektiven Ätze entfernt.In the further manufacturing steps, the
Die mit den Durchbrüchen 12 versehene Vielkanalplatte wird schließlich in bekannter Weise durch Aufsputtern von Metall beidseitig mit dünnen Leitschichten 13 überzogen, während die inneren Oberflächen der Kanäle durch Erhitzen in Wasserstoff elektrisch schwach leitend gemacht werden (Fig. 7).The multi-channel plate provided with the
Bei der Durchführung des Verfahrens gemäß Anspruch 2 wird die primäre metallische Negativ-Form, die der in Fig. 5 gezeigten Form entspricht, mit einem nicht auf dem Metall haftenden Reaktionsharz als Abformmasse aufgefüllt über die säulenförmigen Strukturen der metallischen Negativ-Formen hinaus. Nach dem Aushärten des Reaktionsharzes werden die daraus gebildete sekundäre Vielkanalpositiv-Form und die primäre metallische Negativ-Form voneinander getrennt, worauf die sekundäre Vielkanalpositiv-Form mit der die Öffnungen aufweisenden Seite auf eine als Elektrode dienende metallische Grundplatte fest aufgebracht wird. Die auf der Oberseite geschlossene sekundäre Vielkanalpositiv-Form wird dann soweit abgetragen, daß die Kanalöffnungen freiliegen. Durch anschließende galvanische Abformung werden sekundäre metallische Negativ-Formen erzeugt, die wiederum der in Fig. 5 gezeigten Form entsprechen. Der weitere Fortgang der Herstellung der Vielkanalplatte erfolgt gemäß den bereits anhand der Figuren 6 und 7 erläuterten Fertigungsschritte.When carrying out the method according to
Die aus dem Reaktionsharz hergestellten sekundären Vielkanalpositiv-Formen können ebenfalls mehrfach galvanisch abgeformt werden. Zur besseren Trennung der mehrfach verwendbaren sekundären Vielkanalpositiv-Form von den sekundären Vielkanalnegativ-Formen erweist es sich als vorteilhaft, vor der galvanischen Abformung einen dünnen Trennmittelfilm auf die Kanalwände der sekundären Vielkanalpositiv-Form aufzubringen. Die Aufbringung des Trennmittelfilms erfolgt in bekannter Weise durch Eintauchen in eine Trennmittellösung.The secondary multichannel positive molds made from the reaction resin can also be repeatedly electroplated. For better separation of the secondary multi-channel positive form, which can be used multiple times, from the secondary multi-channel negative forms, it has proven to be advantageous to apply a thin release agent film to the channel walls of the secondary multi-channel positive form before the galvanic impression. The release agent film is applied in a known manner by immersion in a release agent solution.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85101038T ATE37757T1 (en) | 1984-03-10 | 1985-02-01 | PROCESS FOR MANUFACTURE OF MULTI-CHANNEL PLATES AND THEIR USE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3408848A DE3408848C2 (en) | 1984-03-10 | 1984-03-10 | Process for the production of multi-channel plates |
DE3408848 | 1984-03-10 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0154797A2 true EP0154797A2 (en) | 1985-09-18 |
EP0154797A3 EP0154797A3 (en) | 1986-12-30 |
EP0154797B1 EP0154797B1 (en) | 1988-10-05 |
Family
ID=6230128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85101038A Expired EP0154797B1 (en) | 1984-03-10 | 1985-02-01 | Manufacturing process for multichannel plates, and their use |
Country Status (6)
Country | Link |
---|---|
US (1) | US4563250A (en) |
EP (1) | EP0154797B1 (en) |
JP (1) | JPS60208041A (en) |
AT (1) | ATE37757T1 (en) |
BR (1) | BR8501058A (en) |
DE (1) | DE3408848C2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3841621A1 (en) * | 1988-12-10 | 1990-07-12 | Draegerwerk Ag | ELECTROCHEMICAL MEASURING CELL WITH MICROSTRUCTURED CAPILLARY OPENINGS IN THE MEASURING ELECTRODE |
EP0413482B1 (en) * | 1989-08-18 | 1997-03-12 | Galileo Electro-Optics Corp. | Thin-film continuous dynodes |
US5189777A (en) * | 1990-12-07 | 1993-03-02 | Wisconsin Alumni Research Foundation | Method of producing micromachined differential pressure transducers |
US5206983A (en) * | 1991-06-24 | 1993-05-04 | Wisconsin Alumni Research Foundation | Method of manufacturing micromechanical devices |
US5190637A (en) * | 1992-04-24 | 1993-03-02 | Wisconsin Alumni Research Foundation | Formation of microstructures by multiple level deep X-ray lithography with sacrificial metal layers |
US5378583A (en) * | 1992-12-22 | 1995-01-03 | Wisconsin Alumni Research Foundation | Formation of microstructures using a preformed photoresist sheet |
EP0872331A1 (en) | 1997-04-16 | 1998-10-21 | Matsushita Electric Industrial Co., Ltd. | Stamper protecting layer for optical disk molding apparatus, optical disk molding apparatus and optical disk molding method using the stamper protecting layer |
US6521149B1 (en) * | 2000-06-06 | 2003-02-18 | Gerald T. Mearini | Solid chemical vapor deposition diamond microchannel plate |
DE10305427B4 (en) * | 2003-02-03 | 2006-05-24 | Siemens Ag | Production method for a perforated disk for ejecting a fluid |
US7154086B2 (en) * | 2003-03-19 | 2006-12-26 | Burle Technologies, Inc. | Conductive tube for use as a reflectron lens |
US20080073516A1 (en) * | 2006-03-10 | 2008-03-27 | Laprade Bruce N | Resistive glass structures used to shape electric fields in analytical instruments |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031423A (en) * | 1969-04-30 | 1977-06-21 | American Optical Corporation | Channel structure for multi-channel electron multipliers and method of making same |
GB2029088A (en) * | 1978-08-21 | 1980-03-12 | Philips Nv | Microchannel plate multipliers |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1434053A (en) * | 1973-04-06 | 1976-04-28 | Mullard Ltd | Electron multipliers |
DE2922642C2 (en) * | 1979-06-02 | 1981-10-01 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Process for the manufacture of plates for the construction of separation nozzle elements |
DE3039110A1 (en) * | 1980-10-16 | 1982-05-13 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR THE STRESS-FREE DEVELOPMENT OF IRRADIATED POLYMETHYL META ACRYLATE LAYERS |
DE3150257A1 (en) * | 1981-12-18 | 1983-06-30 | Siemens AG, 1000 Berlin und 8000 München | Image intensifier |
DE3206820C2 (en) * | 1982-02-26 | 1984-02-09 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Process for making separation nozzle elements |
DE3221981C2 (en) * | 1982-06-11 | 1985-08-29 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Process for the production of separating nozzle elements consisting of separating bodies with end plates for separating gaseous or vaporous mixtures |
-
1984
- 1984-03-10 DE DE3408848A patent/DE3408848C2/en not_active Expired
-
1985
- 1985-02-01 EP EP85101038A patent/EP0154797B1/en not_active Expired
- 1985-02-01 AT AT85101038T patent/ATE37757T1/en not_active IP Right Cessation
- 1985-03-06 US US06/708,841 patent/US4563250A/en not_active Expired - Fee Related
- 1985-03-08 BR BR8501058A patent/BR8501058A/en not_active IP Right Cessation
- 1985-03-11 JP JP60046718A patent/JPS60208041A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4031423A (en) * | 1969-04-30 | 1977-06-21 | American Optical Corporation | Channel structure for multi-channel electron multipliers and method of making same |
GB2029088A (en) * | 1978-08-21 | 1980-03-12 | Philips Nv | Microchannel plate multipliers |
Also Published As
Publication number | Publication date |
---|---|
JPH0552618B2 (en) | 1993-08-05 |
ATE37757T1 (en) | 1988-10-15 |
US4563250A (en) | 1986-01-07 |
DE3408848A1 (en) | 1985-09-19 |
DE3408848C2 (en) | 1987-04-16 |
EP0154797B1 (en) | 1988-10-05 |
JPS60208041A (en) | 1985-10-19 |
BR8501058A (en) | 1985-10-29 |
EP0154797A3 (en) | 1986-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2628099C2 (en) | Method of making a mask | |
DE19542658B4 (en) | Method for producing a stamping mold | |
DE4341149C2 (en) | Multipole device and method for producing a multipole device | |
DE3106368C2 (en) | DC gas discharge indicator | |
EP0154797B1 (en) | Manufacturing process for multichannel plates, and their use | |
DE69608713T2 (en) | Manufacturing method of a field emission device with wave-shaped support columns for high dielectric strength | |
DE2716202A1 (en) | ION SOURCE | |
DE102006007431B4 (en) | Sample carrier formed by semiconductor silicon process technology and method for production | |
EP0024515B1 (en) | Process for manufacturing separating nozzles for separating gaseous or vaporous mixtures, particularly isotopic mixtures, and separating nozzles produced according to this process | |
DE2951287A1 (en) | METHOD FOR PRODUCING PLANE SURFACES WITH THE FINEST TIPS IN THE MICROMETER AREA | |
EP0283773B1 (en) | Miniaturized secondary electron multiplier and its manufacturing procedure | |
DE2700625A1 (en) | ELECTRIC DISCHARGE DEVICE | |
DE1002089B (en) | Electromagnetic deflection system for beam control of a cathode ray tube and method for manufacturing such a deflection system | |
DE3909449C2 (en) | ||
DE3408849C2 (en) | Process for producing layered metal multi-channel plates for image intensifiers and use of the multi-channel plates thus produced | |
DE3221981C2 (en) | Process for the production of separating nozzle elements consisting of separating bodies with end plates for separating gaseous or vaporous mixtures | |
DE3517729C2 (en) | ||
DE2325245A1 (en) | MICROCHANNEL PLATE FOR SECONDARY ELECTRON EMISSION AND A METHOD OF MANUFACTURING SUCH PLATE | |
EP0010222B1 (en) | Control plate for a flat plasma display screen | |
DE1275699B (en) | Method of making a thin film magnetic assembly | |
DE2700141A1 (en) | COLOR TUBE AND METHOD OF MANUFACTURING THEREOF | |
DE102017115940A1 (en) | 3D printing process and 3D printing device | |
DE69710493T2 (en) | BLASTING DEVICE WITH POWDER WITH NON-METAL BLASTING MASK | |
DE2421442A1 (en) | MULTIPLEX SCREEN CONSTRUCTION OF A COLOR CATHODE BEAM TUBE AND MANUFACTURING PROCESS | |
DE2700139A1 (en) | METHOD OF MANUFACTURING A COLOR TUBE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19850805 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19880311 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 37757 Country of ref document: AT Date of ref document: 19881015 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940224 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19941116 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19941221 Year of fee payment: 11 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 85101038.9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19950201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950216 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950228 Year of fee payment: 11 Ref country code: FR Payment date: 19950228 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961031 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |